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Abstract. In this paper, fixed points three nonlinear operators are investigated. Common fixed point theorems are

established in a complete Gb-metric space. The result presented in this paper improves the corresponding results

in [1].
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1. Main results

In [1], Roshan et al. obtained a common fixed point theorem in a complete Gb-metric space.

After carefully reading the paper, the authors find that the proof of dn+1 ≤ dn in Theorem 2.1

[1] turned out to be not comprehensive. They only proved d3n+1 ≤ d3n and d3n+2 ≤ d3n+1 and

declared that dn+1 ≤ dn, which has a skip.

Next, we give a new proof.
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Theorem 1.1 Let (X ,G) be a complete Gb-metric space. Let A, B, C: X → X be mappings

which satisfy the following condition:

ψ(2s4G(Ax,By,Cz))≤ ψ(M(x,y,z))−ϕ(M(x,y,z)) (1.1)

for all x,y,z ∈ X , where ψ , ϕ: [0,∞)→ [0,∞) are two mappings such that ψ is continuous

nondecreasing, ϕ is a lower semi-continuous function with ψ(t) = ϕ(t) = 0 if and only if t = 0

and

M(x,y,z) = max{G(x,y,z),G(x,Ax,By),G(y,By,Cz),G(z,Cz,Ax)}.

Then, either one of A, B, and C has a fixed point, or, the maps A, B and C have a unique common

fixed point.

Proof. Choose x0 ∈ X . Define the sequence {xn} as x3n+1 = Ax3n, x3n+2 = Bx3n+1 and x3n+3 =

Cx3n+2 for all n = 0,1,2, . . . . If x3n = x3n+1, then x3n is a fixed point of A. If x3n+1 = x3n+2,

then x3n+1 is a fixed point of B. If x3n+2 = x3n+3, then x3n+2 is a fixed point of C. Now, assume

that xn 6= xn+1 for all n. Let dn = G(xn,xn+1,xn+2). we obtain from (1.1) that

ψ(d3n+1) ≤ ψ(2s4d3n+1) = ψ(2s4G(x3n+1,x3n+2,x3n+3))

= ψ(2s4G(Ax3n,Bx3n+1,Cx3n+2))

≤ ψ(M(x3n,x3n+1,x3n+2))−ϕ(M(x3n,x3n+1,x3n+2)),

where

M(x3n,x3n+1,x3n+2) = max{G(x3n,x3n+1,x3n+2),G(x3n,Ax3n,Bx3n+1),

G(x3n+1,Bx3n+1,Cx3n+2),G(x3n+2,Cx3n+2,Ax3n)}

= max{G(x3n,x3n+1,x3n+2),G(x3n,x3n+1,x3n+2),

G(x3n+1,x3n+2,x3n+3),G(x3n+2,x3n+3,x3n+1)}

= max{d3n,d3n,d3n+1,d3n+1}

= max{d3n,d3n+1}.
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We prove that d3n+1 ≤ d3n for each n ∈ N. If d3n+1 > d3n for some n ∈ N, then we have

ψ(d3n+1) ≤ ψ(d3n+1)−ϕ(d3n+1), which implies that d3n+1 = 0, a contradiction to d3n+1 > 0.

Also, we have

ψ(d3n+2) ≤ ψ(2s4d3n+2) = ψ(2s4G(x3n+2,x3n+3,x3n+4))

= ψ(2s4G(Bx3n+1,Cx3n+2,Ax3n+3))

= ψ(2s4G(Ax3n+3,Bx3n+1,Cx3n+2))

≤ ψ(M(x3n+3,x3n+1,x3n+2))−ϕ(M(x3n+3,x3n+1,x3n+2)),

where

M(x3n+3,x3n+1,x3n+2) = max{G(x3n+3,x3n+1,x3n+2),G(x3n+3,Ax3n+3,Bx3n+1),

G(x3n+1,Bx3n+1,Cx3n+2),G(x3n+2,Cx3n+2,Ax3n+3)}

= max{G(x3n+3,x3n+1,x3n+2),G(x3n+3,x3n+4,x3n+2),

G(x3n+1,x3n+2,x3n+3),G(x3n+2,x3n+3,x3n+4)}

= max{d3n+1,d3n+2,d3n+1,d3n+2}

= max{d3n+1,d3n+2}.

Similarly, if d3n+2 > d3n+1 for some n ∈ N, then we have ψ(d3n+2) ≤ ψ(d3n+2)−ϕ(d3n+2),

which implies that d3n+2 = 0, a contradiction to d3n+2 > 0. Also, we have

ψ(d3n+3) ≤ ψ(2s4d3n+3) = ψ(2s4G(x3n+3,x3n+4,x3n+5))

= ψ(2s4G(Cx3n+2,Ax3n+3,Bx3n+4))

= ψ(2s4G(Ax3n+3,Bx3n+4,Cx3n+2))

≤ ψ(M(x3n+3,x3n+4,x3n+2))−ϕ(M(x3n+3,x3n+4,x3n+2)),
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where

M(x3n+3,x3n+4,x3n+2) = max{G(x3n+3,x3n+4,x3n+2),G(x3n+3,Ax3n+3,Bx3n+4),

G(x3n+4,Bx3n+4,Cx3n+2),G(x3n+2,Cx3n+2,Ax3n+3)}

= max{G(x3n+3,x3n+4,x3n+2),G(x3n+3,x3n+4,x3n+5),

G(x3n+4,x3n+5,x3n+3),G(x3n+2,x3n+3,x3n+4)}

= max{d3n+2,d3n+3,d3n+3,d3n+2}

= max{d3n+2,d3n+3}.

Similarly, if d3n+3 > d3n+2 for some n ∈ N, then we have ψ(d3n+3) ≤ ψ(d3n+3)−ϕ(d3n+3),

which implies that d3n+3 = 0, a contradiction to d3n+3 > 0. Hence, we have 0 < dn+1 ≤ dn for

each n ∈N. The rest proof process is the same with which was given in [1]. We, therefore, omit

the proof.
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