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1. Introduction

In 1922, Banach proved contraction principle [7] which provides a technique for solving ex-

istence problems in many branches of mathematical sciences and engineering. Subsequently

Banach contraction principle was generalized, extended and improved by many authors in dif-

ferent ways. In 1998, Czerwik [9] introduced the concept of b- metric space. In 2011, Azam
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et al.[1] introduced the notion of complex valued metric spaces. After the establishment of

complex valued metric spaces, many researchers have contributed with their work in this space.

Rouzkard and Imdad [3] generalized Azam et al. [1] with an important note that complex val-

ued metric spaces form a special class of cone metric space, yet this idea is intended to define

rational expressions which are not meaningful in cone metric spaces and thus many results of

analysis cannot be generalized to cone metric spaces. Indeed the definition of cone metric s-

pace banks on the underlying Banach space which is not a division Ring. However, in complex

valued metric spaces, we can study improvements of a host of results of analysis involving di-

visions. Recently, Rao et al. [5] developed the notion of complex valued b- metric spaces and

proved fixed point results. We give some common fixed point theorems for four mappings in

complex valued b- metric spaces and obtain generalizations of Azam et al. [1], Rouzkard et al.

[3], Mukheimer [2] and Nashine et al. [4].

2. Preliminaries

In what follows, we recall some definitions and notations that will be used in our note.

Let C be the set of complex numbers and z1,z2 ∈C. Define a partial order - on C as follows:

z1 - z2 if and only if Re(z1)≤ Re(z2) and Im(z1)≤ Im(z2).

It follows that z1 - z2 if one of the following conditions is satisfied:

(C1) Re(z1) = Re(z2) and Im(z1) = Im(z2);

(C2) Re(z1)< Re(z2) and Im(z1) = Im(z2);

(C3) Re(z1) = Re(z2) and Im(z1)< Im(z2);

(C4) Re(z1)< Re(z2) and Im(z1)< Im(z2).

In particular, we will write z1 � z2 if z1 6= z2 and one of (C2), (C3) and (C4) is satisfied and we

write z1 ≺ z2 if only (C4) is satisfied. Note that

0 - z1 � z2⇒ |z1|< |z2|,

z1 - z2,z2 ≺ z3⇒ z1 ≺ z3.

The following definition is developed by Azam et al. [1].
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Definition 2.1. [1] Let X be a nonempty set. A mapping d : X ×X →C satisfies the following

conditions:

(CM1) 0 - d(x,y) for all x,y ∈ X and d(x,y) = 0 if and only if x = y;

(CM2) d(x,y) = d(y,x), for all x,y ∈ X ;

(CM3) d(x,y)- d(x,z)+d(z,y) for all x,y,z ∈ X .

Then d is called a complex valued metric on X and (X ,d) is called a complex valued metric

space.

Definition 2.2. [5] Let X be a nonempty set and s ≥ 1 a given real number. A function d :

X×X →C satisfies the following conditions:

(CVBM1) 0 - d(x,y) for all x,y ∈ X and d(x,y) = 0 if and only if x = y;

(CVBM2) d(x,y) = d(y,x), for all x,y ∈ X ;

(CVBM3) d(x,y)- s[d(x,z)+d(z,y)] for all x,y,z ∈ X .

Then d is called a complex valued b-metric on X and (X ,d) is called a complex valued b-

metric space.

Example 2.1. Let X = [0,1]. Define the mapping d : X×X →C by

d(x,y) = |x− y|2 + i|x− y|2, f or all x,y ∈ X .

Then (X ,d) is a complex valued b- metric space with s = 2.

Definition 2.3. [5] Let (X ,d) be a complex valued b-metric space.

(i) A point x ∈ X is called interior point of a set A⊆ X whenever there exists 0≺ r ∈C such

that B(x,r) = {y ∈ X : d(x,y)≺ r} ⊆ A.

(ii) A point x ∈ X is called a limit point of a set A ⊆ X whenever for every 0 ≺ r ∈ C such

that B(x,r)∩ (X−A) 6= φ .

(iii) A subset B⊆ X is called open whenever each limit point of B is an interior point of B.

(iv) A subset B⊆ X is called closed whenever each limit point of B is belong to B.

(v) The family F = {B(x,r) : x∈ X and 0≺ r} is a sub basis for a topology on X . We denote

this complex topology by τc. Indeed, the topology τc is Hausdorff.

Definition 2.4. [5] Let (X ,d) be a complex valued b-metric space and let {xn} be a sequence in

X and x ∈ X .
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(1) If for every c ∈C with 0≺ c, there exists n0 ∈N such that d(xn,x)≺ c for all n > n0, then

{xn} is said to be converges to x and x is a limit point of {xn}. We denote this by xn → x as

n→ ∞ or lim
n→∞

xn = x.

(2) If for every c ∈C with 0≺ c, there exists n0 ∈ N such that for all n > n0, d(xn,xn+m)≺ c

where m ∈ N, then {xn} is said to be Cauchy sequence.

(3) If every Cauchy sequence is convergent in (X ,d), then (X ,d) is called a complete complex

valued b- metric space.

Lemma 2.1. [5] Let (X ,d) be a complex valued b- metric space and let {xn} be a sequence in

X. Then {xn} converges to x if and only if |d(xn,x)| → 0 as n→ ∞.

Lemma 2.2. [5] Let (X ,d) be a complex valued b- metric space and let {xn} be a sequence in

X. Then {xn} is a Cauchy sequence if and only if |d(xn,xn+m)| → 0 as n→ ∞, where m ∈ N.

Definition 2.5. Let A and S be self mappings on a set X , if w = Ax = Sx for some x in X , then x

is called coincidence point of A and S and w is called a point of coincidence of A and S.

Definition 2.6. A pair of self mappings A,S : X → X is called weakly compatible if A and S

commute at their coincidence point.

3. Main results

In this section, we prove some common fixed point theorems for rational type contraction

conditions. Our main result runs as follows.

Theorem 3.1. Let A,B,S and T be four self-mappings of a complete complex valued b-metric

spaces (X ,d) satisfying

(i) A(X)⊆ T (X) and B(X)⊆ S(X),

(ii) d(Ax,By)- αd(Sx,Ty)+β
d(Sx,Ax)d(By,Ty)

1+d(Sx,Ty) +γ
d(Sx,By)d(Ax,Ty)

1+d(Sx,Ty) ,x,y ∈ X , where α,β and γ are

non-negative reals such that s(α + γ)+β < 1.

(iii) Pairs (A,S) and (B,T ) are weakly compatible and B(X) is a closed subspace of X .

Then A,B,S and T have a unique common fixed point.
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Proof. Consider a sequence {yn} in X such that

y2n = Ax2n = T x2n+1 and y2n+1 = Bx2n+1 = Sx2n+2,

where {xn} is another sequence in X . First of all we show that {yn} is a Cauchy sequence of X ,

for this consider

d(y2n,y2n+1) = d(Ax2n,Bx2n+1)

- αd(Sx2n,T x2n+1)+β
d(Sx2n,Ax2n)d(Bx2n+1,T x2n+1)

1+d(Sx2n,T x2n+1)
+ γ

d(Sx2n,Bx2n+1)d(Ax2n,T x2n+1)

1+d(Sx2n,T x2n+1)

- αd(y2n−1,y2n)+β
d(y2n−1,y2n)d(y2n+1,y2n)

1+d(y2n−1,y2n)
+ γ

d(y2n−1,y2n+1)d(y2n,y2n)

1+d(y2n−1,y2n)

- αd(y2n−1,y2n)+β
d(y2n−1,y2n)d(y2n+1,y2n)

1+d(y2n−1,y2n)

or

|d(y2n,y2n+1)| ≤ α|d(y2n−1,y2n)|+β |d(y2n+1,y2n)|
∣∣∣ d(y2n−1,y2n)

1+d(y2n−1,y2n)

∣∣∣.
Since |d(y2n−1,y2n)|< |1+d(y2n−1,y2n)|, we have

|d(y2n,y2n+1)| ≤ α|d(y2n−1,y2n)|+β |d(y2n+1,y2n)|

and |d(y2n,y2n+1)| ≤ α

1−β
|d(y2n−1,y2n)|. Similarly we obtain

(0.1) |d(y2n+1,y2n+2)| ≤
α

1−β
|d(y2n,y2n+1)|.

Since s(α +γ)+β < 1 and s≥ 1, therefore with δ = α

1−β
and so for all n≥ 0 and consequently,

we have

(0.2) |d(y2n,y2n+1)| ≤ δ |d(y2n−1,y2n)| ≤ δ
2|d(y2n−2,y2n−1)| ≤ ...≤ δ

2n|d(y0,y1)|.
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Finally, we can conclude that d(yn,yn+1)- δ nd(y0,y1)

for all m > n, m,n ∈ N and since sδ = sα

1−β
< 1, we get

|d(yn,ym)| ≤ s|d(yn,yn+1)|+ s|d(yn+1,ym)|

≤ s|d(yn,yn+1)|+ s2|d(yn+1,yn+2)|+ s2|d(yn+2,ym)|

≤ s|d(yn,yn+1)|+ s2|d(yn+1,yn+2)|+ s3|d(yn+2,yn+3)|+ s3|d(yn+3,ym)|

≤ s|d(yn,yn+1)|+ s2|d(yn+1,yn+2)|+ s3|d(yn+2,yn+3)|+ ...+

sm−n−2|d(ym−3,ym−2)|+ sm−n−1|d(ym−2,ym−1)|+ sm−n|d(ym−1,ym)|.

By using equation (0.2), we get

|d(yn,ym)| ≤ sδ
n|d(y0,y1)|+ s2

δ
n+1|d(y0,y1)|+ s3

δ
n+2|d(y0,y1)|

+ ...+ sm−n−2
δ

m−3|d(y0,y1)|+ sm−n−1
δ

m−2|d(y0,y1)|+ sm−n
δ

m−1|d(y0,y1)|.

This implies that

|d(yn,ym)| ≤ (sδ
n + s2

δ
n+1 + s3

δ
n+2 + ...+ sm−n−2

δ
m−3+sm−n−1

δ
m−2+

sm−n
δ

m−1)|d(y0,y1)|.

This implies that

|d(yn,ym)| ≤ (sn
δ

n + sn+1
δ

n+1 + sn+2
δ

n+2 + ...+ sm−3
δ

m−3 + sm−2
δ

m−2+

sm−1
δ

m−1)|d(y0,y1)|

=
m−1

∑
t=n

st
δ

t |d(y0,y1)|

≤
∞

∑
t=n

(sδ )t |d(y0,y1)|

=
(sδ )n

1− sδ
|d(y0,y1)|.

Hence, |d(yn,ym)|= (sδ )n

1−sδ
|d(y0,y1)| → 0 as m,n→ ∞, since sδ < 1.

Thus, {yn} is a Cauchy sequence in X .

Since X is a complete, therefore there exist a point z ∈ X .

Such that lim
n→∞

Ax2n = lim
n→∞

T x2n+1 = lim
n→∞

Bx2n+1 = lim
n→∞

Sx2n+2 = z.

Now since B(X) is closed sub space of X and so z ∈ B(X).
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Since B(X)⊆ S(X), then there exists a point u ∈ X , such that z = Su.

Now we show that Au = Su = z, by condition (ii) of Theorem (3.1), we have

d(Au,z)- s[d(Au,Bx2n+1)+d(Bx2n+1,z)].

This implies that

1
s

d(Au,z)- αd(Su,T x2n+1)+
βd(Su,Au)d(Bx2n+1,T x2n+1)

1+d(Su,T x2n+1)
+

γd(Su,Bx2n+1)d(Au,T x2n+1)

1+d(Su,T x2n+1)

+d(Bx2n+1,z).

Letting n→ ∞, we have

1
s

d(Au,z)- αd(z,z)+β (0)+ γ(0)

1
s

d(Au,z) = 0 or ⇒ |d(Au,z)|= 0 or Au = z.

Thus Au = Su = z.

⇒ u is a coincidence point of (A,S).

Since A(X)⊆ T (X) and now z ∈ A(X), then there exists a point v ∈ X such that z = T v.

Now we show that Bv = z.

By condition (ii) of Theorem (3.1) and by Au = Su = T v = z, we have

d(Au,Bv) = d(z,Bv)- s[d(z,Ax2n)+d(Ax2n,Bv)], we have

1
s

d(z,Bv)- d(z,Ax2n)+αd(Sx2n,T v)+
βd(Sx2n,Ax2n)d(Bv,T v)

1+d(Sx2n,T v)
+

γd(Sx2n,Bv)d(Ax2n,T v)
1+d(Sx2n,T v)

⇒ 1
s

d(z,Bv)- d(z,y2n)+αd(y2n−1,T v)+
βd(y2n−1,y2n)d(Bv,T v)

1+d(y2n−1,T v)
+

γd(y2n−1,Bv)d(y2n,T v)
1+d(y2n−1,T v)

.

Taking n→ ∞, we have

⇒ |d(z,Bv)|= 0⇒ Bv = z. Hence Bv = T v = z.

⇒ v is a coincidence point of (B,T ).

Now we have Au = Su = T v = Bv = z.

Since A and S are weakly compatible mapping then ASu = SAu = Az = Sz.

Now we show that z is a fixed point of A, i.e. Az = z.
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If Az 6= z then by condition (ii) of Theorem (3.1)

d(Az,z)- s[d(Az,Bx2n+1)+d(Bx2n+1),z)]

⇒ 1
s

d(Az,z)- αd(Sz,T x2n+1)+
βd(Sz,Ax2n)d(Bx2n+1,T x2n+1)

1+d(Sz,T x2n+1)
+

γd(Sz,Bx2n+1)d(Az,T x2n+1)

1+d(Sz,T x2n+1)
+d(Bx2n+1,z)

- αd(Sz,y2n)+
βd(Sz,Az)d(y2n+1,y2n)

1+d(Sz,y2n)
+

γd(Sz,y2n+1)d(Az,y2n)

1+d(Sz,y2n)
+d(y2n+1,z).

Taking n→ ∞, we have

1
s

d(Az,z)- αd(Sz,z)+
βd(Sz,Az)d(z,z)

1+d(Sz,z)
+

γd(Sz,z)d(Az,z)
1+d(Sz,z)

+d(z,z)

- αd(Sz,z)+
γd(Sz,z)d(Az,z)

1+d(Sz,z)
.

Or
1
s
|d(Az,z)| ≤ α|d(Az,z)|+ γ

∣∣∣ d(Sz,z)
1+d(Sz,z)

∣∣∣|d(Az,z)|

⇒ 1
s
|d(Az,z)| ≤ (α + γ)|d(Az,z)|

⇒ |d(Az,z)| ≤ s(α + γ)|d(Az,z)|, since s(α + γ)+β < 1,

⇒ |d(Az,z)|= 0⇒ Az = z. T here f ore Az = Sz = z.

Since B and T are weakly compatible mapping then, BT v = T Bv⇒ Bv = T v = z, we have

Bz = T z.

Now d(Bz,z)- s[d(Bz,Ax2n)+d(Ax2n,z)]

⇒ 1
s

d(Bz,z)- d(Ax2n,Bz)+d(Ax2n,z)

- αd(Sx2n,T z)+
βd(Sx2n,Ax2n)d(Bz,T z)

1+d(Sx2n,T z)
+

γd(Sx2n,Bz)d(Ax2n,T z)
1+d(Sx2n,T z)

+d(x2n,z)

- αd(y2n−1,T z)+
βd(y2n−1,y2n)d(Bz,T z)

1+d(y2n−1,T z)
+

γd(y2n−1,Bz)d(y2n,T z)
1+d(y2n−1,T z)

+d(y2n,z).

Taking n→ ∞, we have

1
s
|d(Bz,z)| ≤ α|d(z,T z)|+β

∣∣∣d(z,z)d(Bz,T z)
1+d(z,T z)

∣∣∣+ γ

∣∣∣d(z,Bz)d(z,T z)
1+d(z,T z)

∣∣∣+ |d(z,z)|
≤ α|d(z,T z)|+ γ|d(z,T z)|

≤ (α + γ)|d(z,T z)|
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⇒ |d(Bz,z)| ≤ s(α + γ)|d(z,T z)|, since s(α + γ)+β < 1.

⇒ |d(Bz,z)|= 0⇒ Bz = z.

Therefore T z = Bz = z.

Therefore z is a common fixed point of A,B,S and T.

Uniqueness: Let w(6= z) be another fixed point of A,B,S and T.

Then Aw = Bw = Sw = Tw = w.

d(z,w) = d(Az,Bw)

- αd(Sz,Tw)+β
d(Sz,Az)d(Bw,Tw)

1+d(Sz,Tw)
+ γ

d(Sz,Bw)d(Az,Tw)
1+d(Sz,Tw)

|d(z,w)| ≤ α|d(z,w)|+ γ

∣∣∣ d(z,w)
1+d(z,w)

∣∣∣.|d(z,w)|
⇒ |d(z,w)| ≤ (α + γ)|d(z,w)|, since s(α + γ)+β < 1,s≥ 1, there f ore α + γ < 1.

⇒ |d(z,w)|= 0⇒ z = w.

Hence z is a unique common fixed point of A,B,S and T.

Following example substantiates the genuineness of our result.

Example 3.1. Let (X ,d) be a complex valued b−metric space, where X = [0,1] and d : X×X→

C with d(x,y) = |x− y|2 + i|x− y|2.

Now to find s, we have

d(x,y) = |x− y|2 + i|x− y|2

- |(x− z)+(z− y)|2 + i|(x− z)+(z− y)|2

- [|x− z|2 + |z− y|2 +2|x− z||z− y|]+ i[|x− z|2 + |z− y|2 +2|x− z||z− y|]

- [|x− z|2 + |z− y|2 + |x− z|2 + |z− y|2]+ i[|x− z|2 + |z− y|2 + |x− z|2 + |z− y|2]

= 2{[|x− z|2 + i|x− z|2]+ [|z− y|2 + i|z− y|2]}

that is d(x,y)- 2[d(x,z)+d(z,y)], where s = 2.

Define A,B,S and T : X → X by Ax = x
24 ,Bx = x2

32 ,Sx = x
3 and T x = x2

4 .

Before discussing different cases, one needs to notice that

0 - d(Ax,By),d(Sx,Ty),
d(Sx,Ax)d(By,Ty)

1+d(Sx,Ty)
,
d(Sx,By)d(Ax,Ty)

1+d(Sx,Ty)
in all aspects.
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It is sufficient to show that d(Ax,By)- αd(Sx,Ty),∀x,y ∈ [0,1] and s(α + γ)+β < 1,

α,γ,β ≥ 0.

d(Ax,By) = [|Ax−By|2 + i|Ax−By|2]

=
[∣∣∣ x

24
− y2

32

∣∣∣2 + i
∣∣∣ x
24
− y2

32

∣∣∣2]
(0.3) =

1
64

[∣∣∣x
3
− y2

4

∣∣∣2 + i
∣∣∣x
3
− y2

4

∣∣∣2]
d(Sx,Ty) = [|Sx−Ty|2 + i|Sx−Ty|2]

(0.4) =
[∣∣∣x

3
− y2

4

∣∣∣2 + i
∣∣∣x
3
− y2

4

∣∣∣2].
Following cases for x,y ∈ [0,1] are discussed with α = 1

10 ,β = 1
5 ,γ = 1

20 and s = 2.

Notice that s(α + γ)+β = 2
(

1
10 +

1
20

)
+ 1

5 < 1.

Case-I: For x = 0,y = 0.

Putting these values in equation (0.3) and (0.4) we find that d(Ax,By)- αd(Sx,Ty)

as 1
64

[∣∣∣ x
3 −

y2

4

∣∣∣2 + i
∣∣∣ x

3 −
y2

4

∣∣∣2]- α

[∣∣∣ x
3 −

y2

4

∣∣∣2 + i
∣∣∣ x

3 −
y2

4

∣∣∣2]⇒ 0 - 0.

Case-II: For x = 1,y = 0.

From equation (0.3) and (0.4) we obtain d(Ax,By)- αd(Sx,Ty) since

1
576

[1+ i]-
1

90
[1+ i]

Thus condition (ii) of Theorem (3.1) is satisfied.

Case-III: For x = 1
2 ,y =

1
4 . d(Ax,By)- αd(Sx,Ty) is true as

1
64

[∣∣∣ 29
192

∣∣∣2 + i
∣∣∣ 29

192

∣∣∣2]- α

[∣∣∣ 29
192

∣∣∣2 + i
∣∣∣ 29

192

∣∣∣2]
1

2359296 [1+ i]- 1
36864 [1+ i].

Case-IV: For x = 1,y = 1. We get, d(Ax,By)- αd(Sx,Ty) as
1
64

[∣∣∣1
3 −

1
4

∣∣∣2 + i
∣∣∣1

3 −
1
4

∣∣∣2]- α

[∣∣∣1
3 −

1
4

∣∣∣2 + i
∣∣∣1

3 −
1
4

∣∣∣2]
1
64

[∣∣∣ 1
12

∣∣∣2 + i
∣∣∣ 1

12

∣∣∣2]- α

[∣∣∣ 1
12

∣∣∣2 + i
∣∣∣ 1

12

∣∣∣2]
1

9216 [1+ i]- 1
1440 [1+ i].

Thus, all conditions of Theorem (3.1) are satisfied. Notice that the point 0 ∈ X remains fixed

under mappings A,B,S and T and is indeed unique.

If we put S = T = I (Identity mapping) in Theorem (3.1) we get the following Corollary.
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Corollary 3.1. Let A and B be two self-mappings of complete complex valued b-metric spaces

(X ,d) satisfying:

d(Ax,By)- αd(x,y)+β
d(x,Ax)d(y,By)

1+d(x,y)
+ γ

d(x,By)d(y,Ax)
1+d(x,y)

.

∀ x,y ∈ X , where α,β and γ are non-negative reals such that s(α + γ)+β < 1.

Then A and B have a unique common fixed point.

Remark 3.1. If we put γ = 0 in Corollary (3.1) then we get Theorem (2.1) of Aiman A.

Mukheimer [2].

Remark 3.2. If we put s = 1 in Corollary (3.1) then we get Theorem (2.1) of Rouzkard and

Imdad [3].

Remark 3.3. If we put s = 1 and γ = 0 in Corollary (3.1) then we get Theorem (4) of Azam

A. et al. [1].

If we set S = T in Theorem (3.1), then we get another corollary.

Corollary 3.2. Let A,B and S be three self-mappings of a complete complex valued b-metric

spaces (X ,d) satisfying

(i) A(X)⊆ S(X) and B(X)⊆ S(X),

(ii) d(Ax,By)- αd(Sx,Sy)+β
d(Sx,Ax)d(By,Sy)

1+d(Sx,Sy) + γ
d(Sx,By)d(Ax,Sy)

1+d(Sx,Sy)

∀ x,y ∈ X , where α,β and γ are non-negative reals such that s(α + γ)+β < 1.

(iii) If pairs (A,S) and (B,S) are weakly compatible and B(X) is a closed subspace of X .

Then A,B and S have a unique common fixed point.

Theorem 3.2. Let A,B,S and T be four self-mappings of a complete complex valued b-metric

spaces (X ,d) satisfying

(i) A(X)⊆ T (X) and B(X)⊆ S(X),

(ii)

(0.5) d(Ax,By)- αd(Sx,Ty)+β
d(Sx,Ax)d(Ty,By)

1+d(Sx,By)+d(Ty,Ax)+d(Sx,Ty)

∀ x,y ∈ X , where α,β are non-negative reals such that s(α + sβ )< 1.

(iii) Pairs (A,S) and (B,T ) are weakly compatible and B(X) is a closed subspace of X .

Then A,B,S and T have a unique common fixed point.
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Proof. Consider a sequence {yn} in X such that

(0.6) y2n = Ax2n = T x2n+1 and y2n+1 = Bx2n+1 = Sx2n+2,

where {xn} is another sequence in X .

To prove {yn} is a Cauchy sequence of X ,

d(y2n,y2n+1) = d(Ax2n,Bx2n+1)

- αd(Sx2n,T x2n+1)+β
d(Sx2n,Ax2n)d(T x2n+1,Bx2n+1)

1+d(Sx2n,Bx2n+1)+d(T x2n+1,Ax2n)+d(Sx2n,T x2n+1)

- αd(y2n−1,y2n)+β
d(y2n−1,y2n)d(y2n,y2n+1)

1+d(y2n−1,y2n+1)+d(y2n,y2n)+d(y2n−1,y2n)

- αd(y2n−1,y2n)+β
d(y2n−1,y2n)d(y2n,y2n+1)

1+d(y2n−1,y2n+1)+d(y2n−1,y2n)

or |d(y2n,y2n+1)| ≤ α|d(y2n−1,y2n)|+β

∣∣∣ d(y2n−1,y2n)

1+d(y2n−1,y2n)+d(y2n−1,y2n)

∣∣∣|d(y2n,y2n+1)|

≤ α|d(y2n−1,y2n)|+ sβ |d(y2n−1,y2n)|
∣∣∣ d(y2n,y2n−1)+d(y2n−1,y2n+1)

1+d(y2n,y2n−1)+d(y2n−1,y2n+1)

∣∣∣.
Since,

∣∣∣ d(y2n,y2n−1)+d(y2n−1,y2n+1)

1+d(y2n,y2n−1)+d(y2n−1,y2n+1)

∣∣∣< 1.

Then we have

(0.7) |d(y2n,y2n+1)| ≤ (α + sβ )|d(y2n−1,y2n)|.

Similarly

(0.8) |d(y2n+1,y2n+2)| ≤ (α + sβ )|d(y2n,y2n+1)|.

Applying the similar argument as in Theorem (3.1) we arrive at

|d(yn,ym)|=
(sδ )n

1− sδ
|d(y0,y1)|.

Hence, |d(yn,ym)| = (sδ )n

1−sδ
|d(y0,y1)| → 0 as m,n→ ∞, since sδ < 1. Thus, {yn} is a

Cauchy sequence in X .

Since X is a complete, therefore there exist a point z ∈ X .

Such that lim
n→∞

Ax2n = lim
n→∞

T x2n+1 = lim
n→∞

Bx2n+1 = lim
n→∞

Sx2n+2 = z.

Now since B(X) is closed sub space of X and so z ∈ B(X).
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Since B(X)⊆ S(X), then there exist a point u ∈ X , such that z = Su.

Now we show that Au = Su = z, by equation (0.5), we have

d(Au,z)- s[d(Au,Bx2n+1)+d(Bx2n+1,z)]

1
s

d(Au,z)- αd(Su,T x2n+1)+
βd(Su,Au)d(T x2n+1,Bx2n+1)

1+d(Su,Bx2n+1)+d(T x2n+1,Au)+d(Su,T x2n+1)
+d(Bx2n+1,z).

Letting n→ ∞, we have

1
s

d(Au,z)- αd(Su,z)+
βd(Su,Au)d(z,z)

1+d(Su,z)+d(z,Au)+d(Su,z)
+d(z,z)

⇒ 1
s

d(Au,z) = 0 or ⇒ |d(Au,z)|= 0 or Au = z.

Thus Au = Su = z.

⇒ u is a coincidence point of (A,S).

Since A(X)⊆ T (X) and now z ∈ A(X), then there exist a point v ∈ X such that z = T v.

Now we show that Bv = z. By equation (0.5) and by Au = Su = T v = z, we have

d(z,Bv)- s[d(z,Ax2n)+d(Ax2n),Bv)],

1
s

d(z,Bv)- d(z,Ax2n)+αd(Sx2n,T v)+
βd(Sx2n,Ax2n)d(T v,Bv)

1+d(Sx2n,Bv)+d(T v,Ax2n)+d(Sx2n,T v)

Letting n→ ∞, we have
1
s d(z,Bv)- d(z,z)+αd(z,T v)+ βd(z,z)d(Bv,T v)

1+d(z,Bv)+d(T v,z)+d(z,T v)

⇒ |d(z,Bv)|= 0⇒ Bv = z.

Hence Bv = T v = z.

⇒ v is a coincidence point of (B,T ).

Now we have Au = Su = T v = Bv = z.

Since A and S are weakly compatible mapping then ASu = SAu = Az = Sz.

Now we show that z is a fixed point of A.

On contrary if Az 6= z then by equation (0.5)

d(Az,z)- s[d(Az,Bx2n+1)+d(Bx2n+1,z)]

1
s

d(Az,z)- αd(Sz,T x2n+1)+
βd(Sz,Az)d(T x2n+1,Bx2n+1)

1+d(Sz,Bx2n+1)+d(T x2n+1,Sz)+d(Sz,T x2n+1)
+d(Bx2n+1,z)

1
s

d(Az,z)- αd(Sz,y2n)+
βd(Sz,Az)d(y2n+1,y2n)

1+d(Sz,y2n+1)+d(y2n,Sz)+d(Sz,y2n)
+d(y2n+1,z)
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Taking n→ ∞,

1
s

d(Az,z)- αd(Sz,z)+
βd(Sz,Az)d(z,z)

1+d(Sz,z)+d(z,Az)+d(Sz,z)
+d(z,z)

1
s

d(Az,z)- αd(Sz,z)

|d(Az,z)| ≤ αs|d(Az,z)|, since s(α + sβ )< 1

⇒ |d(Az,z)|= 0⇒ Az = z.

T here f ore Az = Sz = z.

Since B and T are weakly compatible mapping then, BT v = T Bv⇒ Bv = T v = z, we have

Bz = T z.

We show that z is a fixed point of B. On contrary if Bz 6= z, then by equation (0.5).

d(Bz,z)- s[d(Bz,Ax2n)+d(Ax2n,z)]

⇒ 1
s

d(Bz,z)- d(Ax2n,Bz)+d(Ax2n,z)

1
s

d(Bz,z)- αd(Sx2n,T z)+
βd(Sx2n,Ax2n)d(T z,Bz)

1+d(Sx2n,Bz)+d(T z,Ax2n)+d(Sx2n,T z)
+d(Ax2n,z)

1
s

d(Bz,z)- αd(y2n−1,T z)+
βd(y2n−1,y2n)d(T z,Bz)

1+d(y2n−1,Bz)+d(T z,y2n)+d(y2n−1,T z)
+d(y2n,z).

Taking n→ ∞,

1
s
|d(Bz,z)| ≤ α|d(z,T z)|+β

∣∣∣ d(z,z)d(Bz,T z)
1+d(z,Bz)+d(T z,z)+d(z,T z)

∣∣∣+ |d(z,z)|
1
s
|d(Bz,z)| ≤ α|d(Bz,z)|

|d(Bz,z)| ≤ αs|d(Bz,z)|. Since s(α + sβ )< 1.

⇒ |d(Bz,z)|= 0⇒ Bz = z.

Therefore T z = Bz = z.

Therefore z is a common fixed point of A,B,S and T.

Uniqueness: Let w be another fixed point of A,B,S and T.
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Then Aw = Bw = Sw = Tw = w.

d(z,w) = d(Az,Bw)

- αd(Sz,Tw)+β
d(Sz,Az)d(Bw,Tw)

1+d(Sz,Bw)+d(Tw,Az)+d(Sz,Tw)

|d(z,w)| ≤ α|d(z,w)|,Since s(α + sβ )< 1.

⇒ |d(z,w)|= 0⇒ z = w.

Hence z is a unique common fixed point of A,B,S and T.

Example 3.2. Let (X ,d) be a complex valued b− metric space, where X = [0,1] and d :

X×X →C with d(x,y) = |x− y|2 + i|x− y|2.

Now to find s, we have

d(x,y) = |x− y|2 + i|x− y|2

- |(x− z)+(z− y)|2 + i|(x− z)+(z− y)|2

- [|x− z|2 + |z− y|2 +2|x− z||z− y|]+ i[|x− z|2 + |z− y|2 +2|x− z||z− y|]

- [|x− z|2 + |z− y|2 + |x− z|2 + |z− y|2]+ i[|x− z|2 + |z− y|2 + |x− z|2 + |z− y|2]

= 2{[|x− z|2 + i|x− z|2]+ [|z− y|2 + i|z− y|2]}

d(x,y)- 2[d(x,z)+d(z,y)]. Here s = 2.

Define A,B,S and T : X → X by Ax = x
6 ,Bx = x2

12 ,Sx = x and T x = x2

2 .

Before discussing different cases, one needs to notice that

0 - d(Ax,By),d(Sx,Ty),
d(Sx,Ax)d(By,Ty)

1+d(Sx,By)+d(Ty,Ax)+d(Sx,Ty)
in all aspects.

It is sufficient to show that d(Ax,By)- αd(Sx,Ty),∀x,y ∈ [0,1] and s(α + sβ )< 1,

α,β ≥ 0.

d(Ax,By) = [|Ax−By|2 + i|Ax−By|2]

=
[∣∣∣x

6
− y2

12

∣∣∣2 + i
∣∣∣x
6
− y2

12

∣∣∣2]
=

1
36

[∣∣∣x− y2

12

∣∣∣2 + i
∣∣∣x− y2

12

∣∣∣2]
d(Sx,Ty) = [|Sx−Ty|2 + i|Sx−Ty|2]

=
[∣∣∣x− y2

2

∣∣∣2 + i
∣∣∣x− y2

2

∣∣∣2].



COMMON FIXED POINT THEOREMS 427

For α = 1
4 ,β = 1

10 , and s = 2, following cases for x,y ∈ [0,1] are discussed

Case-I: For x = 0,y = 0.

We find that d(Ax,By)- αd(Sx,Ty) as
1
36

[∣∣∣x− y2

12

∣∣∣2 + i
∣∣∣x− y2

12

∣∣∣2]- α

[∣∣∣x− y2

2

∣∣∣2 + i
∣∣∣x− y2

2

∣∣∣2]⇒ 0 - 0.

Which satisfied the condition (0.5) of Theorem (3.2)

Case-II: For x = 1,y = 0.

d(Ax,By)- αd(Sx,Ty) is true as 1
36 [|1|

2 + i]- α[|1|2 + i]⇒ 1
36 [1+ i]- 1

4 [1+ i].

Similarly, for the Case-III when x = 1
2 ,y =

1
4 and Case-IV for x = 1,y = 1.

We get, d(Ax,By)- αd(Sx,Ty).

Which satisfied the condition (0.5) of Theorem (3.2).

Thus, all conditions of Theorem (3.2) are satisfied. Notice that the point 0 ∈ X remains fixed

under mappings A,B,S and T and is indeed unique.

If we set S = T in Theorem 3.2 then we get the following Corollary.

Corollary 3.3. Let A,B and S be three self-mappings of a complete complex valued b-metric

spaces (X ,d) satisfying

(i) A(X)⊆ S(X) and B(X)⊆ S(X),

(ii) d(Ax,By)- αd(Sx,Sy)+β
d(Sx,Ax)d(Sx,By)

1+d(Sx,By)+d(Sy,Ax)+d(Sx,Sy)

∀ x,y ∈ X . where α,β are non-negative reals such that s(α + sβ )< 1.

(iii) If pairs (A,S) and (B,S) are weakly compatible and B(X) is a closed subspace of X .

Then A,B and S have a unique common fixed point.

If we set S = T = I (Identity mapping) in Theorem (3.2) then we get the following Corollary.

Corollary 3.4. Let A and B be two self-mappings of a complete complex valued b-metric spaces

(X ,d) satisfying:

d(Ax,By)- αd(x,y)+β
d(x,Ax)d(y,By)

1+d(x,By)+d(y,Ax)+d(x,y)

∀ x,y ∈ X . where α,β are non-negative reals such that s(α + sβ )< 1.

Then A and B have a unique common fixed point.

Next, the role of denominator is discussed, resulting following theorem.
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Theorem 3.3. Let A,B,S and T be four self-mappings of a complete complex valued b-metric

spaces (X ,d) satisfying

(i) A(X)⊆ T (X) and B(X)⊆ S(X),

(ii) d(Ax,By)- αd(Sx,Ty)+β
d(Sx,Ax)d(By,Ty)

d(Sx,By)+d(Ty,Ax)+d(Sx,Ty)

∀ x,y ∈ X such that x 6= y,d(Sx,By)+ d(Ty,Ax)+ d(Sx,Ty) 6= 0, where α,β are non-negative

reals with s(α + sβ )< 1 or d(Ax,By) = 0 if d(Sx,By)+d(Ty,Ax)+d(Sx,Ty) = 0.

(iii) Pairs (A,S) and (B,T ) are weakly compatible and B(X) is a closed subspace of X .

Then A,B,S and T have a unique common fixed point.

Proof. Proof follows immediately as consequence of previous results.

If we set S = T in Theorem (3.3) then we get the following Corollary.

Corollary 3.5. Let A,B and S be three self-mappings of a complete complex valued b-metric

spaces (X ,d) satisfying

(i) A(X)⊆ S(X) and B(X)⊆ S(X),

(ii) d(Ax,By)- αd(Sx,Sy)+β
d(Sx,Ax)d(Sy,By)

d(Sx,By)+d(Sy,Ax)+d(Sx,Sy)

∀ x,y ∈ X such that x 6= y,d(Sx,By)+ d(Sy,Ax)+ d(Sx,Sy) 6= 0, where α,β are non-negative

reals with s(α + sβ )< 1 or d(Ax,By) = 0 if d(Sx,By)+d(Sy,Ax)+d(Sx,Sy) = 0.

(iii) Pairs (A,S) and (B,S) are weakly compatible and B(X) is a closed subspace of X .

Then A,B and S have a unique common fixed point.

If we put S = T = I (Identity mapping) in Theorem (3.3), then we get the following Corollary.

Corollary 3.6. Let A and B be two self-mappings of a complete complex valued b-metric spaces

(X ,d) satisfying:

d(Ax,By)- αd(x,y)+β
d(x,Ax)d(y,By)

d(x,By)+d(y,Ax)+d(x,y)

∀ x,y ∈ X such that x 6= y,d(x,By)+ d(y,Ax)+ d(x,y) 6= 0, where α,β are non-negative reals

with s(α + sβ )< 1 or d(Ax,By) = 0 if d(x,By)+d(y,Ax)+d(x,y) = 0.

Then A and B have a unique common fixed point.

Remark 3.4. If we put S = 1 in Corollary 3.6 then we get, Theorem 3.1 of Nashine, Imdad,

Hasan [4].
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