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1. Introduction 

A random variable X is said to have Exponentiated Lomax Distribution (ELD) 

if its probability density function (pdf) is given by (Abdul-Moniem and 

Abdel-Hameed [1]): 
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, (1) 

and the corresponding cumulative distribution function (CDF) is 
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   1 1 ;   0,  ,  and 0F x x x



   

     
 

.     (2) 

Therefore, from (1) and (2), we have 
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 .  (3) 

Not that: From (1), we can get the pdf for exponentiated Pareto, Pareto and Lomax 

distributions by taking 1  , 1    and 1   respectively. More details on 

this distribution can be found in Abdul-Moniem and Abdel-Hameed [1]. 

The concept of generalized order statistics (gos) was introduced by Kamps [4] 

as a unified distribution theoretical set-up which contains a variety of models of 

ordered random variables with different interpretations. But when  F
 
is an inverse 

distribution function, we need a concept of lower generalized order statistics (lgos), 

which was introduced by Pawlas and Szynal [12] as follows: 

Let ,  1,  ,n N k m   , be the parameters such that 

  1 0,r k n r m       for all 0 r n  .  

By the lgos from an absolutely continuous distribution function  F x  with density 

function  f x  we mean random variables  1, , , ,...,X n m k   , , ,X n n m k  having 

joint pdf of the form  
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  ,     (4) 

for    1 1

1 21 ... 0nF x x x F      . 

The pdf of r
th

  lgos is given by 
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   (5) 

where is the domain on which    , , ,X r n m k
f x


is positive. 

The joint  pdf of r
th

  and s
th

  lgos is 
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where 
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and  

      1 ,    0,  1m m mg x h x h x   . 

We shall also take  0, , , 0X n m k  . If m = 0, k = 1, then  , , ,X r n m k  reduces 

to the  1
th

n r   order statistics, 
1:n r nX  

 from the sample 
1 2, ,..., nX X X  and 

when m = -1, then  , , ,X r n m k  reduces to the r
th

  k-lower record value (Pawlas 

and Szynal [12]).  

Recurrence  relations  for single and product  moments of lgos from the 

inverse Weibull distribution are derived by Pawlas and Szynal [12]. Khan and Kumar 

[6, 7, 8] discussed lgos from the exponentiated Pareto, exponentiated Gamma and 

generalized exponential distributions respectively. Khan et al. [9] have established  

recurrence  relations  for moments of lgos from exponentiated Weibull distribution. 

Recurrence  relations  for single and product  moments of lgos from the 

Frechet-type extreme value distribution are derived by Kumar [10]. Ahsanullah [2] 

and  Mbah  and  Ahsanullah  [11] characterized  the  uniform  and power 

function distributions based on distributional properties  of lgos respectively.  

Kamps  [4] investigated  the importance  of recurrence relations  of order 

statistics in characterization. 

In  this  paper,  we have  established  explicit  expressions  and  some 

recurrence relations  for single and  product  moments  of lgos from ELD.  Result  for 

order statistics and r
th

 lower record values are deduced  as special cases and a 

characterization of ELD has been obtained  on using a recurrence  relation  for single 
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moments. 

 

2. Explicit expression for single moments of lgos for ELD 

The single moments of lgos for ELD can be obtained from (1), (2) and (5) 

(when 1m   ) as follows: 
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Expanding  
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 binomially, we get 
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Using the transformation  1 1z x





   , we get 
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Expanding  
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 and 0,1,...j j    (7)

 where 
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and when 1m    that 
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      (8) 

 

Note that: We can obtain the single moments of lgos for exponentiated Pareto 

distribution by taking 1   in (7) and (8), established by Khan and Kumar [6]. 

 

Special cases:  

(1) The thj  moments of lower order statistics can be obtained by taking 0,m 

1k  in (7) as follows 
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where    
:

!
.

1 ! !
r n

n
C

r n r


   

(2) The moments of lower record values can be obtained by taking 1k  in (8) as 

follows: 
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    (10) 

(3)  We can obtain the moments of lower record values for the exponentiated 

Pareto distribution by taking 1   in (10), established by Shawky and Abu-

Zinadah [13].   

Recurrence relations for single moments of lgos from ELD can be obtained in the 

following theorems, when   is positive integer. 

The following an important relations proved by Khan et al. [9] which will be used to 

prove the following theorems. 
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For 2 r n   and 1,2,...k    
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   1, , , 1, 1, ,j jE X r n m k E X r n m k          
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Theorem 2.1 For ELD and for 2 r n   and 1,2,...k   
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Proof From (3) and (11), we have 
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This is implies that 
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The prove is complete. 

Remark 2.1 For 0,m  1k  , the recurrence relations of lgos reduces to the 

recurrence relations of lower order statistics as 

2:
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(15)

 

Remark 2.2 For 1,m   1k  , the recurrence relations of lgos reduces to the 

recurrence relations of lower record values as 

 1, , 1,1jE X r n     
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Remark 2.3 Sitting 1   in Remark 2.2, we get the recurrence relations for single 

moments of lower record values from exponentiated Pareto, established by Shawky 

and Abu-Zinadah [13].   

Theorem 2.2 For ELD and for 2 r n   and 1,2,...k   

   1, , , 1, 1, ,j jE X r n m k E X r n m k            

  
   

1
1 1

21

11 1 1
, , , , , ,

  

j i j i

ir

j m r
E X r n m k E X r n m k

i

 


  


  



    
          

  


     

(17) 

Proof Results can be obtained from (3) and (12). 
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Theorem 2.3 For ELD and for and 1,2,...k   
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Proof Results can be obtained from (3) and (13). 

 

3. Explicit expression for product moments of lgos for ELD 

 

Using (6) and binomially expansion, the explicit expression for the product 

moments of lgos  , , ,X r n m k and  , , ,X s n m k , can be obtained when 1m   as  
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Substituting the above result of  I x  in (19), we get 
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 max , ,   , 0,1,2,...i j i j    (20) 

and when 1m    that 
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where 
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Substituting the above result of  I x  in (21) and simplifying the result, we get 
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 max , ,   , 0,1,2,...i j i j    (22) 

Special cases:  

(1) The product moments of lower order statistics can be obtained by taking 

0,m  1k  in (20) as follows 
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where      
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(2) The product moments of lower record values can be obtained by taking 1k  in 

(22) as follows: 
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(3)  We can obtain the product moments of lower record values for the 

exponentiated Pareto distribution by taking 1   in (24), established by 

Shawky and Abu-Zinadah [13].   

 

Theorem 3.1 For ELD and for   is positive integer, 1 1r s n     and 

1,2,...k   
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Proof From the following relation (Khan et al. [9]) 
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and using (3), (25) will be achieved. 

 

Remark 3.1 Under the assumption given in Theorem 3.1 with k = 1, m = 0 , we get 

the recurrence relation for product moment of lower order statistics and at k = 1, m = 

−1, we deduce the recurrence relations for product moments of lower record values 

from ELD. 

 

Remark 3.2 At k = 1, m = −1 and 1  , we deduce the recurrence relations for 

product moments of lower record values from exponentiated Pareto distribution, 

proved by Shawky and Abu-Zinadah [13]. 

 

4. Characterization 

Theorem 4.1 Let X be a non-negative random variable having an absolutely 

continuous distribution function F (x) with F (0) = 0 and 0 < F (x) < 1 for all 

x > 0, then 
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Proof The necessary part follows immediately from equation (14). On the other hand 

if the recurrence relation in equation (26) is satisfied, then on using equation (5), we 

have 
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Integrating the lift hand side of the above equation, by parts, we get 
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Which is implies that 
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Now applying a generalization of the Muntz-Szasz theorem (Hwang and Lin [3]) to 

equation (27), we get 
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which prove that 
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