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Abstract. Integral transform method is widely used to solve the several differential equations with the initial values 

or boundary conditions which are represented by integral equations. With this purpose in this paper we suggest a 

new kind of general integral transform and establish related main theorems.  The suggested transform which is 

called Ramadan Group (RG) transform and denoted by RGT is a hybrid of both Laplace and Sumudu transforms. 

The formula of the transform is defined and adopted as a standard general form.  A table of transformations to most 

popular functions is presented where we are in agreement with the case of Laplace and Sumudu transforms. 

Keywords: Integral transforms, Laplace transform, Sumudu transform, Ramadan group transform. 

2010 AMS Subject Classification: 44A15. 

 

1-Introduction 

 An integral transform is a particular kind of mathematical operator.  In mathematics , an integral 

transform is any transform  T of the following form 

2

1

( ( )) ( , ) ( )
t

t

T f u K t u f t dt   

The input of this transform is a function  f , and the output is another functionTf . There are 

numerous useful integral transforms, each is specified by a choice of the function K of two 

variables , the kernel function or nucleus of the transform. Some kernels have an associated 

inverse kernel K−1(u, t) which yields an inverse transform: 
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A symmetric kernel is one that is unchanged when the two variables are permuted .  

There are many classes of problems that are difficult to solve or at least quite unwieldy 

algebraically in their original representations.  An integral transform maps an equation from its 

original domain  into another domain.   Manipulating and solving the equation in the target 

domain can be much easier than manipulation and solution in the original domain.  The solution 

is then mapped back to the original domain with the inverse of the integral transform. Also there 

are many applications of probability that rely on integral transforms, such as pricing kernel or 

stochastic discount factor , or the smoothing of data recovered from robust statistics. 

In the literature, there are several works on integral transforms such as Sumudu, Fourier Laplace, 

Mellin, Hankel and many others, but very little work on the power series transformation such as 

Sumudu transform.  This is probably, because it is not widely used yet.  The Sumudu transform 

was recently presented by Watugala; see [1], [2]. The properties of Sumudu transform were 

proposed and established in [3].  The precursor of the transforms was the Fourier series  to 

express functions in finite intervals.   Later the Fourier transform  was developed to remove the 

requirement of finite intervals.   

Although the properties of integral transforms vary widely, they have some properties in 

common. For example, every integral transform is a linear operator, since the integral is a linear 

operator, and in fact if the kernel is allowed to be a generalized function then all linear operators 

are integral transforms. Recently some applications for Sumudu transform is used to solving 

different types of differential equations, the interested reader is referred to [4-10].  The Laplace 

transform can be used to solve differential equations.   In addition, being a different and efficient 

alternative to variation of parameters and undetermined coefficients, the Laplace method is 

particularly advantageous for input terms that are piecewise-defined, periodic or impulsive. 

The direct Laplace transform or the Laplace integral of a function )(tf  defined for  t0 is 

the ordinary calculus integration problem 

                dte)t(f st
0 ,        

succinctly denoted   )(tfL  in science and engineering literature. The L -notation recognizes 

that integration always proceeds over 0t  to t  and that the integral involves an integrator 
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dte st  instead of the usual dt . These minor differences distinguish Laplace integrals from the 

ordinary integrals found on the inside covers of calculus texts. For more details about the 

properties and applications of Laplace transform, see [6, 11, 12]  

2- The Proposed Ramadan Group Transform (RGT)   

A new integral RG transform defined for functions of exponential order, is proclaimed. We 

consider functions in the set A , defined by: 
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The RG transform is defined by 
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Consider 
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 are the Laplace and 

Sumudu integral transforms respectively, then we can write the following theorem 

THEOREM 1 
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Proof: 

The proof of the first two parts follows directly from the definitions, and the proof of 
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  is as:  

Let Atf )( , then for 21 tut  , if we set ,tuw  then we get: 
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THEOTREM 2: Suppose K(s, u) is the Ramadan Group transform of the function )(tf then we 

can prove the following  
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and in general  
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THEOREM 3: Let ),(' suK  denote the RG transform of the definite integral of f  , 
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THEOREM 4: For the Dirac delta function )( at  and the Heaviside function )( atH   , we 

have  
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THEOREM 5: Let Atf )( with RG transform ),( suK .  
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THEOREM 6: Let Atf )( with RG transform ),( suK .  

Then  

).,())(( uuasKtfeRG ta   
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THEOREM 7: Let Attf x  1)( with RG transform ),( suK .  

Then  
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THEOREM 8: Let Atf )( with RG transform ),( suK . Then  
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THEOREM 9: Let Atf )( with RG transform ),( suK .  
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Table A.1   Ramadan Group transform of some functions 
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Table A.1.   Continued. 
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From the table we can say that RGT is the general case of Laplace and Sumudu transformations 

and the next paper we show some application of this new transformation for solving differential 

equations.  
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