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Abstract. The principal aim of the present paper is to develop the theory of Gelfand pairs on the symmetric group

in order to define and study the horocyclic Radon transform on this group. We also find a simple inversion formula

for the Radon transform of the solution to the heat equation associated to this group.
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1. Introduction and preliminaries

Radon transform play a critical role in subjects as diverse as application to partial differential

equations, X-ray technology and radioastronomy. Like much of mathematics in the field of

harmonic analysis and integral geometry on homogeneous space has some of its application in

the work of Helgason [12]. Although the permutation group form one of the oldest parts of

group theory and the harmonic analysis in this work may be regarded as a trivial of compact

case. Through the ubiquity of group actions and representations theory, permutations group
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continue to be lively topic of research in their own right, see [14], [17-18]. Working on a

single spherical analysis and developing the theory of Gelfand pairs on permutations group we

essentially want to define the horocyclic Radon and construct its inverse. As an example of the

use Radon transforms, we give a simple solution to the Radon transform of the heat equation on

permutations group, all done very explicitly.

A bijective function from Zn = {1,2,3, ....,n} onto itself is called a permutation of n numbers;

the set of all permutations of n numbers, together with the usual composition of functions, is

called the symmetric group of degree n. This group will be denoted by Sn. Note that Sn is

defined for n≥ 0, and Sn has n! elements (where 0! = 1). If Y is a subset of Zn, we shall write

SY for the subgroup of Sn which fixes every number outside Y .

A permutation σ ∈Sn, which interchanges two distinct numbers i and j and leaves all other

numbers fixed, is called a transposition and is written as σ = τi, j. The function ε : Sn →

{±1}, such that ε(σ) = (−1)N if σ is a product of N transpositions, is well-defined, called

the signature of σ . The number ε(σ) depends only on the parity of N and we have ε(σ ·ζ ) =

ε(σ).ε(ζ ).

The normalized Haar measure in Sn is given by ν = 1
n! ∑

σ∈Sn

δσ , where δσ is Dirac measure.

The complex group algebra of the group Sn is C(Sn) =

{
∑

σ∈Sn

λσ δσ : λσ ∈ C

}
.

This is a vector space over C, for which the set {δσ : σ ∈ Sn} is a basis. We note that

the algebras C(Sn), L1(Sn) and L2(Sn) (the space of integrable functions resp the square

integrable functions ) are all equal, see [4-5].

The structure of this paper is the following. In Section 2, We recall briefly the main defini-

tions and results of the representation theory on the symmetric group. In Section 3, we give a

characterization of the set right cosets Sn+1/Sn and those of double cosets Sn\Sn+1/Sn. The

main goal of this section will be devoted to spherical function of the Gelfand pair (Sn+1,Sn).

In Sections 4 and 5 we introduce and invert the spherical Fourier transform in permuatation

group. In Section 6 we introduce and investigate the Radon transform on permutations group.

In Section 7 we establish the connection between this transform and the solution to the heat

equations associated to this group which is the technical heart of the paper.
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2. Irreducible representations of permutations groups

We begin this section by recalling a few facts from the representation theory of permutation

groups, see [5], [14-17].

A subset S of Zn is invariant under a permutation σ ∈Sn if σ(S) = S. A permutation is said

to be circular when it admits Ø and Zn as its only invariant subsets.

An invariant subset S of Zn is called a cycle of σ if σ |S is circular, where we are writing σ |S
for the permutation which coincides with σ on S, and which is the identity outside of S.

Lemma 2.1. Let σ ∈Sn, the cycles of σ , denoted S1,S2, ...,Sk, form a partition of Zn. Further-

more for all i, j, σ |Si and σ |S j commute and we have

σ =
k

∏
i=1

σ |Si .

Since the conjugacy class of an element σ ∈Sn is characterized by the lengths of the cycles of

σ (with repetitions), the number of conjugacy classes in Sn is equal to the number of partitions

of n. As [4] the number of inequivalent complex irreducible representations of Sn is equal to the

number of conjugacy classes of Sn. Therefore the number of inequivalent complex irreducible

representations of Sn is equal to the number of partitions of n.

We should therefore aim to construct a regular representation of Sn for each partition of n.

This is made easier by knowing the primitive idempotents [4].

A non-zero element e of C(Sn) is said idempotent if e ∗ e = e. More generally e is said

essentially idempotent if e∗e = λe for some λ 6= 0. An idempotent e is said to be primitive if e

decomposes as the sum of two idempotents: e = e′+e′′ with e′∗e′′= e′′∗e′= 0. An idempotent

which does not decompose in this way is called a primitive idempotent.

In order to describe the primitive idempotents of C(Sn), we will need to recall some defini-

tions.

If λ = (n1,n2,n3, . . . ,nk) is a partition of n (i.e., n1≥ n2≥ n3≥ ....≥ nk≥ 1 and n= n1+n2+

n3 + ...+ nk), we associates to this partition a tableau [λ ] = {(i, j) : i, j ∈ Z;1 ≤ i;1 ≤ j ≤ ni}

(here Z denotes the set of integers).
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If (i, j) ∈ [λ ], then (i, j) is called a node of [λ ]. The kth row (respectively column) of tableau

consists of those nodes whose first (respectively second) coordinate is k.

A Young-diagram is the one of the n! arrays of integers obtained by replacing each node in

[λ ] by one of the integers 1,2,3,4, ....,n allowing no repeats.

To the Young-diagram t, we associate its row-stabilizer, Pt , is the subgroup of Sn keeping

the rows of t fixed setwise. i.e.,

Pt = {σ ∈Sn : for all i ∈ Zn, i and σ(i) belong to the same row of t}.

The column-stabilizer Qt , of t is defined similarly.

Proposition 2.1. [5] Let t a λ - tableau, if π ∈Sn then Pπt = πPtπ
−1 Qπt = πQtπ

−1.

We define a relation of equivalence in the set of λ -tableau by

t1 ∼ t2 if and only if there exists π ∈Pt1 such that πt1 = t2.

The conjugacy class of tableau modulo this relation of equivalence are called tabloids and the

conjugacy class of tableau t is the tabloid noted by {t}.

Proposition 2.2. [5] The permutations group acts on the set of λ -tableau in the following way:

If π ∈Sn and t a λ -tableau then π{t}= {πt}.

To each partition µ of n, µ = (p1, p2, ...., pk), we associate the Young sub-group Sµ of Sn

defined as product of the following sub-group

Sp1+...pi−1+1,p1+...pi−1+2,...,p1+p2+...+pi−1+pi, i = 1,2,3, ...,k.

we have then

S1,...p1×Sp1+1,...p1+p2,×Sp1+p2+1,...,p1+p2+p3× ....

If µ is a partition of n, notice Mµ the Cvector space whose basis are the µ distinct tabloids, so

Mµ is C[Sn]-module

For any Young-diagram t, we associate the element of C(Sn) defined as follows

et = ∑
q∈Qt

∑
p∈Pt

ε(q)δp ∗δq.

We note [4] that et is essentially idempotent and 1
λt

et is a primitive idempotent (λt 6= 0). In some

notation et is called polytabloid
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Lemma 2.2. If π ∈Sn and if et a polytabloid then πet = eπt .

Definition 2.1. The specht module Sµ is C[Sn]-module monogene generated by any µ-

tabloids.

Remark 2.1. Every result interpreted via the Specht module is the same via the left ideal Ot of

C(Sn) generated by et [14,p: 17].

Theorem 2.1. [4,p:67] Let t be a Young-diagram, Pt its row-stabilizer, Qt its column-

stabilizer, and let et be the element of C(Sn) defined by

et = ∑
q∈Qt

∑
p∈Pt

ε(q)δp ∗δq.

We shall write Ot for the left ideal of C(Sn) generated by et and Rt for the associated repre-

sentation of Sn. Then

• Rt is irreducible;

• two such representations Rs and Rt are equivalent if and only if s and t are Young

diagrams for the same partition λ .

As the number of partitions is equal to the number of irreducible complex representations, we

may obtain a representative Rt for each equivalence class of irreducible representations by

choosing for each partition λ a Young diagram t.

Remark 2.2. F. Scarabotti [17] has given a short proof of a characterization of James [14]of

the irreducible modules as the intersection of kernels of certain invariant operators using the

class sum of transpositions and a collection of related transform for the complex representation

of the permutations group

3. Harmonic analysis of the pair (Sn+1,Sn)

We may regard Sn =S (Zn) as a subgroup of Sn+1 =S (Zn+1). More precisely for σ ∈Sn,

the map σ : Zn+1→ Zn+1, defined by x 7→ σ(x) for x ∈ Zn and n+1 7→ n+1, is an element of

Sn+1. We note that Sn acts transitively on Zn via the map Sn× Zn → Zn: (σ , i) 7→ σ .i =

σ(i). Then our objective in below is to establish the spherical transform of the pair (Sn+1,Sn).

Indeed, we will characterize the right cosets Sn+1/Sn and the double cosets Sn\Sn+1/Sn.
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3.1. Realization of Sn+1/Sn of right cosets

We now study the set of right cosets Sn+1/Sn = {σ .Sn;σ ∈Sn+1}. Consider the function

f : Sn+1→ Zn+1 defined by f (σ) = σ(n+1). As Sn+1 acts transitively on Zn+1 it follows that

f is surjective.

For σ ,σ ′ ∈Sn+1 we have f (σ) = f (σ ′) if and only if σ−1 ◦σ ′(n+1) = n+1, or equivalently

if σSn = σ ′Sn. Thus f induces a bijection f : Sn+1/Sn→ Zn+1 given by f (σSn) = σ(n+1).

Thus Sn+1/Sn = Zn+1.

3.2. Realization of Sn\Sn+1/Sn of double cosets

We now consider the set of double cosets:

Sn\Sn+1/Sn = {SnσSn : σ ∈Sn+1}.

We shall calculate for σ ∈Sn+1 the double coset SnσSn.

If σ ∈ Sn then SnσSn = Sn so we assume σ /∈ Sn. Thus σ(n+ 1) 6= n+ 1 so we must

have σ(n+1) ∈ Zn. As Sn acts transitively on Zn there is a σ ′ ∈Sn such that σ ′σ(n+1) = 1.

This means σ ′σ(n+1) = τ1,n+1(n+1), so by the discussion above we have

σ
′
σSn = τ1,n+1Sn.

This implies

Snσ
′
σSn = Snτ1,n+1Sn.

However since σ ′ ∈Sn, we have

SnσSn = Snτ1,n+1Sn.

Therefore there are only two double cosets. The result follows since a group may always be

expressed as the disjoint union of its double cosets with respect to any subgroup. Then

Sn+1 = Sn
⋃

Sn.τ1,n+1.Sn,

and the union is disjoint. We therefore have Sn\Sn+1/Sn = {Sn;Sn.τ1,n+1.Sn} so the space

of radial and integrable function L1,#(Sn+1) is equal to L1(Sn\Sn+1/Sn)=L1({Sn;Sn.τ1,n+1.Sn}).
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We say that (Sn+1,Sn) is a Gelfand pair when the convolution algebra L1,#(Sn+1)=L1(Sn\Sn+1/

Sn) of integrable and Sn-biinvariante functions on Sn+1 is abelian.

Remark 3.1.

1) As Sn\Sn+1/Sn is finite, it is easy to see that the convolution algebra L1,#(Sn+1) =

L1(Sn\Sn+1/Sn) is Abelian, thus (Sn+1,Sn) is a Gelfand pair.

2) As the cardinal of Sn\Sn+1/Sn is equal to number of Sn+1-orbits in Sn\Sn+1×Sn+1/

Sn ( Sn+1 acts via (Snσ ,τSn) −→ (Snσζ ,ζ−1τSn)), then we have two Sn+1-orbits in

Sn\Sn+1×Sn+1/Sn.

For any subset A⊂Sn+1, we define χA be the characteristic function of A

Corollary 3.1. The element ISn+1 = (n+1)χSn is an identity element of L1,#(Sn+1).

Proof. Choose any f ∈L1,#(Sn+1), we must show that χSn ∗ f = f ∗χSn =
1

n+1 f . By definition

of convolutions we have

(χSn ∗ f )(x) =
∫
Sn+1

χSn(y) f (xy−1)dµ(y) =
∫
Sn

f (xy−1)dµ(y).

As f is right-invariant we have

(χSn ∗ f )(x) =
∫
Sn

f (x)dµ(y) = f (x)µ(Sn).

On the other hand µ(Sn) = [Sn+1 : Sn]
−1 = 1

n+1 , so we have χSn ∗ f = 1
n+1 f . The formula

χSn ∗ f = 1
n+1 f follows in the same way but using left-invariance rather than right-invariance

of f .This completes the proof.

For any subset A ⊆Sn+1 we define χA to be the characteristic function of A. We denote by

χσ the characteristic function of the set {σ} and by δσ the Dirac measure at the point σ . Note

that for σ ,τ ∈Sn+1 we have δσ ∗ δτ = δστ . From our normalization of the Haar measure dk

on Sn+1 it follows that χσ (dk) = 1
(n+1)!δσ . We therefore have χσ ∗χτ =

1
(n+1)! χστ .

Let σ ∈Sn+1, we have

χ
#
σ (x) =

∫
Sn

∫
Sn

χσ (τ.x.h)dτdh

= χSn.σ .Sn(x).



HARMONIC ANALYSIS ON PERMUTATIONS GROUP 29

So, for σ = idSn

χ
#
id(Sn)

= χSn

By virtue of τ1,n+1 = τ1,i ◦ τi,n+1 ◦ τi,1 for all i≤ n, we will have

χ
#
1,n+1 = χ

#
i,n+1 = χSn.τ1,n+1.Sn

and

χ
#
n+1,n+1 = χ

#
id(Sn)

= χSn.

Remark 3.2. From Corollary 3.1, we have

χ
#
1,n+1 ∗χ

#
id(Sn)

(x) =
1

n+1
χ

#
1,n+1(x) = χ

#
id(Sn)

∗χ
#
1,n+1(x),

so any two basis elements of the convolutions algebra L1,#(Sn+1) commute, which is another

way to see that (Sn,Sn+1) is a Gelfand Pair. Also we have

χ
#
id(Sn)

∗χ
#
id(Sn)

=
1

n+1
χid(Sn).

Lemma 3.1. We have

χ
#
1,n+1 ∗χ

#
1,n+1 =

n−1
n+1

χ
#
1,n+1 +

n
n+1

χ
#
id(Sn)

.

Proof. To prove this lemma, we use the fact that Sn+1 = Sn
⋃

Sn.τ1,n+1.Sn is disjoint union.

Then the identity function on Sn+1 noted by ISn+1 may be expressed as

ISn+1 = χ
#
1,n+1 +χ

#
id(Sn)

.

We use the fact that

ISn+1 ∗ ISn+1 = ISn+1.

Therefore

(χ#
1,n+1 +χ

#
id(Sn)

)∗ (χ#
1,n+1 +χ

#
id(Sn)

) = (χ#
1,n+1 +χ

#
id(Sn)

).
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Expanding the left hand side of the above equality we obtain:

χ
#
1,n+1 ∗χ

#
1,n+1 +2(χ#

1,n+1 ∗χ
#
id(Sn)

)+χ
#
id(Sn)

∗χ
#
id(Sn)

.

This is equal to:

χ
#
1,n+1 ∗χ

#
1,n+1 +

2
n+1

χ
#
1,n+1 +

1
n+1

χ
#
id(Sn)

.

We therefore have:

χ
#
1,n+1 +χ

#
id(Sn)

= χ
#
1,n+1 ∗χ

#
1,n+1 +

2
n+1

χ
#
1,n+1 +

1
n+1

χ
#
id(Sn)

.

Consequently

χ
#
1,n+1 ∗χ

#
1,n+1 =

n−1
n+1

χ
#
1,n+1 +

n
n+1

χ
#
id(Sn)

.

This completes the proof.

3.3. Spherical function of the Gelfand pair (Sn+1,Sn)

A function φ is said to be a spherical function [7] if and only if φ is Sn-biinvariante and

φ is a character of L1,#(Sn+1). Then a function φ of Sn+1 which is Sn-biinvariante may be

considered as a function of

Sn\Sn+1/Sn = {Sn,Snτ1,n+1Sn}. We shall use the following notation f̌ (x) = f (x−1) and

(̃ f )(x) = f (x−1).

Theorem 3.1. The spherical functions of the Gelfand pair (Sn+1,Sn) are of the form

1) The characteristic function I = χ#
1,n+1 + χ#

id(Sn)
on Sn+1 whose restriction to Sn is

equal to χid(Sn);

2) The function φn =
−1
n χ#

1,n+1 +χ#
id(Sn)

.

Proof. Let φ be a spherical function, then φ is an Sn-biinvariante function such that φ(IdSn+1)=

1 and satisfying the following integral equation [7]

φ(σ)φ(ζ ) =
∫
Sn

φ(σ .τ.ζ )dν(τ),

where σ and ζ ∈Sn+1. Also we have, φ̃ = φ and f̌ ∗φ =< f ,φ > φ , ∀ f ∈ L1,#(Sn+1), with

< f ,g >= 1
(n+1!) ∑

σ∈Sn+1

f (σ)g(σ).
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As φ is biinvariant we may express it in terms of our basis:

φ = αχ
#
1,n+1 +β χ

#
id(Sn)

.

As φ(e) = 1 we must have β = 1. Therefore

φ = αχ
#
1,n+1 +χ

#
id(Sn)

.

As φ̌ ∗φ = φ ∗φ =< φ ,φ > φ , we have, in the first hand

φ̌ ∗φ = (αχ
#
1,n+1 +χ

#
id(Sn)

)∗ (αχ
#
1,n+1 +χ

#
id(Sn)

)

= |α|2(χ#
1,n+1 +χ

#
id(Sn)

)+2Re(α)(χ#
1,n+1 +χ

#
id(Sn)

)+(χ#
1,n+1 +χ

#
id(Sn)

)

= |α|2(n−1
1+n

χ
#
1,n+1 +

n
1+n

χ
#
id(Sn)

)+2Re(α)
1

1+n
χ

#
1,n+1 +

1
1+n

χ
#
id(Sn)

=
(n−1)|α|2 +2Re(α)

n+1
χ

#
1,n+1 +(

n|α|2 +1
n+1

)χ#
id(Sn)

.

In the second hand

< φ ,φ >=< αχ
#
1,n+1 +χ

#
id(Sn)

,αχ
#
1,n+1 +χ

#
id(Sn)

> .

So

< φ ,φ > = |α|2 < χ
#
1,n+1,χ

#
1,n+1 >+< χ

#
id(Sn)

,χ#
id(Sn)

>

=
|α|2

(n+1)! ∑
σ∈Sn+1

χ
#
1,n+1(σ)χ#

1,n+1(σ)

+
1

(n+1)! ∑
σ∈Sn+1

χ
#
id(Sn)

(σ)χ#
id(Sn)

(σ)

=
|α|2nn!
(n+1)!

+
n!

(n+1)!

=
n|α|2 +1
(n+1)

.

Then

< φ ,φ > φ = (
n|α|2 +1
(n+1)

)αχ
#
1,n+1 +(

n|α|2 +1
(n+1)

)χ#
id(Sn)

.
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By virtue of φ̌ ∗φ =< φ ,φ > φ , we will have

(
(n−1)|α|2 +2nRe(α)

n+1
) = (

n|α|2 +1
n+)

)α and

(
n|α|2 +1

n+1
) = (

n|α|2 +1
n+1

)

Then (n− 1)|α|2 + 2Re(α) = (n|α|2 + 1)α . From this equality, we deduce that α is real and

(n−1)α2+2α = (nα2+1)α . Thus α(nα2+(n−1)α +1−2n) = 0 and this equality becomes

α(α − 1)(α + 1
n) = 0. The solutions of this are α = 0, α = 1 and α = −1

n . This proves the

theorem

Remark 3.3. The spherical functions on finite group are all of positive type [5, p:66]

4. The spherical Fourier transform on permutation groups

In this section, we consider the horocyclic Radon transform which turns functions defined on

Sn+1 into functions defined on the set of the horocycles.

We note that the limit inductive

lim
−→

Sn = lim
n≥1

Sn ={σ bijection from N∗→N∗ such that supp(σ) is finite } ( where supp(σ)={k

such thatσ(k) 6= k}), so lim
n≥1

Sn ={σ bijection from N∗ → N∗;∃nσ such that σ(k) = k,∀k ≥

nσ +1}.

The construction of a function from its Radon transform is a central point of study of this

section and the short way to invert the Radon transform is to note the connection with the

Fourier transform and the horocyclic Radon transform is defind by the following formula [12]

R f = F−1
1 ◦ f̃ ,

where F−1
1 is the inverse of the finite Fourier transform and f̃ is the spherical Fourier transform

of the Gelfand pair (Sn+1,Sn). Of course we must place hypotheses on f so that the Fourier

inversion formula is valid in order to obtain the following result

f = R−1 ◦F−1
1 ◦ f̃ .
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More explicitly: The spherical Fourier transform is

∧ f (n) = f̃ (n) =
∫
Sn+1

φn(σ) f (σ)dµ(σ)

=
1

(n+1)! ∑
σ∈Sn+1

φn(σ) f (σ)

=
1

(n+1)! ∑
σ∈Sn+1

f (σ)(
−1
n

χ
#
1,n+1 +χ

#
id(Sn)

)

=
1

(n+1)! ∑
σ∈Sn

f (σ)− 1
n(n+1)! ∑

σ∈Snτ1,n+1Sn

f (σ)

=
1

(n+1)
[

1
n! ∑

σ∈Sn

f (σ)− 1
nn! ∑

σ∈Snτ1,n+1Sn

f (σ)].

And we set

∧1 f (n) = f̃1(n) =
1
n! ∑

σ∈Sn

f (σ) = f ∗ν(Id)

∧2 f (n) = f̃2(n) =
1

nn! ∑
σ∈Snτ1,n+1Sn

f (σ).

We note that the values of two functions ∧1 f (n) and ∧2 f (n) are thus equal to the averages of the

function f over Sn respectively over Snτn+1Sn: elements of the double cosets Sn\Sn+1/Sn.

5. Inversion formula

The solution of reconstruction function from its spherical Fourier transform can be written

in a simple iterative form which is computationally very tractable. Notice that the identity
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Id = IdSi (for all 1≤ i≤ n) . Consider first how to find f (Id) from f̃ .

f̃ (1) =
1
2

f (Id)− 1
2

f (τ1,2)

f̃ (2) =
1
3!
( f (Id)+ f (τ1,2))−

1
2.3!

[ f (τ1,3)+ f (τ1,3 ◦ τ1,2)+ f (τ1,2 ◦ τ1,3)

+ f (τ1,2 ◦ τ1,3 ◦ τ1,2)]

=
1
3!
( f (Id)+ f (τ1,2))−

1
2.3!

[ f (τ1,3)+ f (τ1,3 ◦ τ1,2)+ f (τ1,2 ◦ τ1,3)

+ f (τ2,3)]

f̃ (3) =
1
4!
[ f (Id)+ f (τ1,2)+ f (τ1,3)+ f (τ2,3)+ f (τ1,3 ◦ τ1,2)+ f (τ1,2 ◦ τ1,3)]

− 1
3.4!

[ f (τ1,4)+ f (τ1,4 ◦ τ1,2)+ f (τ1,4 ◦ τ2,3)+ f (τ1,4 ◦ τ1,3)

+ f (τ1,4 ◦ τ1,3 ◦ τ1,2)+ f (τ1,4 ◦ τ1,2 ◦ τ1,3)+ ∑
σ∈S3τ1,4S3

f (σ)]

...... = .....

f̃ (n) =
1

(n+1)!
[ f (Id)+ ∑

σ∈Sn\Id
f (σ)]− 1

n.(n+1)! ∑
σ∈Snτ1,2Sn

f (σ).

Since f (Id) occurs in the sum for f̃ (i) (for all 1 ≤ i) and f (τ1,2) occurs also in the sum for

f̃ (i) (for all 1 ≤ i) and continuing in this way in a simple iterative form , we have an explicit

inversion formula for f (Id) which can easily must be

f (Id) =
1
n

k=n

∑
k=1

(1+ k)! f̃ (k)− 1
n

k=n

∑
k=2

(n− k) f (τ1,k)−
1
n2 f (τ1,n+1)+ ...

Applying the same reasoning for any τ1,i ∈ Sn+1 in stead of Id leads to the full inversion

formula

f (τ1,i) =
1

n− i

k=n

∑
k=1

(1+ k)! f̃ (k)− n
n− i

f (Id)+ ...

Remark 5.1. In the case of permutations group, the difficulty arises for an excellent account of

analysis and modeling of front propagation in permutation group and their utility in applications

to the heat equations.

6. Horocyclic Radon transform and inversion formula
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Given a function f : Sn+1→ C, the Radon transform of f is

Rn+1 f (σ) = ∑
σ ′∈σSn

f (σ ′)

=
1
n! ∑

h∈Sn

f (σ .h)

Remark 6.1. For any h0 ∈Sn, we have

Rn+1 f (σ) = Rn+1 f (σ .h0), Rn+1 f (IdSn) =
1
n! ∑

h∈Sn

f (σ .h) = ∧1 f (n)

This Radon transform is also defined for every B ∈Sn+1/Sn = Zn+1 and every f ∈ L(Zn+1) by

R f (B) = ∑
A∈Zn+1:A⊂B

f (A).

So for an absolutely summable function on lim
→

Zn+1 = N∗, the Radon transform [16]

R f (m) =
k=∞

∑
k=1

f (km),

for all m ∈ N∗, assuming some more rapid decay (say | f (n)|< cn−2−ε ).

This transform can be easily inverted [16], First we find f (1) from R f of the form

f (1) = c1R f (1)+ c2R f (2)+ ...+ cnR f (n)+ ...

for certain coefficients cn that are uniquely determined. The coefficients must be equal to the

Mobius function µ(n), which is defined to be (−1)k if n has k distinct prime factors, and 0 if n

is divisible by a square of a prime. The full inversion formula [16] is

f (n) =
∞

∑
k=1

µ(k)R f (nk)

7. Applications

In order to state the applications of the Radon transform, we consider functions f : Sn+1×

N−→ C, whose values are denoted by f (x,k) = fk(x). In our setting, x ∈Sn+1 represents the
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space variable and k ∈ N the times variables. Let the sub-Laplacian of f with respect to the

space variable defined in the following way

4 f (x) =
1
n! ∑

h∈Sn

f (x.h)− f (x) = f ∗ν(x)− f (x).

Now we consider the following boundary value problems, denoted H , in analogy with the cor-

responding problems for the classical heat equation.

(H ) 4 fk(x) = fk+1(x)− fk(x) given f0(x).

The heat equation associated to sub-Lapcian operator can be written in the following way

(H ) fk(x) =
1
n! ∑

h∈Sn

fk−1(x.h) given f0 = δe,

Theorem 7.1. The solution of the heat equation is given by

fk(x) = f0 ∗ν(x),

with ν = 1
n! ∑

σ∈Sn

δσ the Haar measure in Sn.

If f0 = δe, we have fk = ν .

Proof. The equation (H ) is therefore

fk(x) = fk−1 ∗ν(x) = f0 ∗ν
k(x),

with ν = 1
n! ∑

σ∈Sn

δσ the Haar measure in Sn and νk = ν ∗ν ∗ν ∗ ...∗ν k-times. Using the fact

that

( ∑
σ∈Sn

δσ )∗ ( ∑
σ∈Sn

δσ ) = n! ∑
σ∈Sn

δσ .

Because ( ∑
σ∈Sn

aσ δσ )∗ ( ∑
σ∈Sn

bσ δσ ) = ∑
σ∈Sn

( ∑
tu=σ

atbu)δσ .

So ( ∑
σ∈Sn

δσ )
k = (n!)k−1

∑
σ∈Sn

δσ .

Then νk = ν and we will have fk = f0 ∗ν = ν , with f0 = δe. This completes the proof.
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