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Abstract. In this paper, we review image reconstruction methods and their suitability in electrical capacitance

tomography measurement system. These methods can be grouped into direct and iterative methods. Direct meth-

ods include Linear back projection, Singular value decomposition, and Tikhonov regularization. Iterative methods

are further divided into algebraic and optimization methods. Algebraic reconstruction methods include itera-

tive linear back projection, iterative Tikhonov, Landweber iteration, simultaneously algebraic reconstruction, and

model−based reconstruction. Optimization methods include fuzzy mathematical modeling, genetic algorithms,

artificial neural networks, generalized vector sampled pattern matching, total variation regularization, regularized

total least squares, extended Tikhonov regularization, simulated annealing, compressed sensing principle, popu-

lation entropy, adaptive differential evolution, least−squares support vector machine, and self-adaptive particle

swarm optimization. Some of these methods have been examined through experiments and their comparative

analysis have been given. Results show that iterative methods generate high quality images compared with non-

iterative ones when evaluated over full component fraction range. However, iterative methods are computationally

expensive, and hence used for research and off-line investigations rather than for on-line process monitoring.
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1. Introduction

Tomography is a non-destructive imaging technique that creates an image of an object’s in-

ternal structure. The technique has been used in radiology, archeology, biology, atmospheric,

geophysics, oceanography, plasma physics, materials science, astrophysics, quantum informa-

tion, and other sciences [2, 12, 26].

Tomography imaging can be divided into two types: hard-field and soft-field tomography [9,

27]. In hard-field tomography, the direction of travel of energy waves from the power source is

constant regardless of the material distribution inside the sensor; In soft-field tomography, the

transmitting field does not follow the straight line pattern, and the signal distribution depends

on the type of the excitation source. The nature of soft field is more complex−which makes

image reconstruction relatively challenging compared with that of hard field [11]. Examples

of soft-field tomography are Electrical Impedance Tomography (EIT), Electrical Capacitance

Tomography (ECT), and Magnetic Induction Tomography (MIT), and these three are normally

regarded as “electrical tomography”. The advantages of the electrical tomography are low cost

and fast response.

Among the members of electrical tomography family, ECT is the most popular in industrial

applications. It is a non-invasive and non-destructive imaging technique used in industrial pro-

cess monitoring and evaluation. It consists of three main components: multi-electrode sensor,

sensor electronics, and reconstruction and control ( Figure 1).

FIGURE 1. Typical ECT System
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Multi-electrode sensor is an array of evenly spaced electrode arranged around the measuring

object. Sensor electronics provides excitation signals and converts measured capacitances into

voltages, which are then conditioned and digitized for data acquisition. Reconstruction and

control implements image reconstruction algorithms and controls the system hardware. This

paper reviews of image reconstruction methods used in ECT. The ECT system is first described,

followed by revision of various image reconstruction methods.

2. Image reconstruction methods in ECT

2.1 ECT model representation

ECT image reconstruction involves solving two major computational problems: forward and

inverse problems [20]. The forward problem calculates potential distribution from a known

permittivity, and hence determines capacitance measurements. The inverse problem calculates

permittivity distribution from the measured capacitance data. Results from the inverse problem

are normally presented as a visual image, and hence the process is called image reconstruction.

The relationship between capacitance and permittivity distribution is given by

C =− 1
V

∫∫
τ

ε(x,y)5φ(x,y)dτ, (2.1)

where V is the potential difference between electrode pair forming capacitance, ε(x,y) and

φ(x,y) are respectively, permittivity and potential distribution, and τ is the electrode surface. In

ECT image reconstruction, equation (2.1) is usually simplified as

C = SG, (2.2)

where C is the normalized capacitance vector, S is the sensitivity matrix of normalized capac-

itance with respect to permittivity distribution , and G is a grey level vector. Equation (2.2) is

called ECT model.

According to Yang et al. [40], there are three main challenges in ECT imaging: (1) the non

linear relationship between the permittivity distribution and capacitance and the distortion of

the electric field by the material present−the so called “soft-field” effect; (2) fewer number

of independent measurements compared with pixels needed to reconstruct an image, and (3)
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the inverse problem is ill−posed and ill−conditioned. The ECT solution is often sensitive to

measurement errors and noise, and therefore unstable. To obtain meaningful reconstruction

results, some prior information or constraints need to be added on the unknown variables.

Various numerical methods have been proposed to solve the ECT inverse problem. In general,

they can be divided into two groups, direct and iterative methods [11, 22, 40]. Direct method-

s use a single mathematical step to calculate the permittivity distribution from the measured

capacitance and the sensitivity matrix. Iterative methods optimize a set of objective function-

s iteratively until steady conditions are attained. A brief review of these methods is given in

sections 2.2 and 2.3.

2.2 Direct reconstruction methods

2.2.1 Linear back projections

This method was the first to be used in ECT image reconstruction [37]. Using LBP, permittiv-

ity distribution is calculated from the liner mapping of measured capacitance and the sensitivity

matrix as
G = STC, (2.3)

where ST represents the transpose of the sensitivity matrix, S. In LBP, the non-linear interaction

(which is a function of permittivity value and distribution) between grey levels, is ignored. As

a result, poor-quality images are generated that provides only qualitative information [40]. To

obtain quantitative information, the use of other reconstruction methods or further processing is

required.

2.2.2 Singular value decomposition

Singular value decomposition (SVD) is a matrix factorization method that has many appli-

cations, such as computation of the generalized inverse (pseudoinverse) of a non-square ma-

trix [18]. In ECT imaging, sensitivity matrix, S, in equation (2.2) is an ill-posed (i.e. non-

square), and can, therefore, be represented using SVD [39] as

S =UΣV T , (2.4)
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where columns of U are eigenvectors of SST , and columns of V are eigenvectors of ST S, and Σ

is a diagonal matrix of the same size as S−which is formed by the square roots of the nonzero

eigenvalues of both SST and ST S. Thus, the pseudoinverse, S+, of S is obtained by

S+ =V Σ
−1UT , (2.5)

and reconstruction equation becomes

G = S+C. (2.6)

SVD is considered as an effective method to solve inverse problems. However, the method

reconstructs images with unsatisfying qualities.

2.2.3 Tikhonov regularization

Tikhonov Regularization (TR) is the most common method used in finding solutions for ill-

posed problems [31]. In ECT, this method has been applied to solve the inverse problem [14].

Using TR, the inverse of the sensitivity matrix, S, is calculated by adding a regularization pa-

rameter. The mathematical details are summarized in equations (2.7) to (2.9). Equation (2.2)

can be written in exact form as

STC = ST SG. (2.7)

From equation (2.7), G is calculated by

G = (ST S)−1STC. (2.8)

In equation (2.8), ST S is a non-invertible matrix, and a regularization parameter is thus intro-

duced to form

G = (ST S+µI)−1STC, (2.9)

where µ is a regularization parameter, and I is the identity matrix. The quality of reconstructed

images strongly depends on the value of regularization parameter. A small value of µ gives a

good approximation of permittivity distribution, but the solution highly affected by capacitance

measurement error. Also, a large value of µ minimizes the capacitance measurement error, but

increases the approximation error. To obtain grey levels close to true distribution, it is important
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to choose an optimal regularization parameter. Currently, the choice of regularization parameter

is done empirically in most ECT applications.

2.3 Iterative Reconstruction Methods

Iterative reconstruction methods are divided into two groups namely, algebraic reconstruc-

tion, and optimization methods [33].

2.3.1 Algebraic reconstruction methods

In algebraic reconstruction, image vector G, is estimated according to

Gk+1 = Gk +ωkST (C− f (Gk)), (2.10)

such that error between the calculated capacitance f (Gk) and measured capacitance C is mini-

mized, where Gk is the estimated image vector in the kth iteration, f (Gk) is the forward problem

solution of image vector Gk, and ωk is the gain factor of the kth iteration−it gives distinct im-

portance to specific parts of the measured capacitance vector.

Several algebraic reconstruction methods have been developed to solve the ECT inverse prob-

lem [11, 22, 40]. They differ into three aspects: (1) how the gain factor, ωk, is applied, (2) how

capacitance data are used to update the image vector, and ( 3) how pixels of the estimated image

are updated. Some of these algorithms are explained in this section.

2.3.1.1 Iterative linear back projection (ILBP)

ILBP is an iterative generalization of LBP method (Section 2.2.1). The forward problem in

ILBP is solved by using equation (2.2) and the gain factor, ωk, is kept constant, and hence the

image vector is updated according to

Gk+1 = Gk +ωkST (C−SGk). (2.11)

ILBP uses only one set of measurement data in each iteration step, and therefore, generated

images suffer from measurement data noise. The situation can be improved using simultaneous

image reconstruction technique.
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2.3.1.2 Simultaneous image reconstruction technique (SIRT)

In SIRT, all capacitance data are used to update the image vector at once [1]. The iterative

formula for SIRT is given by

Gk+1 = Gk−ωkST (SGk−C)

diag(SST )
, (2.12)

where diag(SST ) is a vector composed of diagonal components of SST and the division means

that each numerator is divided by the corresponding denominator. If necessary, ωk can be

replaced by a vector. This means that image vectors based on the number of equation (total

number of measurements) are not treated equally when trying to obtain the average vector. This

is important in improving the image quality in ECT as a non-linear system.

2.3.1.3 Iterative tikhonov reconstruction (ITR)

ITR is a generalization of standard Tikhonov regularization. In this method, image is updated

according to

Gk+1 = Gk +(ST S+µI)ST (C−SGk). (2.13)

Results generated by ITR method are better compared to many of the direct step methods. How-

ever this method is computationally inefficient and can only be used for off-line and research

applications.

2.3.1.4 Landweber and Projected Landweber Iteration

Landweber iteration method is used to solve linear inverse problems [15]. In ECT, it has been

used to solve inverse problem as given by Yang et al. [41] as

Gk+1 = Gk−αST (SGk−C), (2.14)

where α is a relaxation factor, and Gk is an initial image vector. Landweber is the fastest iter-

ative method, but still requires many iterations to achieve steady conditions [13]. This makes

Landweber algorithm unsuitable for imaging in on-line industrial processes. To reduce compu-

tational times, a preconditioner matrix proposed by Strand [28] can be applied, and the method
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is called preconditioned Landweber [19] expressed as

Gk+1 = Gk−αDST (SGk−C), (2.15)

where D is a preconditioner matrix. For simplicity, D is normally chosen to be a diagonal

matrix [3]. To ensure convergence at every iteration step, a projection operator P can be used to

improve the overall convergence property of the Landweber iteration [40]. And the method is

called Projected Landweber, expressed as

Gk+1 = P
[
Gk−αST (SGk−C)

]
, (2.16)

P is defined by:

P [Gk] =


0, if Gk < 0

Gk, if 0≤ Gk ≤ 1

1, if Gk > 1.

(2.17)

The projection operator ensures that the reconstructed images are non-negative and upper-

bounded. The Landweber algorithm is computationally efficient compared with other iteration

algorithms as it uses first order derivatives, but suffers from a semi-convergence condition [18]

(image error decreases fast at the beginning of the iteration, but increases after reaching the

local minimum point).

2.3.1.5 Model-Based Reconstruction

A model-based reconstruction (MOR) iterative method was proposed by Isaksen et. al [10].

In this method, the difference between measured and estimated capacitances is minimized by

altering the dielectric constant distribution applied as the input to the sensor model. The process

is repeated until the difference between simulated and measured capacitance is less than the pre-

defined value. The iteration process of MOR algorithm is depicted in Figure 2.



IMAGE RECONSTRUCTION METHODS IN ECT 47

FIGURE 2. Model-based iterative reconstruction [10]

Studies suggest that MOR algorithm is more accurate with respect to both spatial resolution

and components fraction estimation. However, the algorithm is slower [10, 24], and therefore

recommended in off-line and research applications to determine optimal thresholding level to

filter noise from LBP reconstructed image.

2.3.2 Optimization Reconstruction Methods

In mathematics, computer science, and operations research, mathematical optimization is the

selection of a best element from some set of available alternatives[35]. In the simplest case, an

optimization problem consists of maximizing or minimizing a real function by systematically

choosing input values from within an allowed set and computing the value of the function. An

optimization problem can be represented in the following way:

Given: a function f : X −→ R, from some set X to the real numbers. There is an element x0

in X such that f (x0) ≤ f (x) for all x in X (“minimization”) or such that f (x0) ≥ f (x) for all x

in X (“maximization”).

Such a formulation is called an optimization or a mathematical programming problem. Many

real-world and theoretical problems may be modeled in this general framework. Typically, X

is some subset of the euclidean space, Rn, often specified by a set of constraints, equalities or

inequalities that the members of X have to satisfy. The domain X of f is called the search space

or the choice set, while the elements of X are called candidate solutions or feasible solutions.
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The function f is called, an objective function, a loss function or cost function (minimization),

a utility function or fitness function (maximization), an energy function or energy function-

al [8]. A feasible solution that minimizes/maximizes the objective function is called an optimal

solution.

Since image reconstruction in ECT is considered ill-posed and non-linear problem (i.e. there

may exist more than one possible image as a solution for the reconstruction) optimization meth-

ods may achieve better results than other methods. Reported optimization methods that have

been used in ECT include fuzzy mathematical Modeling [7], genetic algorithm [5], artificial

neural networks [21, 22, 29, 33, 34], generalized vector sampled pattern matching method [30],

total variation regularization method [4, 32], regularized total least squares [16], extended

Tikhonov regularization [14], simulated annealing method [25], compressed sensing princi-

ple [36], population entropy and adaptive differential evolution [17], and least- squares support

vector machine and a self-adaptive particle swarm optimization [6].

Studies suggest that optimization methods generate better image compared with algebraic

reconstruction techniques [23, 34]. This is due to the ill-posedness nature of the in ECT inverse

problem, which creates an additional challenge to the reconstruction problem when computa-

tional and experimental noise are present. Therefore, finding the solution based on minimization

of the forward error function alone does not guarantee an optimum solution.

3 Experimental setup and evaluation criteria

3.1 Experimental setup

Experiments were carried out using an eight-electrode circular sensor ECT system. Eleven

test distribution of annular and stratified flows were used. The tested methods include Linear

back projection (LBP), Singular Value Decomposition (SVD), Tikhonov regularization (TKR),

Iterative Tikhonov regularization (ITKR), Landweber iteration (LAND), and Projected Landwe-

ber iteration (PLAND). These methods were implemented using in MATLAB

3.2 Evaluation criteria
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To evaluate the performance of implemented methods, both qualitative and quantitative met-

rics were used. Qualitatively, visual results of the reconstructed images generated by different

methods were subjectively compared. To quantify the quality of results, the following quantita-

tive metrics were used:

Relative Image Error (RIE): is the absolute difference between reconstructed and refer-

ence image vectors divide by the magnitude of the reference image vector [40], mathematically

expressed as

RIE =
‖ Grec−Gre f ‖
‖ Gre f ‖

, (3.1)

where Grec and Gre f are, respectively, reconstructed and reference image vectors.

Distribution Error (DE): is an average of total sum of the absolute difference in grey level

values between the reconstructed and reference image [10], expressed as

DE =
1
n

n

∑
i=1

∣∣∣Grec
i −Gre f

i

∣∣∣ , (3.2)

where n is the total number of grey levels.

Correlation Coefficient (CC): between the reference image and the reconstructed image [38],

calculated by

CC =
∑

n
i=1(G

rec
i − Ḡrec)(Gre f

i − Ḡre f )√
∑

n
i=1(G

rec
i − Ḡrec)2 ∑

n
i=1(G

re f
i − Ḡre f )2

. (3.3)

Gas Fraction Error(GFE): is the absolute difference between processed and reference gas

fractions, expressed as

GFE =
‖ αrec−αre f ‖

αre f , (3.4)

where αrec andαre f are, respectively, processed and reference gas fractions, and αrec is calcu-

lated by

α
rec =

∑
n
i=1 AiGrec

i
Apipe

, (3.5)

where Ai is the area of pixel element i, and Apipe is the total area inside the pipe. Lower values

of RIE, DE, GFE , and higher value CC indicate better performance.

4 Results and discussion
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Figure 3 presents visual results from image generated using selected direct and iterative meth-

ods. From the results, we can clearly see that iterative methods, specifically, Projected Landwe-

ber, generate images with better qualities.

FIGURE 3. Images reconstructed from experimental data

Figure 4 shows quantitative results based on DE for each method over full component fraction

range for annular flow. We noted that iterative methods are more accurate compared with direct

methods over full component fraction range. However, the average DE for each method is
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greater than 10%, suggesting that performance improvement is needed for these methods to be

used for commercial application in oil industry.

FIGURE 4. DE for annular flow over full component fraction range

FIGURE 5. DE for stratified flow over full component fraction range

In Figure 5, performance DE results for each method for stratified flow over full compo-

nent fraction range are presented. Again, we can see that results from iterative methods have

minimum DE compared with direct methods. In particular, PLAND performs better over ful-

l component fraction range. However, the average DE for each method is greater than 10%,

signaling the necessity of further improvement to actualize the methods in real life.
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Performance results based on GFE for each method for dynamic on-line data over full com-

ponent fraction range are presented in Figure 6. Results suggest that LBP performs slight better

compared with other methods over full component fraction range. This is in contradiction with

the results obtained using DE for annular and stratified flows.

FIGURE 6. GFE for on-line dynamic data over full component fraction range

Table 1 presents quantitative results for selected annular and stratified flows based on RIE,

DE, and CC. Time taken for each method to generate an image is also recorded in order to

compare their reconstruction speeds. From results it is seen that iterative methods perform

better than direct in terms of RIE, DE, and high CC.

TABLE 1. RIE, DE, CC and Time Elapse for selected annular and stratified flows

Algorithm
RIE (%) DE (%) CC

Time Elapse(Sec)
Annular Stratified Annular Stratified Annular Stratified

LBP 43.35 32.67 31.87 17.47 0.595 0.885 0.597
SVD 57.28 41.15 34.84 50.27 0.36 0.041 0.858
TKR 42.89 37.05 30.44 14.98 0.738 0.848 1.33
ITKR 37.63 36.34 22.96 13.35 0.745 0.852 126.67
LAND 45.15 44.74 33.64 24.52 0.682 0.851 2.299
PLAND 38.05 30.94 24.18 12.14 0.745 0.895 1.98
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Based on the above experimental analysis, iterative methods generate better images in terms

of spatial resolution compared with direct methods. However, their computational time is

greater than direct methods. This limit their usage for on-line industrial applications.

5 Conclusion

In this paper, a review of image reconstruction methods has been presented. Experimental

results suggest that iterative methods generate better images compared with direct methods.

However, they are computationally intensive. Also, most iterative methods are unstable and

fail to generate globally unique solutions, and this calls for a need to establish more efficient

and effective stopping mechanisms. However, achieving promising exit conditions in iterative

methods has remained an open-ended research question.

ECT systems can fully be used in real-time applications, if both hardware and software are

improved. In terms of hardware, work should focus on the design of sensors and sensor elec-

tronics circuits. On the sensing part, the focus should be on designing an optimal sensor struc-

ture including the number of electrodes. Selection of number of electrodes requires a trade-off

between the numbers of measurements and unknowns (number of pixels or grey levels). S-

mall number of electrodes will result in small number of measurements, and make the solution

under-determined. Too many electrodes will give a small sensing area, this means very small

capacitance will be measured accurately.

In terms of reconstruction methods, the design should focus on the application purpose of the

ECT system, whether research investigation or real time industrial applications. For research

investigations, relative slow but accurate methods can be implemented off-line. However, for

monitoring and control of on-line industrial process, fast and accurate methods are needed.

Therefore, the main focus of future work on reconstruction methods should be to design fast

and accurate methods.
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