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Abstract. In this paper, a nonlinear Mathematical model is proposed to study the dynamics of HIV/AIDS in

a variable size population involving two groups of infectives with different behavioral patterns and an infecting

AIDS group. Basic Mathematical and epidemiological implications of the model, like the basic reproduction

number and its sensitivity indexes with respect to its parameters, are derived. The basic model is modified into

an optimal control problem by incorporating three controls, namely; Infection control, behavioral change efforts

and administration of Highly Active Antiretroviral Therapy (HAART), aimed at controlling the spread of the

disease. We examine the implementation of various combinations of the controls in order to determine the most

cost effective strategy that can control the spread. Using the incremental cost-effective ratio for the various control

strategies showed that the strategy that involves all the efforts is the most cost effective strategy. This reveals that

the fight against the disease should be multidimensional, including treatment, education and others.
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HIV/AIDS is one of the most critical problems that have plagued the world, especially the

under-developed and developing world, in the twentieth and twenty-first centuries. It has

claimed and continue to claim several lives, despite numerous attempts to control its spread.

An estimated 2.5 million people were newly infected with HIV in 2011 and 1.7 million peo-

ple died of the disease [9]. Up to date, there has not been a cure for the disease and as such

several studies, both theoretical and practical, have sought to find ways to curb its spread. Math-

ematical modeling has been extensively employed to study and provide strategies to control its

spread. A wide range of researchers have done varied categories of studies in this area. Some

have sought to provide models to study the dynamics of the disease. For example, May and

Anderson [14] explored data on different categories of people at risk of getting the disease in

the under-developed and developing world and proposed basic models to describe the dynamics

of the disease. Anderson et al. [2] provided a preliminary study of the causative agent of the

disease. Other researchers have sought to study the effects of various factors that can affect the

transmission of the disease. In particular, Agraj et al. [1] developed a model to study the effect

of screening of unaware infectives on the dynamics of the disease. Ratera et al. [17] studied

the effects of screening and treatment on the dynamics of the disease, concluding that these two

factors have the effect of reducing the spread of the disease. Since, HIV/AIDS is transmitted

through interaction of infected and Susceptible individuals, the behavior of these people can

greatly impact the spread. Thus, some researchers have sought to study the impact of various

behavioral patterns on the transmission of the infection. For example, Daabo et al. [5] and

Daabo and Seidu [6] studied the effect of irresponsible infectives on the spread of HIV/AIDS,

concluding that increase in responsibility (positive attitude towards safe sex) can greatly reduce

the spread of the infection. Research has shown that several factors affect the dynamics of HIV.

This lead many researchers to consider the use of optimal control in the study of the dynamics

of the disease. Some examples of such research include Karrachou et al. [11] who studied the

impact of chemotherapy in controlling viral replication in HIV patients, Okosun et al. [15] who

proposed a dynamical model to study the recruitment, preventive and treatment strategies for

optimal workplace productivity in the presence of HIV/AIDS. In the present paper, we propose
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a nonlinear dynamical system to study the optimal control of HIV/AIDS transmission in the p-

resence of two categories of infective with different attitude towards sex, a sexually active AIDS

group and one Susceptible group. We seek to study the most cost effective strategy, involving

three control efforts, that can be used to fight the spread of HIV/AIDS in the presence of the

three infective groups.

The remaining part of the paper is organized as follows. In section 2, we describe the formula-

tion of the model, which consists of a system of ordinary differential equations representing the

rate of change of the population sizes of the various sub-groups in the population. In section 3,

some basic mathematical and epidemiological implications of the proposed model are present-

ed. Section 4 presents the stability analysis of the model, while sections 5, 6 and 7 present a

modification of the proposed model into an optimal control problem, Numerical simulation of

the proposed models and Conclusions respectively.

2. Model formulation

In this paper, we propose a standard compartmental model that describes the dynamics of

HIV/AIDS in a non-constant population. The model considers that the total population N(t)

is subdivided into four classes, namely; Susceptibles, S(t) , Careless infectives, Ii(t) , Careful

Infectives, Ir(t) and people with AIDS, A(t) . HIV/AIDS is assumed to be mainly transfered

through contact with an infected person. Figure 1 is the schematic diagram of the model.
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FIGURE 1. Schematic Diagram for our Model



OPTIMAL CONTROL ANALYSIS OF AN HIV/AIDS MODEL 61

Next, we describe, in this section, the model formulation process by describing how the pop-

ulations of the various compartments evolve with time:

Susceptible Population

The population of this subclass grows through a constant inflow of Susceptibles at a rate Q into

the population. The per-capita rate of contact between an infected person and a Susceptible

one is β with η being modification parameter on infection due to responsible sexual lifestyle

of the Careful Infectives and τ being the modification parameter on infection of AIDS indi-

viduals due to reduced sexual activity. We assume a bilinear incidence rate with an average

number of sexual partners of an infectious individual being c. The natural death rate of Suscep-

tibles and other subpopulations is µ . We assume that all infected persons are sexually active

even though there is reduced contacts for responsible and AIDS patients due to right value

judgment and weak sexuality respectively. Thus, we have he nonlinear differential equation
dS
dt = Q− cβ (Ii +ηIr + τA)S−µS

Careless Infectives Population

Efforts aimed at improving responsible sexual lifestyle of careless infectives succeed at a rate

θ and Highly Active Antiretroviral Therapy treatment efforts lead to a reduced rate of pro-

gression into AIDS ,δ for both categories of infectives. Susceptibles are assumed to only be-

come irresponsible infectives due to the fact that infected persons are often unaware of their

HIV status and may still indulge in irresponsible sexual behavior.This leads to the equation
dIi
dt = cβ (Ii +ηIr + τA)S− (δ +θ +µ)Ii

Careful Infectives Population

The size of this subclass grows as a result of positive behavioral change of irresponsible infec-

tives after they have become aware of their HIV status and thus we have dIr
dt = θ Ii− (δ +µ)Ir.

AIDS Patients’ Population Equation

The size of the AIDS patients’ subclass increases as a result of loss of immune system func-

tionality of the infected persons. if δ is the rate of progression of the infected to AIDS, then

the rate of growth of the AIDS persons is directly proportional to δ (Ii + Ir). If α is the rate of

disease-induced death, then the population of AIDS persons decrease at a rate proportional to

α +µ . this gives dA
dt = δ (Ii + Ir)− (α +µ)A.
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Thus, we have the following set of autonomous differential equations that model the spread of

the disease in a typical homogeneously-mixed environment.

(1)



dS
dt = Q− cβ (Ii +ηIr + τA)S−µS
dIi
dt = cβ (Ii +ηIr + τA)S− (δ +θ +µ)Ii

dIr
dt = θ Ii− (δ +µ)Ir

dA
dt = δ (Ii + Ir)− (α +µ)A

3. Basic results about the model

In this section we present some basic properties of the model and the implications of such

properties.

3.1 Biological feasibility

For all epidemiological models that deal with populations,it is necessary to ensure that the

models are epidemiologically reasonable. There is the need to ensure that all variables are

positive during the period of study. It is easy to show that all solutions of the model (1) always

remain non-negative as long as the initial values are non-negative.

Theorem 3.1. Let the initial state-values of the model (1) be non-negative (i.e. S(0)≥ 0, Ii(0)≥

0, Ir(0)≥ 0, A(0)≥ 0). Then all solutions remain non-negative for t > 0.

Proof

From dA
dt = δ (Ii+Ir)−(α+µ)A we have dA

dt ≥−(α+µ)A, which implies that A(t)≥A0e−(α+µ)t .

Similar arguments gives Ir(t)≥ Ir(0)e−(δ+µ)t , Ii(t)≥ Ii(0)e−(δ+θ+µ)t and S(t)≥ S(0)e− f (Ii(t),Ir(t),A(t))

Thus, all solutions of the model (1) will remain positive provided the initial values are positive.

3.2 Boundedness of the model

For an epidemiological model to be considered realistic, it is expected that it does not describe

a population whose size grows without bounds. This is due to the fact that populations are

known to be limited in their growth due to such limiting factors as the carrying capacity of the

environment, competition, death among others. Thus, we study, in this section, the boundedness
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of our proposed model.

From the model (1) we have
d
dt (S+ Ii + Ir +A) = Q−µ(S+ Ii + Ir +A)−αA≤ µ

[
Q
µ
− (S+ Ii + Ir +A)

]
Then lim

t→∞
Sup(S+ Ii + Ir +A)≤ Q

µ

Thus, we have

Ω =
{
(S, Ii, Ir,A) : S+ Ii + Ir +A≤ Q

µ
, S > 0, Ii > 0, Ir > 0, A > 0

}
being the feasible region of

the system (1).

From the result on positivity of the solutions of the model above, we can conclude that the

region Ω is positively invariant with respect to system (1).

3.3 Basic reproduction number, R0

The basic reproduction number is a threshold parameter that is used in epidemiology to in-

vestigate the stability of critical points of models. It is defined as the number of secondary

infections that arise as a result of the introduction of a single infectious agent in an initially

susceptible population over the period of the infectiousness of the infectious agent. Thus, if this

parameter is greater than one it is expected that the disease will continue to spread and will die

off if the parameter is less than one.

Several researchers have studied this parameter [7, 8] and some have proposed techniques to

evaluate it. We employ, here, the next generation matrix technique of [8], who showed that

R0 can be calculated as the spectral radius of the next generation matrix of the model at the

disease-free equilibrium point.

Using the method in [8], the system (1) can be rewritten as
dX
dt = F(X)−V (X) where

F(X) =


0

cβ (Ii +ηIr + τA)S

0

0

 and V (X) =


−Q+ cβ (Ii +ηIr + τA)S+µS

(δ +θ +µ)Ii

(δ +µ)Ir−θ Ii

(α +µ)A−δ (Ii + Ir)


Evaluating the Jacobian matrices of F(X) and V (X) at the disease free equilibrium point gives

respectively he following matrices.
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D =



0 0 0 0

0 cβ Q
µ

cβ η Q
µ

cβ τ Q
µ

0 0 0 0

0 0 0 0


and V =



µ
cβ Q

µ

cβ η Q
µ

cβ τ Q
µ

0 δ +θ +µ 0 0

0 −θ δ +µ 0

0 −δ −δ α +µ


The next generation matrix of the model is given by

DV −1 =



0 0 0 0

0 cβ Q
µ (δ+θ+µ) +

cβ η Qθ

µ (δ+θ+µ)(δ+µ) +
cβ τ Qδ

µ (δ+µ)(α+µ)
cβ η Q

µ (δ+µ) +
cβ τ Qδ

µ (δ+µ)(α+µ)
cβ τ Q

µ (α+µ)

0 0 0 0

0 0 0 0


so that basic reproduction number (defined as the spectral radius of DV −1) will be given by

R0 =
cβQ [(α +µ)(δ +µ +η θ)+ τ δ (δ +θ +µ)]

µ(δ +θ +µ)(δ +µ)(α +µ)
.

In the next subsection, we study the effect of changes of the model parameters on R0.

3.4 Sensitivity analysis of R0

Parameters that occur in mathematical models are often estimated from experiments and ex-

pected to be found within some ranges. Due to the fact that exact values of the parameters are

not always available, it is often prudent to determine the effect of changes of the parameters

on the predictions of the model. One procedure to do this is by the use of sensitivity analysis.

The normalized forward sensitivity index is a typical measure used to study the sensitivity of a

parameter relative to its dependent parameters.

Definition 3.1. Let h = f (x1,x2, . . . ,xn), be a differentiable function that depends on the param-

eters xi, then the normalized forward sensitivity of h with respect to xi is defines as γh
xi
= xi

h .
dh
dxi

.

This index measures the relative change in h due to relative changes in xi. The normalized

forward sensitivity indexes of R0 relative to its parameters are presented in Table 1. The impli-

cations of the values of the sensitivity indexes is that a unit increase in the rate of progresion

to AIDs of infected individuals leads to a 0.71% decrease in R0. The grater the absolute value

of a sensitivity index of a parameter, the greater the effect of the parameter on its dependent
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variable. Thus, µ is seen to have the greatest impact on R0, whilst α has the least impact.

TABLE 1. Sensitivity Indexes of parameters of R0

Parameter Description Sensitivity Index

Q Rate of recruitment +1.000

α AIDs related death rate -0.020

β Contact rate between Susceptibles and Infectives +1.000

c Average number of contacts of a typical infective +1.000

δ Rate of progression of Infective into AIDS -0.709

η Modification parameter due to right-value judgment +0.745

µ Natural Death rate -1.146

τ Modification parameter due to weak sexual activity +0.021

θ Probability of positive behavioral change -0.125

3.5 Existence of an endemic equilibrium point of the model

It is easily seen that the model(1) has a disease-free equilibrium point given by E0 =(Q
µ
,00, 0)

and by simple algebraic calculations the model can be shown to also exhibit a unique endemic

equillibrium point E∗(S∗, I∗i , I
∗
r ,A
∗), given by

S∗= Q
µ+R0−1 , I∗i =

Q
µ(δ+θ+µ)

(
1− 1

R0

)
, I∗r =

θQ
µ(δ+θ+µ)(δ+µ)

(
1− 1

R0

)
and A∗= δQ

µ(δ+µ)(α+µ)

(
1− 1

R0

)
.

Theorem 3.2 The system (1) exhibits only two unique equilibrium points; namely the disease-

free equilibrium and the endemic equilibrium, which are mutually exclusive. Hence the model

does not exhibit any backward bifurcation.

Proof. It is noted that R0 ∈ (0,∞) and the persistence of the disease depends on whether R0

is greater or less than unity. For R0 < 1 we have (1− 1
R0

) < 0 suggesting negative population

sizes of infectives and AIDS subclasses, which does not make sense.For R0 > 1. This then

suggests extinction of these subclasses and hence we have the disease-free equilibrium for R0 <

1. Also R0 = 1 corresponds to the disease-free equilibrium. For R0 > 1, we have (1− 1
R0

)> 0,
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making I∗i 6= 0 which corresponds to the coexistence of Susceptibles and Infectives (i.e endemic

Equilibrium). Thus, we realize that R0 = R1
0 ∪R2

0 , where R1
0 = (0,1], andR2

0 = (1,∞), which

are disjoint sets and correspond to the existence of the disease-free and endemic equilibria

respectively. this proves the mutual exclusivity of the equilibrium points.

4. Stability analysis of the model

To study the stability of the model we use the indirect Lyapunov method. The Jacobian matrix

that linearizes the model is given by

(2) J =


−µ− cβ (Ii +ηIr + τA) −cβS −cβηS −cβτS

cβ (Ii +ηIr + τA) cβS− (δ +θ +µ) cβηS cβτS

0 θ −(δ +µ) 0

0 δ δ −(α +µ)



To study the stability of the disease-free equilibrium, we evaluate the Jacobian at the point

and determine the nature of the eigenvalues of the resulting matrix. Evaluating the Jacobian at

the disease-free equilibrium gives:

(3) J =


−µ −cβQ

µ
−cβηQ

µ
−cβτQ

µ

0 cβQ
µ
− (δ +θ +µ) cβηQ

µ

cβτQ
µ

0 θ −(δ +µ) 0

0 δ δ −(α +µ)



While one of the eigenvalues of the Jacobian is known straight away to be negative (i.e −µ),

the remaining three eigenvalues are those of the matrix given by

(4) J1 =


cβQ

µ
− (δ +θ +µ) cβηQ

µ

cβτQ
µ

θ −(δ +µ) 0

δ δ −(α +µ)

 .
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However, this matrix has eigenvalues with negative real parts if tr(J1), det(J) and det(J1[2]) are

all negative. where J1[2] is the second additive matrix of J1 given by:

J1[2] =


cβQ

µ
− (δ +θ +µ)− (δ +µ) 0 −cβτQ

µ

δ
cβQ

µ
− (δ +θ +µ)− (α +µ) cβηQ

µ

−δ θ −(α +µ)− (δ +µ)

 .

tr(J) = cβQ
µ
− (δ +θ +µ)− (δ +µ)− (α +µ)

= (δ +θ +µ)
[

R0(α+µ)(δ+µ)
(α+µ)(δ+ηθ+µ)+τδ (δ+θ+µ) −1

]
− (δ +µ)− (α +µ)

< (δ +θ +µ)
[

R0(α+µ)(δ+µ)
(α+µ)(δ+ηθ+µ)+τδ (δ+θ+µ) −1

]
It is easily seen that tr(J)< 0 if R0 < 1.

Also,

det(J1) = (α +µ)(δ +µ)
[

cβQ
µ
− (δ +θ +µ)

]
+ cβδτθQ

µ

+(α +µ)cβηθQ
µ

+(δ +µ)cβδτQ
µ

= (α +µ)(δ +µ)(δ +θ +µ)(R0−1)
We see that det(J1)< 0 if R0 < 1

The determinant of the second additive matrix J1[2] is also observed, after some algebraic ma-

nipulations, to be negative if R0 < 1. Thus we have the following result.

Theorem 4.1. The disease-free equilibrium is locally asymptotically stable if the basic repro-

duction number R0 is less than unity.

5. Model with optimal control

We present in this section, the model with three control strategies aimed at controlling the

spread of the infection. The optimal control problem is developed in order to:

• Reduce infection with the control u1

• Change behavior of infectives so as to reduce infection using the control measures, u2

• Optimize the HAART treatment with the control measure u3
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Thus, the optimal control model is given as:

(5)



dS
dt = Q− cβ (1−u1)(Ii +ηIr + τA)S−µS
dIi
dt = cβ (1−u1)(Ii +ηIr + τA)S− ((1−u2)δ +u3θ +µ)Ii

dIr
dt = u3θ Ii− ((1−u2)δ +µ)Ir

dA
dt = δ (1−u2)(Ii + Ir)− (α +µ)A

We investigate the optimal level of efforts needed to control the spread of the infection with

minimal cost. This is done by minimizing the objective functional,

(6) J = min
u1,u2,u3

t f∫
0

(B0Ii +B1u2
i +B2u2

2 +B3u2
3)dt

subject to our modified model. Where Bi are positive weights and Biu2
i is the cost of applying

control effort ui. Our choice of the objective functional is similar to those used by other re-

searchers in the field [3, 4, 13, 15]. Our aim is to seek an optimal control pair (u∗, X∗) where

u∗= (u∗1,u
∗
2,u
∗
3) and X∗= (S∗, I∗i , I

∗
r ,A
∗), that minimizes the Hamiltonian of the system given by

(7)



H = B0Ii +B1u2
i +B2u2

2 +B3u2
3

+λS [Q− cβ (1−u1)(Ii +ηIr + τA)S−µS]

+λIi [cβ (1−u1)(Ii +ηIr + τA)S− ((1−u2)δ +u3θ +µ)Ii]

+λIr [u3θ Ii− ((1−u2)δ +µ)Ir]

+λA [δ (1−u2)(Ii + Ir)− (α +µ)A]

Using the Pontryagin’s Minimum principle [16], and the existence result for optimal control

from [10] the adjoint variable of the state variables satisfy the following set of differential

equations.

(8)



dλS
dt =−dH

dS = cβ (1−u1)(Ii +ηIr + τA)(λS−λIi)+µλS
dλIi
dt ==−dH

dIi
−B0 + cβS(1−u1)(λS−λIi)+δ (1−u2)(λIi−λA)− (u3θ +µ)λIi

dλIr
dt =−dH

dIr
= cβηS(1−u2)(λS−λIi)+δ (1−u2)(λIr −λA)+µλIr

dλA
dt =−dH

dA = cβτS(1−u1)(λS−λIi)+λA(α +µ)
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with transversality conditions λS(t f ) = λIi(t f ) = λIr(t f ) = λA(t f ) = 0.

Equating dH
dui

to zero [12] gives the following characterizations of the controls.

(9) ũ1 =
cβS(Ii+ηIr+τA)(λIi−λS)

2B1
, ũ2 =

δ [Ii(λA−λIi)+Ir(λA−λIr )]
2B2

and ũ3 =
θ Ii(λIi−λIr )

2B3

by standard control arguments involving the bounds we have :

u∗1 =


0 if ũ1 ≤ 0

ũ1 if 0 < ũ1 ≤ 1,

1 if ũ1 ≥ 1

u∗2 =


0 if ũ2 ≤ 0

ũ2 if 0 < ũ2 ≤ 1

1 if ũ2 ≥ 1

and u∗3 =


0 if ũ3 ≤ 0

ũ3 if 0 < ũ3 ≤ 1

1 if ũ3 ≥ 1

6. Numerical simulation of optimal control the model

For numerical simulation purposes, we use the parameter values in table 2. The model 1 is

solved by the use of the MATLAB code ode45, which is an implementation of the fourth-order

Runge-Kutta method whiles the optimal control problem was solved using the algorithm below.

Using this method, the optimal control problem is solved with the following algorithm.

Step 1:Initialize State, Costate and Control variables

S(1) = S0, Ii(1) = Ii0, Ir(1) = Ir0, A(1) = A0

λS(t f ) = 0, λIi(t f ) = 0, λIr(t f ) = 0,λA(t f ) = 0

u1(1) = 0, u2(1) = 0 and u3(1) = 0

Step 2: Discretize the time domain.

h =
t f
n where n is the number of discrete points

Step 3:Solve for State and Costate Equations

For k=1 to n

Solve for State Variables

Sn+1← Sk+hQ
1+h∗[cβ (1−uk

1)(I
k
i +etaIk

r +τAk)+µ]

Ik+1
i ← Ik

i +h[cβ (ηIk
r +τAk)(1−uk

1)S
k+1]

1+h[cβ (1−uk
1)S

k+1−((1−uk
2)δ+uk

3θ+µ)]

Ik+1
r ← Ik

r +huk
3θ Ik+1

i
1+h[(1−uk

2)δ+µ]

Ak+1← Ak+h[δ (1−uk
2)(I

k+1
i +Ik+1

r )]
1+h(α+µ)

Solve the Costate Equations

λ
n−k
S ←

λ
n−k+1
S +hcβ (1−uk

1)(I
k+1
i +ηIk+1

r +τAk+1)λ n−k+1
Ii

1+h[cβ (1−uk
1)(I

k+1
i +ηIk+1

r +τAk+1)+µ]
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λ
n−k
Ii
←

λ
n−k+1
Ii

+h[B0−cβ (1−uk
1)S

k+1λ
n−k
S +δ (1−uk

2)λ
n−k+1
A ]

1+h[δ (1−uk
2)−cβ (1−uk

1)S
k+1]

λ
n−k
Ir
←

λ
n−k+1
Ir −h

[
cβη(1−uk

1)(λ
n−k
A −λ

n−k
Ii

)Sk+1−δ (1−uk
2)λ

n−k+1
A

]
1+h[δ (1−uk

2)+µ]

λ
n−k
A ←

λ
n−k+1
A +h

[
cβτ(1−uk

2)(λ
n−k
S −λ

n−k
Ii

)Sk+1
]

1+h(α+µ)

Update Controls

Rk
1 =

1
2B1

[
cβSk+1(Ik+1

i +ηIk+1
r + τAk+1)(λIi−λS)

]
Rk

2 =
δ

2B2

[
Ik+1
i (λ n−k

A −λ
n−k
Ii

)+ Ik+1
r (λ n−k

A −λ
n−k
Ii

)
]

Rk
3 =

θ Ik+1
i (λ n−k

Ii
−λ

n−k
Ir )

2B3

uk+1
1 =


0 if Rk

1 ≤ 0

Rk
1 if 0 < Rk

1 ≤ 1

1 if Rk
1 ≥ 1

uk+1
2 =


0 if Rk

2 ≤ 0

Rk
2 if 0 < Rk

2 ≤ 1

1 if Rk
2 ≥ 1

uk+1
3 =


0 if Rk

3 ≤ 0

Rk
3 if 0 < Rk

3 ≤ 1

1 if Rk
3 ≥ 1

end

Algorithm for Solving Optimality System

We solve the optimal control problem, considering different combinations of strategies in our

model. Thus, we implement the following strategy combinations:

Strategy A: Using only infection control(i.e. u1 6= 0, u2 = u3 = 0)

Strategy B: Using only behavioral change efforts.(i.e. u1 = 0, u2 6= 0, u3 = 0)

Strategy C: Using only HAART treatment.(i.e. u1 = u2 = 0u3 6= 0)

Strategy D: Using Infection control and behavioral change only (i.e. u1 6= 0, u2 6= 0, u3 = 0)

Strategy E: Using Infection control and HAART treatment only u1 6= 0, u3 6= 0, u2 = 0)

Strategy F: Using Behavioral change and HAART treatment only (i.e. u1 = 0, u2 6= 0, u3 6= 0)

Strategy G: Using all Control efforts (i.e. u1 6= 0, u2 6= 0, u3 6= 0)
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FIGURE 2. Simulations of the optimal control problem implementing Strategy

A. The control profile is seen to rise sharply to the upper bound and remain so

for the duration of the control strategy.

Some results of the numerical simulations of the optimal control problem are presented in Fig-

ures 2 and 3

To compare our intervention strategies, we make use of the incremental cost effectiveness

ratio among the possible interventions. We calculate the incremental cost effectiveness ratio

of each strategy over all other strategies. The incremental cost effectiveness ratio (ICER) of

strategy 1 over 2 can be defined as the additional cost incurred per additional outcome in imple-

menting strategy 1 instead of 2 given by
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FIGURE 3. Simulations of the optimal control problem implementing Strategy G.

ICER = Cost of Strategy 1-Cost of Strategy 2
Total Number of infections averted using 1-Total Number of infections averted using 2 .

Thus, the smaller the ICER of strategy 1 over 2 implies that it is better to implement strategy 1

and vice versa. We rank our strategies by comparing two at a time. Thus, we compare strategy

A and B, and then the best one is compared with C. This process continues until we compare

the best with the final strategy, G. Thus, from most to least effective we have Strategy G, F , D,

B, C and A. Hence it is better to implement all our intervention strategies if we want to reduce

the infection and minimize cost.
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TABLE 2. Parameter descriptions and values used in the model.

Parameter Parameter Description Values Ref.

Q Rate of recruitment 120.000 -

α AIDs related death rate 1.000 [15]

β Contact rate between Susceptibles and Infectives 0.344 [1]

c Average number of contacts of a typical infective 3.000 -

δ Rate of progression of Infective into AIDS 0.100 [1]

η Modification parameter due to right-value judgment 0.400 [15]

µ Natural Death rate 0.020 [1]

τ Modification parameter due to weak sexual activity 0.100 -

θ Probability of positive behavioral change 0.955 [5]

B1 Cost per unit condom(For infection reduction) $0.24 -

B2 Cost per individual educated(for attitudinal change) $33.13

B3 Cost of HAART per individual $869.12 -

Strategy Infections Averted Total Cost ICER

Strategy A 796 239,450 -38606.15

Strategy B -277 3,018,800 -2,590.66

It is seen that Strategy A is more cost effective than Strategy B. So we eliminate B and com-

pare A with C.

Strategy Infections Averted Total Cost ICER

Strategy A 796 239,450

Strategy C -2 652,260,000.00 -817,239.08

Thus we eliminate A and compare C with D. Continuing this process we realize that Strategy

G is the most cost effective in combating the spread of the disease.

7. Conclusions
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In this paper, we proposed and studied a nonlinear deterministic model for the dynamics of

HIV/AIDS in a variable sized population. Basic dynamics of the proposed model such as the

basic reproduction ratio were discussed and it was shown that the disease can be eradicated if

the basic reproduction is less or equal to unity. We also sought to examine possible intervention

strategies aimed at reducing infection with minimum cost. For this, we incorporated three

control efforts (namely, Infection control, Behavioral change control and HAART treatment)

into our model to obtain an optimal control problem. Conditions for optimal control of the

disease were derived and analysed using the Pontryagin’s Minimum principle and the resulting

State, Co-state and bounds on the controls we numerically solved. To find the most cost effective

way of controlling the disease, the incremental cost effectiveness ratio was calculated for all

possible implementations of our control efforts and ICER of each strategy compared with the

rest strategies. It is realized that implementing all the control efforts will better than all other

possible combinations of controls. Our findings are in suggests that the ABC campaign against

HIV/AIDS is good but should not be overemphasized, but augmented by treatment for effective

combat against the disease.
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