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Abstract. In this paper, we introduce some common fixed point theorems for six mappings satisfying ψ- and

(ψ,ϕ)−weakly contractive conditions in G-metric spaces. And we introduce an example to support the validity of

our results.

Keywords: G-metric space; common fixed point; ψ-weakly contractive conditions; weakly compatible mappings

2010 AMS Subject Classification: 60G42, 60G48.

1. Introduction

In 2006, Mustafa and Sims [1] introduced the generalized structure of metric spaces, called

G-metric spaces. Afterwards, numerous fixed point theorems in this generalized structure rela-

tive to one, two or three mappings were proved by different authors(see[5-7]). 2015, Zeqing Liu

and Xiaoping Zhang et al[8] introduced the existence and uniqueness of common fixed points

for four mappings satisfying ψ- and (ψ,ϕ)−weakly contractive conditions in metric spaces

which was motivated by the results in [9-12]. In this paper, we extended and generalize the
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results in [8] and introduce some common fixed point theorems for six mappings satisfying ψ-

and (ψ,ϕ)−weakly contractive conditions in G-metric spaces.

2. Previous notations and results

We recall the definitions of G-metric space,the notion of convergence and other results that

will be needed in the sequel.

Definition 2.1[1] Let X be a nonempty set. Suppose that G: X×X×X→ [0,+∞) is a function

satisfying the following conditions:

(G1) G(x,y,z) = 0 if and only if x = y = z;

(G2) 0 < G(x,x,y) for all x,y ∈ X with x 6= y;

(G3) G(x,x,y)≤≤ G(x,y,z) for all x,y,z ∈ X with y 6= Z;

(G4) G(x,y,z) = G(x,z,y) = G(y,z,x) = . . .(symmetry in all three variables);

(G5) G(x,y,z)≤ G(x,a,a)+G(a,y,z) for all x,y,z,a ∈ X(rectangle inequality).

Then G is called a G-metric on X and (X ,G) is called a G-metric space.

This notion of G−metric was introduced by Mustafa and Sims [1] in 2006. It can be shown

that if (X ,d) is a metric space one can define G-metric on X by

G(x,y,z) = max{d(x,y),d(y,z),d(z,x)} or G(x,y,z) = d(x,y)+d(y,z)+d(z,x).

Definition 2.2[1] Let(X ,G) be a G-metric space and {xn} be a sequence in X . We say that

{xn} is G−convergent to a point x ∈ X or {xn} G−converges to x if, for any ε > 0, there exists

k ∈ N such that G(x,xn,xm)< ε for all m,n≥ k, that is, limn,m→+∞ G(x,xn,xm). In this case, we

write xn→ x(n→ ∞) or limn→+∞ xn = x .

Proposition 2.1[1] Let (X ,G) be a G-metric space. The following are equivalent:

(1) {xn} is G-convergent to x;

(2) G(xn,xn,x)→ 0 as n→+∞;

(3) G(xn,x,x)→ 0 as n→+∞;

(4) G(xn,xm,x)→ 0 as n,m→+∞.

Definition 2.3[1] Let (X ,G) be a G-metric space and {xn} be a sequence in X . We say that
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{xn} is a G−Cauchy sequence if, for any ε > 0, there exists k ∈ N such that G(xn,xm,xl) for all

m,n, l ≥ k, that is, G(xn,xm,xl)→ 0 as n,m, l→+∞.

Proposition 2.2[1] Let (X ,G) be a G-metric space. Then the following are equivalent:

(1) The sequence {xn} is a G-Cauchy sequence.

(2) For any ε > 0, there exists k ∈ N such that G(xn,xm,xm)< ε for all m,n≥ k.

Proposition 2.3[1] Let (X ,G) be a G-metric space. Then, f : X→ X is G−continuous at x∈ X

if and only if it is G-sequentially continuous at x, that is, whenever {xn} is G-convergent to x,

{ f (xn)} is G-convergent to f (x).

Definition 2.4[1] A G-metric space (X ,G) is called G−complete if every G-cauchy sequence

is G-convergent in (X ,G).

Definition 2.5[2] Let (X ,G) be a G-metric space. A mapping F : X × X → X is said to

be continuous if for any two G-convergent sequence {xn} and {yn} converging to x and y

respectively,(F(xn,yn)) is G-convergent to F(x,y).

Definition 2.6[3] A pair of self mappings f and g in a metric space (X ,d) are said to be weakly

compatible if for all t ∈ X the equality f t = gt implies f gt = g f t.

Throughout this paper, N denotes the set of all positive integers, R+ = [0,+∞), M(x,y,z) =

max{G(Ax,By,Cz),G(Ax,Ax,T x),G(By,By,Sy),G(Cz,Cz,Hz),
1
2 [G(Ax,By,Cz)+G(T x,Sy,Hz)]} and

Φ1 = {ψ : ψ : R+→ R+ is continuous and nondecreasing, and ψ(t) = 0 if and only if t = 0 },

Φ2 = {ϕ : ϕ : R+→ R+ is lower semi-continuous, and ϕ(t) = 0 if and only if t = 0},

Φ3 = {ψ : ψ : R+ → R+ is upper semi-continuous, and limn→∞ an = 0 for each sequence

{an}n∈N ⊂ R+ with an+1 ≤ ψ(an),∀n ∈ N}.

Lemma 2.1[4] Let ψ ∈Φ3. Then ψ(0) = 0 and ψ(t)< t for all t > 0.

3. Main results
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Our main results are as follows.

Lemma 3.1 Let A, B, C, S, T and H be self mappings in a G-metric space (X ,G) satisfying

ψ(G(T x,Sy,Hz))≤ ψ(M(x,y,z))−ϕ(M(x,y,z)), (3.1)

where (ψ,ϕ) ∈Φ1×Φ2. Assume that I: R+→ R+ is the identity mapping and

ψ1(t) = (ψ + I)−1(ψ + I−ϕ)(t), ∀t ∈ R+. (3.2)

Then ψ1 ∈Φ3 and

G(T x,Sy,Hz)≤ ψ1(M(x,y,z)), ∀x,y,z ∈ X . (3.3)

Proof

It follows from ψ ∈ Φ1 that ψ + I: R+→ R+ is continuous and increasing and (ψ + I)(t) = 0

if and only if t = 0. So does (ψ + I)−1. Obviously, (ψ,ϕ) ∈Φ1×Φ2 and (3.2) guarantee

ψ1 is upper semi-continuous and ψ1(0) = 0. (3.4)

Assume that {an}n∈N is an arbitrary sequence in R+ with

an+1 ≤ ψ1(an), ∀n ∈ N. (3.5)

Suppose that an0 = 0 for some n0 ∈ N. It follows from (3.2), (3.4) and (3.5) that

0≤ an0+1 ≤ ψ1(an0) = ψ1(0) = 0,

that is, an0+1 = 0. Similarly we have an = an−1 = . . . = an0 = 0 for each n > n0, that is,

limn→∞ an = 0. Suppose that an > 0 for all n ∈ N. If ak+1 ≥ ak for some k ∈ N, it follows from
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(3.2), (3.5) and (ψ,ϕ) ∈Φ1×Φ2 that

ψ(ak)+ak ≤ ψ(ak+1)+ak+1 = (ψ + I)(ak+1)≤ (ψ + I)ψ1(ak)

= (ψ + I−ϕ)(ak)

= ψ(ak)+ak−ϕ(ak)< ψ(ak)+ak

which is a contradiction. Consequently, {an}n∈N is a positive and decreasing, which implies

that {an}n∈N converges to some a ≥ 0. Suppose that a > 0. By means of (3.4) and (3.5), we

find

0 < a = limsup
n→∞

an+1 ≤ limsup
n→∞

ψ1(an)≤ ψ1(a),

which together with (3.2) and (ψ,ϕ) ∈Φ1×Φ2 means

ψ(a)+a≤ ψ(a)+a−ϕ(a)< ψ(a)+a,

which is a contradiction. Hence a = 0. Consequently, ψ1 ∈Φ3.

In order to prove (3.3), we have to consider two possible cases as follows:

Case 1. M(x0,y0,z0) = 0 for some x0,y0,z0 ∈ X . It is easy to verify

G(Ax0,By0,Cz0) = G(Ax0,Ax0,T x0) = G(By0,By0,Sy0)

= G(Cz0,Cz0,Hz0) = G(T x0,Sy0,Hz0),

which yields

Ax0 = T x0 = By0 = Sy0 =Cz0 = Hz0

and

G(T x0,Sy0,Hz0) = ψ1(M(x0,y0,z0));

Case 2. M(x,y,z)> 0 for all x,y,z ∈ X . It follows from (3.1), (3.2) and (ψ,ϕ) ∈Φ1×Φ2 that

ψ(G(T x,Sy,Hz))≤ ψ(M(x,y,z))−ϕ(M(x,y,z))< ψ(M(x,y,z)), ∀x,y,z ∈ X ,

which yields

G(T x,Sy,Hz)< M(x,y,z), ∀x,y,z ∈ X ,



COMMON FIXED POINT THEOREMS FOR SIX. . . 295

and

(ψ + I)(G(T x,Sy,Hz)) = ψ(G(T x,Sy,Hz))+G(T x,Sy,Hz)

< ψ(M(x,y,z))−ϕ(M(x,y,z))+M(x,y,z)

= (ψ + I−ϕ)(M(x,y,z)), ∀x,y,z ∈ X ,

which together with (3.2) gives (3.3). This completes the proof.

Remark 3.1 It follows from Lemma 3.1 that the (ψ,ϕ)-weakly contractive conditions (3.1)

relative to six mappings A, B, C, S, T and H implies the ψ1-weakly contractive conditions (3.3)

relative to six mappings A, B, C, S, T and H.

Theorem 3.1 Let A, B, C, S, T and H be self mappings in a G-metric space (X ,G) such that:

{A,T}, {B,S} and {C,H} are weakly compatible; (3.6)

T (X)⊆ B(X), S(X)⊆C(X) and H(X)⊆ A(X); (3.7)

one of A(X), B(X), C(X), S(X), T (X) and H(X) is complete; (3.8)

G(T x,Sy,Hz)≤ ψ(M(x,y,z)),∀x,y,z ∈ X , (3.9)

Where ψ is in Φ3.

Then A, B, C, S, T and H have a unique common fixed point in X .

Proof

Let x0 ∈ X . It follows from (3.7) that there exist two sequence {yn}n∈N and {xn}n∈N in X such

that

y3n+1 := Bx3n+1 = T x3n,

y3n+2 :=Cx3n+2 = Sx3n+1,

y3n+3 := Ax3n+3 = Hx3n+2. (3.10)
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Put Gn = G(yn,yn+1,yn+2) for all n ∈ N. Now we prove

lim
n→∞

Gn = 0 (3.11)

G3n = G(T x3n,Sx3n+1,Hx3n−1)≤ ψ(M(x3n,x3n+1,x3n−1)),∀n ∈ N (3.12)

and

M(x3n,x3n+1,x3n−1)

= max{G(Ax3n,Bx3n+1,Cx3n−1),G(Ax3n,Ax3n,T x3n),

G(Bx3n+1,Bx3n+1,Sx3n+1),G(Cx3n−1,Cx3n−1,Hx3n−1),

1
2
[G(Ax3n,Bx3n+1,Cx3n−1)+G(T x3n,Sx3n+1,Hx3n−1)]}

= max{G(y3n,y3n+1,y3n−1),G(y3n,y3n,y3n+1),

G(y3n+1,y3n+1,y3n+2),G(y3n−1,y3n−1,y3n),

1
2
(G(y3n,y3n+1,y3n−1)+G(y3n+1,y3n+2,y3n))}

= max{G3n−1,G(y3n,y3n,y3n+1),G(y3n+1,y3n+1,y3n+2),

G(y3n−1,y3n−1,y3n),
1
2
(G3n−1 +G3n)}

≤ max{G3n−1,G3n,
1
2
(G3n−1 +G3n)}

= max{G3n−1,G3n}, ∀n ∈ N (3.13)

Suppose that G3n0−1 < G3n0 for some n0 ∈ N. It follows (3.9), (3.13) and Lemma 2.1 that

G3n0 ≤ ψ(M(x3n0,x3n0+1,x3n0−1))

≤ ψ(max{G3n0−1,G3n0}) = ψ(G3n0)< G3n0 ,

which is a contradiction. Hence

G3n ≤ G3n−1, ∀n ∈ N. (3.14)
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Similarly we infer

G3n+1 ≤ G3n, ∀n ∈ N. (3.15)

and

G3n+2 ≤ G3n+1, ∀n ∈ N. (3.16)

From (3.14), (3.15) and (3.16) we have

Gn+1 ≤ Gn, ∀n ∈ N,

which means that the sequence {Gn}n∈N is nonincreasing and bounded. consequently there

exists r ≥ 0 with limn→∞ Gn = r. Suppose that r > 0. It follows from (3.9), (3.14), ψ ∈Φ3, and

Lemma 2.1 that

r = limsup
n→∞

G3n ≤ limsup
n→∞

ψ(M(x3n,x3n+1,x3n−1))

≤ limsup
n→∞

ψ(G3n−1)≤ ψ(r)< r,

which is a contradiction. Hence r = 0, that is, (3.11) holds.

Next we prove that {yn}n∈N is a cauchy sequence. Because of (3.11) it is sufficient to verify that

{y3n}n∈N is a cauchy sequence. Suppose to the contrary: that is, {y3n} is not a cauchy sequence.

Then there exists ε > 0 for which we can find subsequence {y3mk} and {y3nk} of {y3n} such that

mk is the smallest index for which 3mk > 3nk > k, and

G(y3nk ,y3mk ,y3mk)≥ ε (3.17)

This means that
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G(y3nk ,y3mk−3,y3mk−3)< ε (3.18)

Taking advantage of (3.17), (3.18), and (G3)-(G5), we get

ε ≤ G(y3nk ,y3mk ,y3mk)

≤ G(y3nk ,y3mk−3,y3mk−3)+G(y3mk−3,y3mk ,y3mk)

≤ G(y3nk ,y3mk−3,y3mk−3)+G(y3mk−3,y3mk−2,y3mk−2)

+G(y3mk−2,y3mk ,y3mk)

≤ G(y3nk ,y3mk−3,y3mk−3)+G(y3mk−3,y3mk−1,y3mk−2)

+G(y3mk−2,y3mk−1,y3mk)

< ε +G3mk−3 +G3mk−2 (3.19)

and

|G(y3mk+1,y3mk+2,y3nk)−G(y3mk ,y3mk ,y3nk)| ≤ 2G3mk ,

|G(y3mk ,y3mk+1,y3nk−1)−G(y3mk+1,y3mk+2,y3nk)| ≤ G3mk +G3nk−1; (3.20)

Letting k→ ∞ in (3.19) and (3.20) and using (3.11), we have

lim
k→∞

G(y3mk ,y3mk ,y3nk) = lim
k→∞

G(y3mk+1,y3mk+2,y3nk)

= lim
k→∞

G(y3mk ,y3mk+1,y3nk−1) = ε

And also, from (3.9) and (3.10) we have

G(y3mk+1,y3mk+2,y3nk)

= G(T x3mk ,Sx3mk+1,Hx3nk−1)

≤ ψ(M(x3mk ,x3mk+1,x3nk−1)),
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where

M(x3mk ,x3mk+1,x3nk−1)

= max{G(Ax3mk ,Bx3mk+1,Cx3nk−1),G(Ax3mk ,Ax3mk ,T x3mk),

G(Bx3mk+1,Bx3mk+1,Sx3mk+1),G(Cx3nk−1,Cx3nk−1,Hx3nk−1),

1
2
[G(Ax3mk ,Bx3mk+1,Cx3nk−1)+G(T x3mk ,Sx3mk+1,Hx3nk−1)]}

= max{G(y3mk ,y3mk+1,y3nk−1),G(y3mk ,y3mk ,y3mk+1),

G(y3mk+1,y3mk+1,y3mk+2),G(y3nk−1,y3nk−1,y3nk),

1
2
[G(y3mk ,y3mk+1,y3nk−1)+G(y3mk+1,y3mk+2,y3nk)]}

→max{ε,0,0,0,ε}

= ε as k→ ∞. (3.21)

In view of (3.9), (3.10), (3.21), ψ ∈Φ3 and Lemma 2.1, we gain

ε = limsup
k→∞

G(y3mk+1,y3mk+2,y3nk) = limsup
k→∞

G(T x3mk ,Sx3mk+1,Hx3nk−1)

≤ limsup
k→∞

ψ(M(x3mk ,x3mk+1,x3nk−1))≤ ψ(ε)< ε,

which is a contradiction. Hence {yn}n∈N is a Cauchy sequence.

Assume that A(X) is complete. Observe that {y3n}n∈N is a Cauchy sequence in A(X). Con-

sequently there exists (z,v) ∈ A(X)×X with limn→∞ y3n+3 = z = Av. It is easy to see

z = limn→∞ yn = limn→∞ Bx3n+1 = limn→∞ T x3n = limn→∞Cx3n+2

= limn→∞ Sx3n+1 = limn→∞ Hx3n+2 = limn→∞ Ax3n+3 = Av. (3.22)
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Suppose that T v 6= z. From (3.22) we have

M(v,x3n+1,x3n+2)

= max{G(Av,Bx3n+1,Cx3n+2),G(Av,Av,T v),

G(Bx3n+1,Bx3n+1,Sx3n+1),G(Cx3n+2,Cx3n+2,Hx3n+2),

1
2
[G(Av,Bx3n+1,Cx3n+2)+G(T v,Sx3n+1,Hx3n+2)]}

= max{G(z,y3n+1,y3n+2),G(z,z,T v),G(y3n+1,y3n+1,y3n+2),

G(y3n+2,y3n+2,y3n+3),
1
2
[G(z,y3n+1,y3n+2)+G(T v,y3n+2,y3n+3)]}

→ max{G(z,z,z),G(z,z,T v),G(z,z,z),

G(z,z,z),
1
2
[G(z,z,z)+G(T v,z,z)]}

= max{0,G(z,z,T v),0,0,
1
2

G(z,z,T v)}

= G(z,z,T v) as n→ ∞,

which together with (3.9), ψ ∈Φ3, and Lemma 2.1 yields

G(T v,z,z) = limsup
n→∞

G(T v,y3n+2,y3n+3) = limsup
n→∞

G(T v,Sx3n+1,Hx3n+2)

≤ limsup
n→∞

ψ(M(v,x3n+1,x3n+2))≤ ψ(G(T v,z,z))< G(T v,z,z),

which is a contradiction. Hence T v = z. It follows from (3.7) that there exists a point w ∈ X

with z = Bw = T v. Suppose that Sw 6= z. In light of (3.22), we deduce

M(x3n,w,x3n+2)

= max{G(Ax3n,Bw,Cx3n+2),G(Ax3n,Ax3n,T x3n),

G(Bw,Bw,Sw),G(Cx3n+2,Cx3n+2,Hx3n+2)

1
2
[G(Ax3n,Bw,Cx3n+2)+G(T x3n,Sw,Hx3n+2)]}

→ max{G(z,z,z),G(z,z,z),G(z,z,Sw),G(z,z,z)

1
2
[G(z,z,z)+G(z,Sw,z)]}

(1)
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= max{0,0,G(z,z,Sw),0,
1
2

G(z,z,Sw)}

= G(z,z,Sw) as n→ ∞,

which together with (3.9), (3.10), (3.22), ψ ∈Φ3, and Lemma 2.1 yields

G(z,Sw,z) = limsup
n→∞

G(y3n+1,Sw,y3n+3) = limsup
n→∞

G(T x3n,Sw,Hx3n+2)

≤ limsup
n→∞

ψ(M(x3n,w,x3n+2))≤ ψ(G(z,z,Sw))< G(z,z,Sw),

which is a contradiction, and hence Sw = z. It follows from (3.7) that there exists a point u ∈ z

with z =Cu = Sw. Suppose that Hu 6= z. In light of (3.22), we deduce

M(x3n,x3n+1,u)

= max{G(Ax3n,Bx3n+1,Cu),G(Ax3n,Ax3n,T x3n),

G(Bx3n+1,Bx3n+1,Sx3n+1),G(Cu,Cu,Hu)

1
2
[G(Ax3n,Bx3n+1,Cu)+G(T x3n,Sx3n+1,Hu)]}

→ max{G(z,z,z),G(z,z,z),G(z,z,z),G(z,z,Hu)

1
2
[G(z,z,z)+G(z,z,Hu)]}

= max{0,0,0,G(z,z,Hu),
1
2

G(z,z,Hu)}

= G(z,z,Hu) as n→ ∞,

which together with (3.9), (3.10), (3.22), ψ ∈Φ3, and Lemma 2.1 yields

G(z,z,Hu) = limsup
n→∞

G(y3n+1,y3n+2,Hu) = limsup
n→∞

G(T x3n,Sx3n+1,Hu)

≤ limsup
n→∞

ψ(M(x3n,x3n+1,u))≤ ψ(G(z,z,Hu))< G(z,z,Hu),
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which is impossible, and hence Hu= z. Thus (3.6) means Az=AT v= TAv= T z, Bz=BSw= Sz

and Cz =CHu = HCu = Hz. Suppose that G(T z,Sz,Hz) 6= 0. Then we have

M(z,z,z)

= max{G(Az,Bz,Cz),G(Az,Az,T z),G(Bz,Bz,Sz),

G(Cz,Cz,Hz),
1
2
[G(Az,Bz,Cz)+G(T z,Sz,Hz)]}

= max{G(T z,Sz,Hz),0,0,0,G(T z,Sz,Hz)}

= G(T z,Sz,Hz),

which together with (3.9), ψ ∈Φ3, and Lemma 2.1 yields

G(T z,Sz,Hz)≤ ψ(M(z,z,z)) = ψ(G(T z,Sz,Hz))< G(T z,Sz,Hz),

which is impossible, and hence G(T z,Sz,Hz) = 0. So T z = Sz = Hz. Suppose that T z 6= z.

Then we have

M(z,w,u)

= max{G(Az,Bw,Cu),G(Az,Az,T z),G(Bw,Bw,Sw),

G(Cu,Cu,Hu),
1
2
[G(Az,Bw,Cu)+G(T z,Sw,Hu)]}

= max{G(T z,Sw,Hu),0,0,0,G(T z,Sw,Hu)}

= G(T z,Sw,Hu)

= G(T z,z,z),

which together with (3.9), ψ ∈Φ3, and Lemma 2.1 implies

G(T z,z,z) = G(T z,Sw,Hu)≤ ψ(M(z,w,u)) = ψ(G(T z,z,z))< G(T z,z,z),
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which is impossible and hence T z = z, that is, z is a common fixed point of A, B, C, S, T and H.

Suppose that A, B, C, S, T and H have another common fixed point u ∈ X\{z}. Then we have

M(z,z,u)

= max{G(Az,Bz,Cu),G(Az,Az,T z),G(Bz,Bz,Sz),

G(Cu,Cu,Hu),
1
2
[G(Az,Bz,Cu)+G(T z,Sz,Hu)]}

= max{G(z,z,u),0,0,0,G(z,z,u)}

= G(z,z,u),

and

G(z,z,u) = G(T z,Sz,Hu)≤ ψ(M(z,z,u)) = ψ(G(z,z,u))< G(z,z,u),

which is a contradiction and hence z is a unique common fixed point of A, B, C, S, T and H

in X .

Similarly we conclude that A, B, C, S, T and H have a unique common fixed point in X if one

of B(X), C(X), S(X), T (X) and H(X) is complete. Then the proof is complete.

Utilizing Theorems 3.1 and Remark 3.1, we get the following results.

Theorem 3.2 Let A, B, C, S, T and H be self mappings in a G-metric space (X ,G) satisfying

(3.6)-(3.8) and

ψ(G(T x,Sy,Hz))≤ ψ(M(x,y,z))−ϕ(M(x,y,z)), ∀x,y,z ∈ X ,

where (ψ,ϕ) is in Φ1×Φ2. Then A, B, C, S, T and H have a unique common fixed point in X .

Example 3.1 Let X = [0,1] be endowed with the Euclidean G-metric

G(x,y,z) =


0 x = y = z;

max{x,y,z} else.
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Let A, B, C, S, T , H: X → X be defined by Ax = 2x, Bx = x, Cx = x2, Sx = 0,

T x =


0 ∀x ∈ X\{1

2};

1
2 x = 1

2 .

Hx =


0 ∀x ∈ X\{1

2};

1
6 x = 1

2 .

And define ψ : R+→ R+ by:

ψ(t) =
2
3

t.

It is easy to verify that (3.6)-(3.8) holds and ψ ∈Φ3. Put x,y,z ∈ X , in order to verify (3.9), we

consider four cases as follows:

Case 1. x ∈ X\{1
2}, z ∈ X\{1

2}. It is clear that

G(T x,Sy,Hz) = 0≤ ψ(M(x,y,z));

Case 2. x ∈ X\{1
2}, z = 1

2 . Clearly we have

M(x,y,z)

= max{G(Ax,By,Cz),G(Ax,Ax,T x),G(By,By,Sy),G(Cz,Cz,Hz),

1
2
[G(Ax,By,Cz)+G(T x,Sy,Hz)]}

≥ G(Cz,Cz,Hz) =
1
4

It follows that

ψ(M(x,y,z))≥ 2
3
× 1

4
=

1
6
,

G(T x,Sy,Hz) =
1
6
≤ ψ(M(x,y,z)).
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Case 3. x = 1
2 , z ∈ X\{1

2}. It is clear that

M(x,y,z)

= max{G(Ax,By,Cz),G(Ax,Ax,T x),G(By,By,Sy),G(Cz,Cz,Hz),

1
2
[G(Ax,By,Cz)+G(T x,Sy,Hz)]}

≥ G(Ax,Ax,T x) = 1

It follows that

ψ(M(x,y,z)) =
2
3
×1≥ 2

3

G(T x,Sy,Hz) =
1
2
<

2
3
≤ ψ(M(x,y,z))

Case 4. x = 1
2 , z = 1

2 . Clearly we have

M(x,y,z)

= max{G(Ax,By,Cz),G(Ax,Ax,T x),G(By,By,Sy),G(Cz,Cz,Hz),

1
2
[G(Ax,By,Cz)+G(T x,Sy,Hz)]}

≥ G(Ax,By,Cz) = 1

It follows that

ψ(M(x,y,z)) =
2
3
×1 =

2
3

G(T x,Sy,Hz) =
1
2
<

2
3
≤ ψ(M(x,y,z))

Note that A, B, C, S, T and H satisfy all the hypotheses of Theorem 3.1. Hence A, B, C, S, T

and H have a unique common fixed point. Here 0 is the fixed point of A, B, C, S, T and H.
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