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Abstract. This paper studies the existence of solutions for nonlinear fractional differential equations of order

q ∈ (4,5] with integral boundary conditions. Our results are based on some fixed point theorems such as Banach,
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1. Introduction

In this article, we will devote to considering the existence of solution of the integral and

anti-periodic boundary value problem

(1)


cDq

t0x(t) = f (t,x(t)) , t ∈ J = [t0,T ] ,T > t0,q ∈ (4,5]

x(k) (t0)−θkx(k) (T ) = βk

T∫
t0

gk(t,x(t))dt,k = 0,1,2,3,4,

wherecDq
t0 denotes the Caputo fractional derivative of order q, f , and gk : J×R→ R are given

continuous functions and θk,βk ∈ R with θk 6= 1 for each k = 0,1,2,3,4.
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The problem (1) can be considered as a generalization of many previous problems, for exam-

ples, but not exclusively, the anti periodic boundary value problems discussed in ([1]-[7]) with

appropriate choices of θk and βk.

Fractional differential equations have been widely used in many areas of science and engi-

neering, which is due to the intensive developments of the theory of fractional calculus and the

applications arising in various fields. For more details, we refer to [9],[12],[14], [15],[19],[21]

and references therein. Particularly, anti-periodic boundary value problems occur in the mathe-

matical modeling of a variety of physical processes and have recently received considerable at-

tention ([11]). Therefore, the existence of anti-periodic and integral boundary conditions for dif-

ferential equations and inclusions of some orders are discussed in details (see [1]-[7],[10],[16]-

[18],[20] and the references therein). The authors used some types of fixed point theorems to

get sufficient conditions for the existence of a solution. Motivated by the theses works, we

discuss the existence problem of (1) by using some fixed point theorems.

The interested fact for higher-order anti-periodic and integral fractional boundary value prob-

lem is the inheritance property of all characteristics of lower-order fractional anti-periodic prob-

lems. Hence, our results generalize the existing results on anti-periodic and integral fractional

boundary value problems.

This paper is organized as follows. In Section 2, we introduce some preliminaries about

fractional differential equations and related topics to main results. In Section 3, we discuss the

main problems of existence of solutions for problem (1) by applying some well known fixed

point theorems. To validate the theoretical manner, we give illustrative examples at the end of

the article.

2. Preliminaries

We recall in this section some facts from fractional calculus (see [13]) and obtain a basic

lemma that is essential for the results in the sequel.

The Riemann–Liouville fractional integral of order q > 0 is defined as
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Iq
t0 f (t) =

1
Γ(q)

∫ t

t0
(t− s)q−1 f (t)ds,

provided the integral exists. The Caputo derivative of a function x is defined as

cDq
t0x(t) =

1
Γ(n−q)

∫ t

t0
(t− s)n−q−1x(n)(s)ds,n−1 < q < n,n = [q]+1,

where [q] denotes the integer part of the real number q.

Hereafter, we assume that x is a real valued function defined on J and has at most continuous

fourth derivative, and f or y are fractional integrable functions of order q.

Lemma 2.1.([13]) For 0 < n−1 < q < n, we have

cDq
t0

(
c0 + c1 (t− t0)+ c2 (t− t0)

2 + · · ·+ cn−1 (t− t0)
n−1
)
= 0,

where ck ∈ R,k = 0,1,2, ...,n−1. Moreover

Iq c
t0 Dq

t0x(t) = x(t)+ c0 + c1 (t− t0)+ c2 (t− t0)
2 + · · ·+ cn−1 (t− t0)

n−1 .

Let C(J,R) denotes the Banach space of all continuous functions endowed with the usual

maximum norm. To study the existence problems of nonlinear problem (1), we need the fol-

lowing lemma.

Lemma 2.2. For any y ∈C(J,R), the unique solution of the boundary value problem

(2)


cDq

t0x(t) = y(t) , t ∈ J,4 < q≤ 5,

x(k) (t0)−θkx(k) (T ) = βk

T∫
t0

gk(t)dt, k = 0,1,2,3,4,

is

x(t) =

t∫
t0

(t− s)q−1

Γ(q)
y(s)ds+

4

∑
k=0

θk

k!αk
λk(t)

T∫
t0

(T − s)q−k−1

Γ(q− k)
y(s)ds

+
4

∑
k=0

βk

k!αk
λk(t)

T∫
t0

gk(s)ds(3)

where

αk =
k

∏
m=0

(1−θm) ,λk(t) =
k

∑
m=0

γm,k

 k

m

(t− t0)m(T − t0)k−m,k = 0,1,2,3,4,
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and

γ0,0 =1,γ1,1 = α0,γ2,2 = α1,γ3,3 = α2, ,γ4,4 = α3

γ0,1 =θ0,γ0,2 = θ0(θ1 +1),γ0,3 = θ0 (θ1θ2 +2θ1 +2θ2 +1) ,

γ0,4 =θ0 (θ1θ2θ3 +3θ1θ2 +5θ1θ3 +3θ2θ3 +3θ1 +3θ3 +1) ,

γ1,2 =2α0θ1,γ1,3 = 3α0θ1(θ2 +1),γ1,4 = 4α0θ1 (θ2θ3 +2θ2 +2θ3 +1) ,

γ2,3 =3α1θ2,γ2,4 = 6θ2α1 (θ3 +1) ,γ3,4 = 4θ3α2.

Proof. Using Lemma 2.1, for some constants c0,c1,c2.c3,c4 ∈ R, we have

x(t) = Iq
t0y(t)− c0− c1 (t− t0)− c2 (t− t0)

2− c3 (t− t0)
3− c4 (t− t0)

4

=

t∫
t0

(t− s)q−1

Γ(q)
y(s)ds

−c0− c1 (t− t0)− c2 (t− t0)
2− c3 (t− t0)

3− c4 (t− t0)
4 .(4)

Applying the boundary conditions for problem (2) in (4), we find that

c0 =
−θ0

(1−θ0)

T∫
t0

(T − s)q−1

Γ(q)
y(s)ds− θ0θ1 (T − t0)

(1−θ0)(1−θ1)

T∫
t0

(T − s)q−2

Γ(q−1)
y(s)ds

− θ0θ2(θ1 +1)(T − t0)
2

2(1−θ0)(1−θ1)(1−θ2)

T∫
t0

(T − s)q−3

Γ(q−2)
y(s)ds

−θ0θ3 (θ1θ2 +2θ1 +2θ2 +1)(T − t0)
3

6(1−θ0)(1−θ1)(1−θ2)(1−θ3)

T∫
t0

(T − s)q−4

Γ(q−3)
y(s)ds

−θ0θ4 (θ1θ2θ3 +3θ1θ2 +5θ1θ3 +3θ2θ3 +3θ1 +3θ3 +1)(T − t0)
4

24(1−θ0)(1−θ1)(1−θ2)(1−θ3)(1−θ4)
×

T∫
t0

(T − s)q−5

Γ(q−4)
y(s)ds− β0

(1−θ0)

T∫
t0

g0(s,x(s))ds

− θ0β1 (T − t0)
(1−θ0)(1−θ1)

T∫
t0

g1(s,x(s))ds

− θ0β2(θ1 +1)(T − t0)
2

2(1−θ0)(1−θ1)(1−θ2)

T∫
t0

g2(s,x(s))ds



192 M. MATAR

−θ0β3 (θ1θ2 +2θ1 +2θ2 +1)(T − t0)
3

6(1−θ0)(1−θ1)(1−θ2)(1−θ3)

T∫
t0

g3(s,x(s))ds

−θ0β4 (θ1θ2θ3 +3θ1θ2 +5θ1θ3 +3θ2θ3 +3θ1 +3θ3 +1)(T − t0)
4

24(1−θ0)(1−θ1)(1−θ2)(1−θ3)(1−θ4)
×

T∫
t0

g4(s,x(s))ds,

c1 = − θ1

(1−θ1)

T∫
t0

(T − s)q−2

Γ(q−1)
y(s)ds− θ1θ2 (T − t0)

(1−θ1)(1−θ2)

T∫
t0

(T − s)q−3

Γ(q−2)
y(s)ds

− θ1θ3(θ2 +1)(T − t0)
2

2(1−θ1)(1−θ2)(1−θ3)

T∫
t0

(T − s)q−4

Γ(q−3)
y(s)ds

−θ1θ4 (θ2θ3 +2θ2 +2θ3 +1)(T − t0)
3

6(1−θ1)(1−θ2)(1−θ3)(1−θ4)

T∫
t0

(T − s)q−5

Γ(q−4)
y(s)ds

− β1

(1−θ1)

T∫
t0

g1(s,x(s))ds− θ1β2 (T − t0)
(1−θ1)(1−θ2)

T∫
t0

g2(s,x(s))ds

− θ1β3(θ2 +1)(T − t0)
2

2(1−θ1)(1−θ2)(1−θ3)

T∫
t0

g3(s,x(s))ds

−θ1β4 (θ2θ3 +2θ2 +2θ3 +1)(T − t0)
3

6(1−θ1)(1−θ2)(1−θ3)(1−θ4)

T∫
t0

g4(s,x(s))ds,

c2 = − θ2

2(1−θ2)

T∫
t0

(T − s)q−3

Γ(q−2)
y(s)ds− θ2θ3 (T − t0)

2(1−θ2)(1−θ3)

T∫
t0

(T − s)q−4

Γ(q−3)
y(s)ds

− θ2θ4 (θ3 +1)(T − t0)
2

4(1−θ2)(1−θ3)(1−θ4)

T∫
t0

(T − s)q−5

Γ(q−4)
y(s)ds

− β2

2(1−θ2)

T∫
t0

g2(s,x(s))ds− θ2β3 (T − t0)
2(1−θ2)(1−θ3)

T∫
t0

g3(s,x(s))ds
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− θ2β4 (θ3 +1)(T − t0)
2

4(1−θ2)(1−θ3)(1−θ4)

T∫
t0

g4(s,x(s))ds,

c3 = − θ3

6(1−θ3)

T∫
t0

(T − s)q−4

Γ(q−3)
y(s)ds− θ3θ4 (T − t0)

6(1−θ3)(1−θ4)

T∫
t0

(T − s)q−5

Γ(q−4)
y(s)ds

− β3

6(1−θ3)

T∫
t0

g3(s,x(s))ds− θ3β4 (T − t0)
6(1−θ3)(1−θ4)

T∫
t0

g4(s,x(s))ds,

and

c4 =−
θ4

24(1−θ4)

T∫
t0

(T − s)q−5

Γ(q−4)
y(s)ds− β4

24(1−θ4)

T∫
t0

g4(s,x(s))ds.

Substituting the values of c0,c1,c2,c3 and c4 in (4), and arranging the terms into compact ex-

pression, one can obtain (3). This completes the proof.

3. Existence results

The main results of the article will be considered in this section. Before all, we state well-

known fixed point theorems (see [8]) which are needed to prove the existence of solution for

(1).

Theorem 3.1. Let X be a Banach space. Assume that Ω is an open bounded subset of X with

θ ∈Ω and let Ψ : Ω→ X be a completely continuous operator such that ‖Ψx‖ ≤ ‖x‖ , x ∈ ∂Ω.

Then Ψ has a fixed point in Ω.

Theorem 3.2. Let X be a Banach space. Assume that Ψ : X → X is completely continuous

operator and the set V = {x ∈ X |x = λΨx,0 < λ < 1} is bounded. Then Ψ has a fixed point in

X.

Theorem 3.3. Let Ω be a closed convex and nonempty subset of a Banach space X. Let Φ, Θ

be operators defined on Ω such that

(i) Φx+Θy ∈Ω whenever x,y ∈Ω;

(ii) Φ is compact and continuous;

(iii) Θ is a contraction mapping.

Then there exists z ∈Ω such that z = Φz+Θz.
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In view of Lemma 2.2, define an operator Ψ : C(J,R)→C(J,R) as

(Ψx)(t) =

t∫
t0

(t− s)q−1

Γ(q)
f (s,x(s))ds+

4

∑
k=0

θk

k!αk
λk(t)

T∫
t0

(T − s)q−k−1

Γ(q− k)
f (s,x(s))ds

+
4

∑
k=0

βk

k!αk
λk(t)

T∫
t0

gk(s,x(s))ds.(5)

Observe that problem (1) has a solution x ∈C(J,R) if and only if it satisfies the fixed point

equation Ψx = x. Before going on to first result, the following hypothesis is essential.

(A): Let Lk,k= 0,1,2,3,4,5, be positive constants such that |gk(t,x(t))| ≤Lk, and | f (t,x(t))| ≤

L5, for t ∈ J, x ∈C(J,R).

Lemma 3.4. Assume that hypothesis (A) holds. Then, the operator Ψ is completely continuous.

Proof. The continuity of gk and f imply the continuity of the operator Ψ. By virtue of (5), we

have

|(Ψx)(t)| ≤
t∫

t0

(t− s)q−1

Γ(q)
| f (s,x(s))|ds

+
4

∑
k=0

|θk|
k! |αk|

|λk(t)|
T∫

t0

(T − s)q−k−1

Γ(q− k)
| f (s,x(s))|ds

+
4

∑
k=0

|βk|
k! |αk|

|λk(t)|
T∫

t0

|gk(s,x(s))|ds

≤ L5(t− t0)
q

Γ(q+1)
+

4

∑
k=0

|λk(t)|
k! |αk|

(
L5 |θk|(T − t0)

q−k

Γ(q− k+1)
+Lk |βk|(T − t0)

)

≤ max
t∈J

(
L5(t− t0)

q

Γ(q+1)
+

4

∑
k=0

|λk(t)|
k! |αk|

(
L5 |θk|(T − t0)

q−k

Γ(q− k+1)
+Lk |βk|(T − t0)

))
= L

which implies that ‖Ψx‖ ≤ L. Furthermore,∣∣∣(Ψx)
′
(t)
∣∣∣
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≤
t∫

t0

(t− s)q−2

Γ(q−1)
| f (s,x(s)) |ds

+
4

∑
k=0

|θk|
k! |αk|

∣∣∣λ ′k(t)∣∣∣ T∫
t0

(T − s)q−k−1

Γ(q− k)
| f (s,x(s))|ds

+
4

∑
k=0

|βk|
k! |αk|

∣∣∣λ ′k(t)∣∣∣ T∫
t0

|gk(s,x(s))|ds

≤ L5(t− t0)
q−1

Γ(q)
+

4

∑
k=0

∣∣∣λ ′k(t)∣∣∣
k! |αk|

(
L5 |θk|(T − t0)

q−k

Γ(q− k+1)
+Lk |βk|(T − t0)

)

≤ max
t∈J

L5(t− t0)
q

Γ(q+1)
+

4

∑
k=0

∣∣∣λ ′k(t)∣∣∣
k! |αk|

(
L5 |θk|(T − t0)

q−k

Γ(q− k+1)
+Lk |βk|(T − t0)

)
= L

′

and this implies that
∥∥∥(Ψx)

′
∥∥∥≤ L. Hence, for t1, t2 ∈ J, we have

|(Ψx)(t2)− (Ψx)(t1)| ≤
t2∫

t1

∣∣∣(Ψx)
′
(s)
∣∣∣ds≤ L

′
(t2− t1).

This implies the equicontinuity of Ψ on J. Thus, by the Arzela-Ascoli theorem, the operator Ψ

is completely continuous.

To establish the first existence result based on the fixed point Theorem 3.1, we need the

following assumption.

(B): Let σ , τ and ρ be positive constants such that
τ = maxt∈J

(
(t−t0)

q

Γ(q+1) +
4
∑

k=0

|λk(t)|
k!|αk|

(
|θk|(T−t0)

q−k

Γ(q−k+1) + |βk|(T − t0)
))

,στ < 1,

| f (t,x(t))| ≤ σ |x(t)| ,

|gk(t,x)| ≤ σ |x(t)| ,k = 0,1,2,3,4,

for |x(t)|< ρ, t ∈ J.

Notice that assumption (A) can be followed by assumption (B).

Theorem 3.5. Assume that hypothesis (B) holds. Then, the problem (1) has at least one solu-

tion.
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Proof. Define a bounded nonempty open subset Ω = {x ∈C(J,R) : ‖x‖< ρ}. Then, by Lemma

3.4, the operator Ψ : Ω→C(J,R) is completely continuous and satisfying

(6) |(Ψx)(t)| ≤ σ

(
(t− t0)

q

Γ(q+1)
+

4

∑
k=0

|λk(t)|
k! |αk|

(
|θk|(T − t0)

q−k

Γ(q− k+1)
+ |βk|(T − t0)

))
‖x‖ .

In accordance with hypothesis (B), Equation (6) imply

‖Ψx‖ ≤ ‖x‖ , x ∈ ∂Ω.

Hence, by Theorem 3.1, Ψ has at least one fixed point which is a solution of the problem (1).

This finishes the proof.

Remark 3.6. If alternatively, assuming that limx→0
f (t,x)

x = limx→0
gk(t,x)

x = 0, and

ε maxt∈J

(
(t−t0)

q

Γ(q+1) +
4
∑

k=0

|λk(t)|
k!|αk|

(
|θk|(T−t0)

q−k

Γ(q−k+1) + |βk|(T − t0)
))
≤ 1, for any positive constant

ε > 0, we have the same result of Theorem 3.5.

Assuming hypothesis (A), and letting x ∈ C(J,R) such that x = λΨx for 0 < λ < 1. Then,

we have ‖x‖ ≤ ‖Ψx‖ ≤ L. Hence, by virtue of Theorem 3.2, the following result follows.

Theorem 3.7. Let Ψ be defined as in (5). If assumption (A) holds, then the problem (1) has a

solution.

Our next existence result is based on Krasnoselskii’s fixed point Theorem 3.3, which needs

the following assumption.

(C): Let Ck ∈ R+, k = 0,1,2,3,4,5, such that |gk(t,x(t))−gk(t,y(t))| ≤Ck |x(t)− y(t)| ,k = 0,1,2,3,4,

| f (t,x(t))− f (t,y(t))| ≤C5 |x(t)− y(t)| ,

for t ∈ J,x,y ∈C(J,R).

(D): Let µk ∈C(J,R), k = 0,1,2,3,4,5, such that gk(t,x(t))≤ µk(t),k = 0,1,2,3,4,

f (t,x(t))≤ µ5(t),

for t ∈ J,x,y ∈C(J,R).
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Theorem 3.8. Let f : J× C(J,R)→C(J,R) be jointly continuous function. If assumptions (C)

and (D) hold, then the problem (1) has a solution if

(7)
4

∑
k=0

‖λk‖
k! |αk|

(
C5 |θk|(T − t0)

q−k

Γ(q− k+1)
+Ck |βk|(T − t0)

)
< 1.

Proof. Let Br = {x ∈C(J,R) : ‖x‖ ≤ r}, for some fixed positive constant r that satisfying

r ≥ ‖µ5‖(T − t0)
q

Γ(q+1)
+

4

∑
k=0

‖λk‖
k! |αk|

(
‖µ5‖|θk|(T − t0)

q−k

Γ(q− k+1)
+‖µk‖|βk|(T − t0)

)
.

Define the operators Φ and Θ on Br as

(Φx)(t) =
t∫

t0

(t− s)q−1

Γ(q)
f (s,x(s))ds,

(Θx)(t) =
4

∑
k=0

λk(t)
k!αk

θk

T∫
t0

(T − s)q−k−1

Γ(q− k)
f (s,x(s))ds+βk

T∫
t0

gk(s,x(s))ds

 .

For x,y ∈ Br, we find that

‖Φx+Θy‖ ≤ r.

Thus, Φx+Θy ∈ Br. Moreover, if x,y ∈ Br, then

|(Θy)(t)− (Θx)(t)|

≤
4

∑
k=0

|λk(t)|
k! |αk|

|θk|
T∫

t0

(T − s)q−k−1

Γ(q− k)
| f (s,x(s))|ds+ |βk|

T∫
t0

|gk(s,x(s))|ds

 .

In accordance with (7), Θ is a contraction mapping on Br.

Continuity of f implies the continuity of Φ. Also, Φ is uniformly bounded on Br as ‖Φx‖ ≤
‖µ5‖(T−t0)

q

Γ(q+1) . Next, we prove the compactness of Φ. Let sup(t,x)∈J×Br ‖ f (t,x)‖ = f ∗ < ∞, then,

for t1, t2 ∈ J, we have

‖(Φx)(t2)− (Φx)(t1)‖ =
1

Γ(q)

∥∥∥∥∥∥
t1∫

t0

[
(t2− s)q−1− (t1− s)q−1

]
f (s,x(s))ds

+

t2∫
t1

(t2− s)q−1 f (s,x(s))ds

∥∥∥∥∥∥
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≤ f ∗

Γ(q+1)
(2 |t2− t1|q + |(t2− t0)

q− (t1− t0)
q|) ,

which is independent of x and tends to zero as t2→ t1. So Φ is relatively compact on Br. Hence,

by the Arzela-Ascoli theorem, Φ is compact on Br. Thus all assumptions of Theorem 3.3 are

satisfied. Therefore, the problem (1) has a solution. This completes the proof.

The existence and uniqueness result can be obtained by the well-known Banach fixed point

theorem.

Theorem 3.9. Let f ,gk : J×C(J,R)→C(J,R),k = 0,1,2,3,4, be jointly continuous functions

satisfying the hypothesis (C). Then the problem (1) has a unique solution if

C5(T − t0)
q

Γ(q+1)
+

4

∑
k=0

‖λk‖
k! |αk|

(
C5 |θk|(T − t0)

q−k

Γ(q− k+1)
+Ck |βk|(T − t0)

)
< 1

Proof. Setting supt∈J |gk(t,0)|= Mk, and supt∈J | f (t,0)|= M5, and selecting

r ≥

M5(T−t0)
q

Γ(q+1) +
4
∑

k=0

‖λk‖
k!|αk|

(
M5|θk|(T−t0)

q−k

Γ(q−k+1) +Mk |βk|(T − t0)

)
1− γ

where

γ =
C5(T − t0)

q

Γ(q+1)
+

4

∑
k=0

‖λk‖
k! |αk|

(
C5 |θk|(T − t0)

q−k

Γ(q− k+1)
+Ck |βk|(T − t0)

)
.

If x ∈ Br = {x ∈C(J,R) : ‖x‖ ≤ r}, then

|(Ψx)(t)| ≤ max
t∈J


t∫

t0

(t− s)q−1

Γ(q)
(| f (s,x(s))− f (s,0)|+ | f (s,0)|)ds

+
4

∑
k=0

|θk|
k! |αk|

|λk(t)|
T∫

t0

(T − s)q−k−1

Γ(q− k)
(| f (s,x(s))− f (s,0)|+ | f (s,0)|)ds

+
4

∑
k=0

|βk|
k! |αk|

|λk(t)|
T∫

t0

(|gk(s,x(s))−gk(s,0)|+ |gk(s,0)|)ds


≤

M5(T − t0)
q

Γ(q+1)
+

4

∑
k=0

‖λk‖
k! |αk|

(
M5 |θk|(T − t0)

q−k

Γ(q− k+1)
+Mk |βk|(T − t0)

)

+

(
C5(T − t0)

q

Γ(q+1)
+

4

∑
k=0

‖λk‖
k! |αk|

(
C5 |θk|(T − t0)

q−k

Γ(q− k+1)
+Ck |βk|(T − t0)

))
r
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≤ (1− γ)r+ γr = r.

Hence Ψ maps the subset Br into itself. Now, for x,y ∈ Br, and t ∈ J, we obtain

|(Ψx)(t)− (Ψy)(t)|

≤ max
t∈J


t∫

t0

(t− s)q−1

Γ(q)
| f (s,x(s))− f (s,y(s))|ds

+
4

∑
k=0

|θk|
k! |αk|

|λk(t)|
T∫

t0

(T − s)q−k−1

Γ(q− k)
| f (s,x(s))− f (s,y(s))|ds

+
4

∑
k=0

|βk|
k! |αk|

|λk(t)|
T∫

t0

|gk(s,x(s))−gk(s,y(s))|ds


≤ max

t∈J

(
C5(t− t0)

q

Γ(q+1)
ds+

4

∑
k=0

|λk(t)|
k! |αk|

(
C5 |θk|(T − t0)

q−k

Γ(q− k+1)
+Ck |βk|(T − t0)

))
‖x− y‖

≤ γ ‖x− y‖ ,

Since γ depends only upon the parameters involved in the problem. Therefore, Ψ is a contrac-

tion operator. Hence, the conclusion of the theorem follows by the Banach fixed point theorem.

This finishes the proof.

The last result of existence problems is due to the Leray-Schauder degree theorem. The

following hypothesis is sufficient for the next theorem.

(E): Let Ak,Bk,k = 0,1,2,3,4,5, be positive constants satisfying |gk(t,x(t))| ≤ Ak |x(t)|+Bk,k = 0,1,2,3,4

| f (t,x(t))| ≤ A5 |x(t)|+B5

for t ∈ J,x ∈C(J,R). Moreover, assume
B =

B5(T−t0)
q

Γ(q+1) +
4
∑

k=0

‖λk‖
k!|αk|

(
B5|θk|(T−t0)

q−k

Γ(q−k+1) +Bk |βk|(T − t0)

)
A =

A5(T−t0)
q

Γ(q+1) +
4
∑

k=0

‖λk‖
k!|αk|

(
A5|θk|(T−t0)

q−k

Γ(q−k+1) +Ak |βk|(T − t0)

)
< 1

Theorem 3.10. Let f ,gk : J×C(J,R)→C(J,R) be jointly continuous functions. If hypothesis

(E) holds, then the problem (1) has at least one solution.
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Proof. Define a fixed point problem by

(8) x = Ψx,

where Ψ is defined by (5). Then we only need to prove the existence of at least one solution

x ∈C(J,R) satisfying (8). Define a suitable ball Br ⊂C(J,R) with radius r > 0 as Br = {x ∈

C(J,R) : ‖x‖< r}, where r will be fixed later. Then, it is sufficient to show that Ψ : Br→C(J,R)

satisfies

(9) 0 /∈ (I−λΨ)(∂Br)

for any λ ∈ [0,1]. Here I denotes the identity operator. Let us define the homotopy

hλ (x) = x−λΨx,x ∈ X , λ ∈ [0,1].

Then, following the same steps of proof Lemma 3.4, hλ = I−λΨ is completely continuous.

Using condition (9), and the homotopy invariance property of Leray-Schauder degrees, we have

deg(hλ ,Br,0) = deg((I−λΨ) ,Br,0) = deg(h1,Br,0)

= deg(h0,Br,0) = deg(I,Br,0) = 1 6= 0, , 0 ∈ Br.

Hence, there is at least one x ∈ Br, such that equation (8) is true. It remains to find the constant

r satisfying (9). Therefore, for any t ∈ J, and x ∈ Br satisfying x = λΨx for some λ ∈ [0,1], we

have

|x(t)| = |λΨx(t)|

≤
B5(T − t0)

q

Γ(q+1)
+

4

∑
k=0

‖λk‖
k! |αk|

(
B5 |θk|(T − t0)

q−k

Γ(q− k+1)
+Bk |βk|(T − t0)

)
(

A5(T − t0)
q

Γ(q+1)
+

4

∑
k=0

‖λk‖
k! |αk|

(
A5 |θk|(T − t0)

q−k

Γ(q− k+1)
+Ak |βk|(T − t0)

))
‖x‖

= B+A‖x‖ .

Hence

‖x‖ ≤ B
1−A

.
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Choosing r > A
1−B , then equation (9) holds. This completes the proof.

Example 3.11. Consider the problem

(10)


cD4.2

1 x(t) = 1
(et+2)3

|x(t)|
|x(t)|+1 , t ∈ [1,2] ,

x(k) (0)+ x(k) (1) = 1
2k+1

2∫
1

sinx(t)
(t+2)3 ds,k = 0,1,2,3,4.

where x is a real valued function defined on J = [1,2]. In accordance with all above hypotheses,

simple calculations led to
Lk =Ck = σ = 1

8 ,

µk =
1

(t+2)3 ,k = 0,1,2,3,4,µ5 =
1

(t+2)3

τ = 0.665 < 1,A = γ = 1
8τ < 1.

Hence, using any of above theorems, the existence of solution for the problem (10) can be

obtained.
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