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Abstract. In this paper, motion of Darboux vector on two different space curves in Euclidean 3-space is investi-

gated. The structure of the motion is based on ruled surfaces generated by Darboux vector ~ω . According to this,

developability of the considered ruled surfaces are studied. An extensive comparison between these developable

ruled surfaces is performed. Some relations between the corresponding curves on the developable ruled surfaces

are performed. Finally, special correspondence is given and plotted.
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1. Introduction

Ruled surfaces are one of the important and interesting subjects for line geometry in Eu-

clidean and semi-Euclidean 3-space [1, 2, 3, 4, 5, 6]. Use of developable ruled surfaces has

a long history [7, 8]. Real developable ruled surfaces have natural applications in many areas

of engineering and manufacturing. For instance, an aircraft designer uses them to design the
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airplane wings, and a tinsmith uses them to connect two tubes of different shapes with planar

segments of metal sheets. A developable surface is a surface that can be (locally) unrolled onto

a flat plane without tearing or stretching it. If a developable surface lies in three-dimensional

Euclidean space, and is complete, then it is necessarily ruled, but the converse is not always

true. For instance, the cylinder and cone are developable, but the general hyperboloid of one

sheet is not. More generally, any developable surface in three-dimensions is part of a complete

ruled surface, and so itself must be locally ruled [9].

In the study of the fundamental theory and the characterizations of space curves, the corre-

sponding relations between the curves are very interesting and important problem. The well-

known Bertrand curves are characterized as a kind of such corresponding relation between the

two curves. For the Bertrand curve ~α , it shares the normal lines with another curve ~β , called

Bertrand mate or Bertrand partner curve of ~β [10]. In [11] Y. Yayli studied the motion of Frenet

Frame on two different space curves in Euclidean 3-space.

In this study, we classify the ruled surfaces generated by Darboux vector on a space curve.

Furthermore, we study the relation between the corresponding developable ruled surfaces when

their base curves are Bertrand and obtain some results related to the mean curvatures and curves

on these surfaces.

2. Basic concepts and properties

Now we review some basic concepts on classical differential geometry of space curves in

Euclidean space. For any two vectors x =(x1,x2,x3) and y=(y1,y2,y3), we denote 〈x,y〉 as the

standard inner product. Let ~α : I→ R3 be a curve with ~α ′(s) 6= 0, where ~α ′(s) = d~α(s)/ds. We

also denote the norm of x by ‖x‖. The arc-length parameter s of a curve ~α is determined such

that ‖~α ′(s)‖ = 1, where ~α ′(s) = d~α(s)/ds. Let us denote ~e1(s) = ~
α
′
(s) and we call ~e1(s) a unit

tangent vector of ~α at s. We define the curvature of ~α by κ(s) = ‖ ~α ′′(s)‖. If κ(s) 6= 0, then

the unit principal normal vector ~e2(s) of the curve ~α at s is given by ~α ′′(s) = κ(s) ~e2(s). The

unit vector ~e3(s) = ~e1(s) ∧ ~e2(s) is called the unit binormal vector of ~α at s, where ∧ stands the
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cross product in E3. Then we have the following Frenet-Serret formulae

~e1
′(s) = κ(s)~e2(s),

~e2
′(s) =−κ(s)~e1(s)+ τ(s)~e3(s),

~e3
′(s) =−τ(s)~e2(s),

(2.1)

where τ(s) is the torsion of the curve ~α(s) at s [8].

2.1. Ruled surfaces

A ruled surface in differential geometry is a surface formed by a motion of a straight

line. The lines that belongs to this surface are called generators(rullings), and every curve that

intersects all the generators is called a base curve(directrix). The ruled surface in Euclidean

3-space is given by the parametrization

φ(s,v) = ~α(s)+ v~L(s), ‖~L(s)‖= 1, (2.2)

where ~α(s) is the base curve and it is a differential curve parameterized by its arc-length in

Euclidean 3-space that is

〈~α ′(s), ~α ′(s)〉= 1,

and~L(s) is the generator vector of the ruled surface such that~L(s) is orthogonal to the tangent

vector field of the base curve. If the tangent plane is constant along the generator, then the ruled

surface is called developable ruled surface [11]. Let~n denote the unit normal vector field on the

surface (2.2) which is given by

~n =
φs∧φv

|φs∧φv|
, φs =

∂φ

∂ s
, φv =

∂φ

∂v
(2.3)

Then the metric I of the surface (2.2) is defined by

I = g11ds2 +2g12dsdv+g22dv2, (2.4)

with differentiable coefficients

g11 = 〈φs,φs〉, g12 = 〈φs,φv〉, g22 = 〈φv,φv〉, (2.5)
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where 〈,〉 is the Euclidean inner product in E3 and the discriminate g of the first fundamental

form is

g = Det(gi j) = g11g22− (g12)
2. (2.6)

The second fundamental form II of φ(s,v) is given as

II = h11ds2 +2h12dsdv+h22dv2, (2.7)

with differentiable coefficients

h11 = 〈φss,~n〉, h12 = 〈φsv,~n〉, h22 = 〈φvv,~n〉. (2.8)

The discriminate h of the second fundamental form is

h = Det(hi j) = h11h22− (h12)
2. (2.9)

For the parametrization of the ruled surface (2.2), we have the mean curvature H and the Gauss-

ian curvature K as in the following

H =
g11h22−2g12h12 +g22h11

2g
, K =

h
g
. (2.10)

Definition 2.1. The parameter of distribution λ of the ruled surface (2.2) is defined as the limit

of the ratio of the shortest distance between the two rulings and their angulated angle which is

given by [12]

λ =
det(~α ′,~L,~L′)

〈~L′,~L′〉
. (2.11)

The ruled surface (2.2) is developable if its distribution parameter λ is zero, i.e., λ = 0.

Definition 2.2. For any unit speed curve

~α(s) : I ⊂ R→ R3,

Darboux vector field of ~α is defined as a unit vector in the form [13]

~ω(s) =
τ(s)~e1(s)+κ(s)~e3(s)√

κ2 + τ2
. (2.12)

Furthermore, one can see that

~
ω
′
(s) = σ(s)(κ~e1− τ~e3)(s), (2.13)
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where

σ(s) =
(

κ2

(κ2 + τ2)3/2 (
τ

κ
)′
)
(s) (2.14)

3. Darboux vector and ruled surfaces

The ruled surface generated by the Darboux vector of a space curve~α(s) has the parametriza-

tion

φ(s,v) = ~α(s)+ v~ω(s), (3.1)

where φ(s,v) is a developable ruled surface, see [14, 15]. Let H be a moving space and

{~e1,~e2,~e3} be the Frenet-Frame field along the curve ~α(s): I→ E3, then we represent the mov-

ing line space H as follows

H = Sp{~e1,~e2,~e3}α(s),

where ~e1, ~e2 and ~e3 are the tangent, principal normal and binormal vectors, respectively. Con-

sider a curve ~β (s̄) in the moving space H, such that the tangent vector of ~β (s̄) is ~β
′
(s̄), i.e.

~β : J→ E3,

s̄ 7→ ~β (s̄), s̄ = s̄(s).

At this time, Frenet-Frame {~e1,~e2,~e3} of ~α(s) can be thought on the curve ~β (s̄). Then, we can

get ruled surface that produced by the Darboux vector of the Frenet-Frame of the curve ~α(s) as

in the following

φ̄(s̄, v̄) = ~β (s̄)+ v̄~ω(s̄), s̄ = s̄(s), v̄ = v̄(v). (3.2)

The two coordinate systems {O;~e1,~e2,~e3} and {O′;~e′1,~e′2,~e′3} are orthogonal coordinate systems

in E3 which represent the moving space H and the fixed space H′ respectively, see Figure (1).

Let express the displacements (H/H′) of H with respect to H′. During the one parameter spatial

motion H/H′, the Darboux vector of the moving space H generates, in generally, a ruled surface

in the fixed spaceH′.

Now, for the base curve ~β (s̄) of the ruled surface (3.2), we can write

~
β
′
(s̄) =

d~β
ds̄

ds̄
ds

= M1~e1(s̄)+M2~e2(s̄)+M3~e3(s̄), ′ =
d
ds

. (3.3)
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FIGURE 1. The moving and the fixed spaces H and H ′.

Without lose of generality, we take s̄ = s and v̄ = v. Thus the parameter of distribution of the

ruled surface (3.2) is given by Eq. (2.11) as follows

λ =
det(~β ′, ~ω, ~ω ′)

〈~ω ′, ~ω ′〉
. (3.4)

From Eqs. (2.13), (2.14) and (3.4), one can see the following

det(~β ′, ~ω, ~ω ′) =
√

κ2(s)+ τ2(s) M2 σ(s). (3.5)

According to Eq. (3.5), let investigate special cases for developability.

3.1 Special cases for developability

The ruled surface (3.2) is developable (λ = 0) if

(1) σ (s) = 0⇔ τ

κ
=const, implies that ~α(s) is a helix curve.

(2) M2 = 0⇒ the vector ~β
′
lies on the rectifying plane of the curve ~α , i.e.,

~β
′
= M1~e1 +M3~e3.

The last case can be degenerate into three cases as follows

(i) M1 = 1 and M3 = 0⇒ ~β (s) = ~α(s) (trivial case).

(ii) M1 = 0 and M3 = 1⇒ ~́
β (s) = ~e3 (the binormal of the curve ~α).

(iii) M1 6= 0 and M3 6= 0, hence if~α(s) and ~β (s) are Bertrand curves, then ~β (s) can be represented
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as

~β (s) = ~α(s)+a~e2, a = const. (3.6)

From (2.1), we have

~β
′
(s) = (1−aκ)~e1 +aτ~e3, (3.7)

where M1=1-aκ and M3=aτ .

From the above results, we have the following

Lemma 3.1. The ruled surface φ̄(s̄, v̄) = ~β (s̄) + v̄ω(s), which is obtained by the Darboux

vector~ω(s) of the Frenet-frame of a curve ~α(s), is developable if one of the following cases is

satisfied

(1) ~α(s) is a helix curve.

(2) ~́
β (s) lies in the rectifying plane of the curve ~α(s).

(3) ~α(s) and ~β (s) are Bertrand curves.

4. Corresponding developable ruled surfaces

In this section, we study the developable ruled surfaces φ(s,v) and φ̄(s̄, v̄) such that the

base curves are of type Bertrand. For the developable ruled surfaces

φ(s,v) = ~α(s)+ v~ω(s), (4.1)

φ̄(s̄, v̄) = ~β (s̄)+ v̄~ω(s̄), (4.2)

where

~́
β (s) = M1~e1 +M3~e3, (v̄ = v, s̄ = s). (4.3)

Since the curves ~α(s)and ~β (s) are Bertrand , then the curve ~β (s) can be represented as the

following

~β (s) = ~α(s)+a~e2. (4.4)

Thus, the corresponding developable ruled surface is given as

φ̄(s,v) = φ(s,v)+a~e2. (4.5)
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The tangents to the parametric curves on the surface φ̄ are given as

φ̄s = φs +a(τ~e3−κ~e1). (4.6)

φ̄v = φv = ~ω =
1√

κ2 + τ2

(
τ~e1 +κ~e3

)
. (4.7)

Thus, using Eqs. (2.5) and (4.5) we can get the first fundamental quantities as follows

¯g11 = g11 +(τ2 +κ
2)(a2−2avσ)−2aκ. (4.8)

Also,

¯g12 = g12 =
τ√

κ2 + τ2
, ¯g22 = g22 = 1. (4.9)

Therefore, the discriminate ḡ of the first fundamental form on the surface φ̄ as follows

ḡ = g+(τ2 +κ
2)(a2−2avσ)−2aκ, a > 2vσ . (4.10)

Hence, we have the following corollary

Corollary 4.1. The first fundamental forms for the two corresponding developable ruled surface

are related by the quadratic form

Ī = I +
(
(τ2 +κ

2)(a2−2avσ)−2aκ
)
ds2, a > 2vσ . (4.11)

In addition, let ~n and ~̄n and be the unit normal vectors for the corresponding developable

ruled surfaces (4.1) and (4.2), respectively, then by using (2.3), one can get the following

Corollary 4.2. The unit normal vectors for the corresponding developable ruled surfaces (4.5)

are in one to one corresponding, i.e.,

~̄n =~n = ~e2. (4.12)

The second derivative for the function φ̄ are in the form

φ̄ss = φss +a
(
−κ

′~e1− (τ2 +κ
2)~e2 + τ

′~e3
)
. (4.13)

Also,

φ̄sv = φsv = ~ω ′ = σ(κ~e1− τ~e3), φ̄vv = φvv = 0. (4.14)
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Using (2.8), we can get the second fundamental quantities as follows

h̄11 = h11−a(τ2 +κ
2), h̄12 = h12 = 0, h̄22 = h22 = 0. (4.15)

Making use (2.7), we can get the following

Corollary 4.3. The second fundamental forms for the corresponding developable ruled surfaces

are related through the quadratic form

ĪI = II−a(τ2 +κ
2)ds2 (4.16)

4.1. Mean curvature

Let H and H̄ be the mean curvatures for the corresponding developable ruled surfaces φ(s,v)

and φ̄(s,v) respectively. Subsequently, we can give the relation between H and H̄ by using Eq.

(2.10) as follows

H̄ =
H− aµ

2
1+a2µ−4aH

, (4.17)

where

H =
κ + vσ(τ2 +κ2)

2g
, (4.18)

and µ = τ2+κ2

g , 4aH 6= 1+a2µ .

According to Eq.(4.17), let discuss the following two cases

(i) If H̄ = 0 (φ̄ is minimal), then

H =
aµ

2
. (4.19)

Hence, case (i) gives the following

Corollary 4.4. The distance between the corresponding developable surface φ(s,v) and φ̄(s,v)

such that φ̄(s,v) is a part of a plane is given by

a =
2H
µ

. (4.20)

(ii) If H ≤ 0, then

H− aµ

2
< 0, and 1+a2

µ−4aH > 0, (4.21)
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From Eq. (4.17), we can get

H̄ < 0. (4.22)

Hence, case(ii) gives the following

Corollary 4.5. If the mean curvature of φ(s,v) is non-positive (H ≤ 0), then the mean curvature

for the corresponding developable surface φ̄(s,v) is negative (H̄ < 0).

4.2. Orthogonal trajectory of the rulings

If a point P displaced orthogonally along the ruling ~ω to a neighbouring point P0, then we

have an orthogonal trajectory

~γ : I→ φ(s,v)

Let ~γ and ~̄γ be the orthogonal trajectory of the ruling on the corresponding developable ruled

surfaces φ(s,v) and φ̄(s,v) respectively, so it can be expressed as

~γ(s) = ~α(s)+ v(s)~ω(s), (4.23)

~̄γ(s) = ~β (s)+ v̄(s)~ω(s). (4.24)

For the developable ruled surface φ(s,v), the condition that the point P be displaced orthogo-

nally to the ruling is

〈
~dγ

ds
, ~ω(s)〉= 0. (4.25)

Taking the derivative of Eq. (4.23) and using Eq. (2.12), one can get the following

v′ =
−τ√

κ2 + τ2
. (4.26)

Integrating, we have

v =
∫ −τ√

κ2 + τ2
ds+ c. (4.27)

On the other hand, by a similar way, for the developable ruled surface φ̄(s,v), by using Eqs.

(2.12), (4.4) and (4.23), we get

v̄ =
∫ −τ√

κ2 + τ2
ds+ c. (4.28)
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Substituting υ into Eqs. (4.23) and (4.24) we have

~γ(s) = ~α(s)−~ω(s)
∫

τ√
κ2 + τ2

ds+ c, (4.29)

~̄γ(s) = ~β (s)−~ω(s)
∫

τ√
κ2 + τ2

ds+ c. (4.30)

Subtracting the Eqs. (4.29) and (4.30) we get

|~̄γ(s)−~γ(s)|= ~β (s)−~α(s) = a. (4.31)

Hence, we have the following

Corollary 4.6. The distance between the orthogonal trajectory of the ruling on the correspond-

ing developable ruled surface φ(s,v) and φ̄(s,v) is a constant distance, equal to the distance

between base curves.

5. Corresponding curves on developable ruled surfaces

In this section, we study the relation between geodesic torsion, geodesic curvature and normal

curvature of the corresponding curves on the developable ruled surfaces. Consider ~Γ(s) and
~̄
Γ(s) be two regular curves on the developable ruled surfaces φ and φ̄ respectively, so they are

expressed as

~Γ(s) = ~α(s)+ v(s)~ω(s), (5.1)

~̄
Γ(s) = ~β (s)+ v(s)~ω(s). (5.2)

Since ~α(s) and ~β (s) are Bertrand curves, then by using equation (4.4), we have the correspond-

ing curves on developable ruled surfaces as in the following

~̄
Γ(s) =~Γ(s)+a~e2 (5.3)

5.1. The geodesic torsion

Let τg and τ̄g be the geodesic torsion of the curves ~Γ and ~̄Γ, respectively, since the curve ~̄Γ

is a regular curve on a surface φ̄ in E3,~n and ~̄x are the unit normal vectors field of the φ and φ̄
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respectively, then the geodesic torsion for the curve ~̄Γ is given by

τ̄g =
[~̄Γ′,~̄n,~̄n′]

|~̄Γ′|
. (5.4)

The above Eq. can be written in the following form

|~̄Γ′| τ̄g = 〈~̄Γ′,(~̄n∧~̄n′)〉. (5.5)

Taking the derivative of (5.3), we have

~̄
Γ
′ =~Γ′+a(τ~e3−κ~e1). (5.6)

Using Eqs. (4.12) and (5.6), Eq. (5.5) becomes

|~̄Γ′| τ̄g = [~Γ′,~n,~n′]+a〈(τ~e3−κ~e1),(τ~e1 +κ~e3)〉. (5.7)

Hence, one can get

τ̄g =
|~Γ′|
|~̄Γ′|

τg. (5.8)

According to Eq. (5.8), we have the following

Corollary 5.1. If~Γ is a principal line on the surface φ(s,v), then the corresponding curve ~̄Γ on

the surface φ̄(s,v) is a principal line.

5.2. The geodesic curvature

Let kg and k̄g be the geodesic curvature for the curves~Γ and ~̄Γ, respectively, then the geodesic

curvature for the curve ~̄Γ is given by

k̄g =
[~̄Γ′′,~̄Γ′,~̄n]

|~̄Γ′|3
. (5.9)

The above Eq. can be written in the following form

|~̄Γ′|3 k̄g = 〈~̄Γ′′,(~̄Γ′∧~̄n′)〉. (5.10)

Taking the derivative of Eq. (5.6), we have

~̄
Γ
′′ =~Γ′′+a

(
−κ

′~e1− (τ2 +κ
2)~e2 + τ

′~e3
)
. (5.11)
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Substituting from Eqs. (4.12), (5.6) and (5.11) in Eq. (5.10), we get

k̄g =
|Γ′|3

|Γ̄′|3
kg +

a
|Γ̄′|3

(
− (τ2 +κ

2)
( v′√

τ2 +κ2

)′
− v′τ(σκ)

′
− v′κ(στ)

′

+ vσ(κτ
′−κ

′
τ)−a(κτ)

′
+ τ
′
)
.

(5.12)

Corollary 5.2. If ~Γ is a geodesic on the surface φ(s,v), then the geodesic curvature of the

corresponding curve ~barΓ on the surface φ̄(s,v) is given by

k̄g =
a

|Γ̄′(s)|3
(
−(τ2+κ

2)
( v′√

τ2 +κ2

)′
−v′τ(σκ)

′
−v′κ(στ)

′
+vσ(κτ

′−κ
′
τ)−a(κτ)

′
+τ
′
)
.

5.3. The normal curvature

Let kn and k̄n be the normal curvature for the curves~Γ and ~̄Γ on the surfaces φ and φ̄ respec-

tively, then the normal curvature for the curve ~̄Γ is given by

k̄n =
〈~̄Γ′′,~̄n〉
|~̄Γ′|2

. (5.13)

The above Eq. can be written in the following form

|~̄Γ′|2 k̄n = 〈~̄Γ′′,~̄n〉. (5.14)

substituting from Eqs. (4.12) and (5.11) in Eq. (5.14), we get

|~̄Γ′|2 k̄n = 〈~Γ′′,~n〉−a(τ2 +κ
2). (5.15)

Thus

k̄n =
|~Γ′|2

|~̄Γ′|2
kn−

a(τ2 +κ2)

|~̄Γ′|2
. (5.16)

According to Eq. (5.16) we have the following

Corollary 5.3. If ~Γ is a asymptotic on the surface φ(s,v), then the normal curvature of the

corresponding curve ~̄Γ on the surface φ̄(s,v) is given by k̄n=−a(τ2+κ2)
|Γ̄′|2 .

Example Consider the curve ~α(s) given by

~α(s) = {cos(s),s,1/s}, s 6= 0.
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The curvature and the torsion of this curve are, respectively,

κ(s) =
√

ψ1

ψ2
, (5.17)

τ(s) =
2ssin(s)−6cos(s)

s4ψ1
, (5.18)

where

ψ1 =
4+ s6 cos(s)2 + scos(s)+2sin(s)2

s6 , ψ2 = (
1
s4 + cos(s)2)

3
2 .

The tangent, principal normal and binormal vectors of this curve are, respectively

~e1(s) =
1

ψ3

{
− sin(s),1,−1

}
. (5.19)

~e2(s) =
1

ψ3ψ4

{
− 1

s5 (s+ s5)cos(s)−2sin(s),
2
s5 − cos(s)sin(s),

1
s3 (2+ scos(s)sin(s)+2sin(s)2)

}
.

(5.20)

~e3(s) = ψ4
{ 2

s3 ,scos(s)+2sin(s),cos(s)
}
, (5.21)

where

ψ3 =

√
1+

1
s4 + sin(s)2, ψ4 =

√
36
s8 + sin(s)2.

Therefore, the equation of the ruled surface generated by the Darboux vector ~ω along the curve

~α is

φ(s,v) = ~α(s)+ v~ω(s), (5.22)

where ~ω(s) is the Darboux vector of the curve ~α . Hence the corresponding developable ruled

surface is

φ̄(s,v) = φ(s,v)+a~e2. (5.23)

Thus, Figure (2), shows the distance between the two corresponding developable ruled sur-

faces φ and φ̄ when the mean curvature for the developable ruled surface φ̄ is minimal(H̄ = 0).

Also, Figure (3), shows the distance between the two corresponding developable ruled surfaces

φ and φ̄ when the mean curvature for the developable ruled surface φ̄ is non-positive(H̄ < 0).
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Φ Hs , v L

Φ Hs , v L

FIGURE 2. The correspondence between the developable surfaces φ and φ̄ (H̄ = 0).

Φ (s,v)

Φ(s,v)

FIGURE 3. The correspondence between the developable surfaces φ and φ̄ (H̄ < 0).
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