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Abstract. Graph layout problems are a particular class of combinatorial optimization problems whose goal is to

find a linear layout of an input graph in such a way that a certain objective function is optimized. In this paper,

planar direct products and their stack and queue layouts are determined. The stack and queue numbers are directly

motivated by VLSI layout problems.
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1. Introduction

Graph layout problems are a particular class of combinatorial optimization problems whose

goal is to find a linear layout of an input graph so that an objective function is optimized. A

linear layout is simply a bijective mapping of the vertex set of a graph onto a chain of cardinality

equal to the order of the graph. A large number of problems in different areas of science and

engineering may be formulated as graph layout problems. These include parallel computer

architecture, see [6] references therein, VLSI circuit layout, see [13] references therein, and

information retrieval, see [11] references therein.
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Layout problems for integrated circuitry arose as simplied models for actual layout problems

in VLSI.

Given a set of modules, the VLSI layout problem consists in placing the modules on a board

in a nonoverlapping manner and wiring together the terminals on the different modules accord-

ing to a given wiring specification and in such a way that the wires do not interfere among them.

There are two stages in VLSI layout: placement and routing. The placement problem consists

in placing the modules on a board; the routing problem consists in wiring together the terminals

on different modules that should be connected. A VLSI circuit can be modeled adequatedly

by a graph, where the edges represent the wires and the vertices represent modules. This is

certainly an oversimplification, but understanding and solving problems in this simple model

help obtain better solutions for the actual model.

Various parameters that occur in graph layout problems are bandwidth, cutwidth, vertex sep-

aration and bipartition. There is a great amount of current literature in these direction. The

reader is referred to [5].

2. Preliminaries

The work of this paper concentrates on the stack and queue layouts of planar products.

Definition 1.1. For a graph G, a vertex ordering or a linear layout is a bijection

σ : V (G)→{1,2, · · · , |G|}.

For a layout σ , its reverse layout is

σ
−1(u) = |G|−σ(u)+1, u ∈V (G).

For a linear layout σ and an edge e = uv ∈ E(G), if σ(u) < σ(v) then the left end of e is

e− = u and the right end of e is e+ = v. For a pair of edges e, f ∈ E(G) one of the three

situations will occur:

(1) e and f cross if e− < f− < e+ < f+;

(2) e and f nest and f is nested within e if e− < f− < f+ < e+;

(3) e and f are disjoint if e− < e+ < f− < f+.
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FIGURE 1. A 3-stack Layout of K6.

It will be agreed in addition that edges with a common end do not cross, do not nest, and are

not disjoint.

Let F ⊆ E(G). If no two edges in F cross then F is called a stack in σ . In a traversal of σ

from left to right, the left and right ends of the edges in a stack, are traversed in a last in–first

out (usually abbreviated LIFO) order. Hence the natural term “stack” from data structures. If

no two edges of F nest then F is called a queue. In a traversal of σ from left to right, the left

and right ends of the edges in a stack, are traversed in a first in–first out (abbreviated FIFO)

order. Hence term “queue” as in data structures.

Definition 1.2. A linear layout σ of G, together with a partition {E1,E2, · · · ,Ek} of E(G), is

called a k-stack layout of G if for each i, 1≤ i≤ k, Ei is a stack.

A 3-stack Layout of K6 is illustrated in Figure 1.

A linear layout σ of G, together with a partition {E1,E2, · · · ,Ek} of E(G), is called a k-queue

layout of G if for each i, 1≤ i≤ k, Ei is a queue. A 3-queue Layout of K6 is illustrated in Figure

2.

A graph admitting a k-stack (respectively, queue) layout is called a k-stack (queue) graph.

The stack-number (respectively queue-number) of a graph G, denoted by s(G) (respectively,

q(G)) is the minimum k such that G is a k-stack (respectively k-queue) graph. Observing that

the vertices of the components G1,G2, · · · ,Gk of a disconnected graph G can be grouped by

components along the line, it follows that

s(G) = max{s(G1),s(G2), · · · ,s(Gk)}
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FIGURE 2. A 3-queue Layout of K6.

and

q(G) = max{q(G1),q(G2), · · · ,q(Gk)} .

Henceforth, consider only connected simple graphs.

A stack layout is sometimes called a book embedding, and stack-number, book-thickness,

fixed outer-thickness or page-number. An n-book embedding of a graph G is an embedding of

G in a book with n pages such that V (G) lie on the spine and each e ∈ E(G) embeds in a single

page so that no two edge cross. The book thickness, or page number, p(G) of a graph G is the

smallest number n of pages of a book so that G has an embedding in the book. Sometimes a

restriction on the maximum number of edges on a page is also considered.

Consider a vertex ordering σ = {V1,V2, · · · ,Vn} of a graph G. For each edge viv j ∈ E(G), let

the width of viv j in σ be |i− j|, the maximum width of an edge of G in σ . The bandwith of G,

denoted by bw(G), is the minimum bandwidth over all vertex orderings of G.

3. Recent results in layout

As in [3], four types of embedding problems have been of interest in engineering.

The first type of problems are characterizations of graphs that can be embedded in books with

a small number of pages. The second type of problems consider upper bounds on the number of

pages required by graphs of bounded degree. For example, for d > 2, if is G d-regular graphs
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of order n then

s(G)≤min
{n

2
,O(dn1/2)

}
.

and there exist d-regular graphs with |G|= n that cannot be embedded in fewer than

Ω

(
n1/2−1/d

log2 n

)
pages. The third type of problems involve near-optimal embeddings of various families of

graphs, including trees, grids, X-trees, cyclic shifters, permutation networks, and complete

graphs. For example, every d-ary tree of order n may be embedded in a book having one

page, with page width ⌈
d
2

⌉
· logn.

The fourth type of problems considers tradeoff between the number of pages and the widths of

the pages. For example, every one-page embedding of the ”ladder” graph with depth n requires

width n/2, but there exist 2-page embeddings with page width 2 for the graph.

The main motivation of stack layout (book-embedding) and queue layout problem arose in

numerous applications in VLSI design technology [3], in particular in electronic design automa-

tion (EDA).

On of these applications is the sorting with parallel stacks. The problem of realization of

fixed permutations of {1,2, · · · ,n} with noncommunicating stacks was studied in [6,15]. In a

realization, initially each number is pushed, in the order 1 to n, onto any one of the stacks. After

all the numbers are on stacks, the stacks are popped to form the permutation. The bipartite

graph G with V (G) = {a1, · · · ,an,b1, · · · ,bn} and E(G) = [{a1, · · · ,an}, {b1, · · · ,bn}] models

the problem. A realization of a permutation σ on {1,2, · · · ,n}with k parallel stacks corresponds

to stack layouts and queue layouts in the order a1, · · · ,an,bσ(1), · · · ,bσ(n).

Another of these applications is the single-row routing.

In routing multilayer printed circuit boards (PCBs), a simplification may be obtained by a

decomposition [13]. Circuit elements may be arranged in a regular grid, with wiring channels

separating rows and columns of elements. The circuit net list may then be decomposed (addi-

tional dummy elements may be introduced) in such a way that every net connects elements in

a single row or in a single column. The PCB can now be routed by routing each of its rows
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and each of its columns independently. A variant in which a net running from the top of a

row around to its bottom or change layers en route is not allowed was considered in [11]. This

corresponds directly to a stack layouts problem for graphs of small degrees.

Study of fault-tolerant process or arrays is a third type of these applications. The Diogenes

approach to the design of fault-tolerant arrays of identical processing elements (PEs, for short)

uses “stacks of wires” to configure around faulty processing elements [2,12]. The processing

elements are laid out in a (logical, if not physical) line, with some number of “bundles” of wires

running above the line of the elements. Lines of processing elements are then scanned and faulty

elements and working elements are determined. As each working element is encountered, it is

connected to the bundles of wires through a network of switches, thereby the working element

is connected to the working elements that have already been found, preparing it for eventual

connection to those that will be found. To simplify the configuration process, each bundle is

considered as behaving like a stack. After determining the faulty and working elements, line

of processing elements are then scanned from right to left. As a working element of degree 1

is encountered, it is connected to line 1 in the bundle, simultaneously making lines 1 through

d− 1 “shift up” to “become” lines 2 through d; switches disconnect the left parts of the lines

from the right parts so that local connectivity remains the same. The bundle has thus behaved

like a stack being pushed [3]. As a working element of degree at east 2 is encountered, it is

connected to the stack/bundle in two stages. First it is connected to lines 1 and 2 of the bundle,

simultaneously making lines 3 through d “shift down” to “become” lines 1 through d−2; again

switches ensure that proper local connectivity is maintained. The bundle here behaves like a

stack being twice popped. Second, the processing element pushes a connection onto the stack.

In this case, pops amount to an element adopting two children that lie to its right in the line,

while pushes amount to the element to be adopted by some higher level vertes that lies to its

left. The process just described lays a d-ary tree out in preorder and, hence, uses at most d lines.

It is clear from this procedure that the configuration process corresponds directly to the stack

layouts problem.

These formulations of stack layout problem suggest at least two variants: fixed layout (as

in sorting with parallel stacks and single-row routing); layout as part of the problem (as in the
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construction of fault-tolerant processor arrays). Problems considered in the present paper are

where placement of the vertices is not given beforehand.

The pinwheel graph is defined to be one with

V (P(n)) := {ai, bi : 1≤ i≤ n},

E(P(n)) := {aibi : 1≤ i≤ n}∪{aibn−i+1 : 1≤ i≤ n}

∪{aiai+1 : 1≤ i≤ n}∪{bibi+1 : 1≤ i≤ n}

with addition modulo n. Clearly, P(3) = K3,3, and for n≥ 3, P(n) is not planar. It is not hard to

see that s(P(n))≤ 3.

If T is a d-ary tree of order n then s(T ) = 1 [3]. An X-tree with depth-d admits a 2-stack

layout. The definition of the n-cube is falklore. For n ≥ 2, s(Qn) ≤ n− 1. And, as a last

illustrative example, s(Kn) =
n
2 .

Note also that every series-parallel graph admits a 2-stack layout.

The only graphs with s(G)= 0 are discrete graphs (i.e., the complements of complete graphs).

Graphs with s = 1 are precisely connected outerplanar graphs, see [1,9] references therein.

Lemma 1.1.[9] s(G) = 1 if and only if G is outerplanar.

Let G be a 1-stack graph with |G| = n. Then ‖G‖ ≤ 2n− 3, since it has at most n edges

for a hamilton cycle and at most n− 3 edges in the interior of the cycle. A graph is called

subhamiltonian if it is a subgraph of a hamiltonian graph. Graphs with s ≤ 2 are precisely

subhamiltonian graphs.

Lemma 1.2.[9] s(G)≤ 2 if and only if G is subhamiltonian.

Each planar graph has a 4-stack layout [9].

Lemma 1.3.[9] If G is a planar graph, then s(G)≤ 4.

If, in addition to planarity, a graph is also bipartite, then it has a 2-stack layout [9].

Lemma 1.4.[3] If G is a planar bipartite graph, then s(G)≤ 2.

The following result was obtained in [3].

Lemma 1.5. s(G)≤ 2 if and only if G is a subgraph of a planar Hamiltonian graph.

Hence if G is not a planar, then s(G)≥ 3.

The extremal problems concerning the maximum number of edges in a graph if it admits a

certain layout were considered in [1,4,8].
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Lemma 1.6. If s(G) ≤ s and |G| = n then ‖G‖ ≤ (s+ 1)n− 3s, and this bound is tight for all

even n≥ 4 and all 1≤ s≤ n/2.

For the maximum number of edges in a k-queue graph, stremal graphs for k = 1 was deter-

mined in [7,10]. The proof in [7] is based on a characterisation of 1-queue graphs as the arched

levelled planar graphs. The proof in [10] is based on a relationship between queue layouts and

“staircase covers of matrices”. These results have been summarised in [5], where the following

was also included.

Lemma 1.7. A queue in a graph with |G|= n has at most 2n−3 edges.

A direct generalization of this result is that every k-queue graph has at most k(2n−3) edges

[7]. The following improved upper bound was given in [10]. This bound is tight for all values

of n and k.

Lemma 1.8. If G is graph with q(G) = k and |G|= n, then ‖G‖ ≤ 2kn−k(2k+1). For every k

and n≥ 2k, there exists graph with |G|= n, q(G) = k and ‖G‖= 2kn− k(2k+1).

Table 1 [5] summarizes some known bounds on the stack number and queue number of

various classes of graphs. A blank entry indicates that a more general result provides the best

known bound.

4. Layout of planar products

In this section we consider planarity criterion for direct products of graphs. In order to state

and prove the main theorem of this section, we recall the concepts of a contraction and a minor

of a graph.

A contraction f of a graph G is a partition {V1,V2, · · · ,Vr} of V (G) such that for each i =

1,2, · · · ,r, the subgraph G|Vi induced by Vi is connected. The resulting graph H with V (H) =

{V1,V2, · · · ,Vr} and edges ViVj for [Vi,Vj] 6= /0 where i 6= j is also called a contraction (graph)

of G. The mapping f : G→ H is called a contraction (mapping). If there exists K ⊆ G and a

contraction f : K → H, then we call H a minor of G and is denoted H ≤ G. Notice that the

binary relation ≤ over the class of finite undirected graphs is reflexive and transitive.
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TABLE 1. Upper bounds on the stack number and queue number

Graph Family Stack number Queue number

n vertices [n
2 ] [n

2 ]

m edges O(
√

m) e
√

m

proper minor-closed bounded

genus γ O(
√

γ)

tree-width w w+1 3w6(4
w−3w−1)/9−1

tree-width w, max. degree ∆ 36∆w

path-width p p

band-width b b−1 [b
2 ]

track-number t t−1

toroidal 7

planar 4

bipartite planar 2

2-trees 2 3

Halin 2 3

X-trees 2 2

outerplanar 1 2

arched levelled planar 2 1

trees 1 1

Denote by G�H the direct product of graphs G and H. Thus

V (G�H) =V (G)×V (H)

W (G�H) = {(u,v)(x,y) : u = x,vy ∈ E(H) or ux ∈ E(G),v = y}.

Theorem 4.1. Let G and H be connected graphs. Then G�H is planar if and only if

(1) |G|, |H| ≥ 3 and ∆(G),∆(H)≤ 2; that is, G and H are a path or a cycle;

(2) |H|= 2 and G is an outerplanar graph; or

(3) |H|= 1 and G is planar.
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Proof. Suppose that G and H are connected graphs with |G|, |H| ≥ 3.

If G has a vertex of degree at least 3, then let this vertex be labeled x1 and let N(x1) =

{x2,x3,x4}. Since H is connected and |H| ≥ 3, H has a path of length at least 3. Hence let

P = abc⊆ H. Let

J = (G�H) |{a,b,c}×{x1,x2,x3,x4}− (a,x1)(b,x1)− (b,x1)(c,x1).

Then J ⊆ G�H. Now

J/{(a,xi),(c,xi) : i = 1,2,3,4} ' K3,3.

Hence K3,3 ≤ G�H and therefore G�H is not planar.

Suppose then that ∆(G),∆(H)≤ 2. Then clearly G�H is planar. Note that since G and H are

both connected and of order at least 3, they both contain a path of order at least 3.

Hence it may be assumed that |H| ≤ 2. The case that |H|= 1 reduces to whether G is planar.

Hence |H|= 2 and H ' K2.

If G is an outerplanar graph, then G�H is planar.

Suppose that G is not outerplanar. Since G is planar (for otherwise G�H is certainly not

planar), hence K4 ≤ G. Then K5 ≤ K4�K2 ≤ G�H, and therefore G�H is not planar.

This theorem will be used in determining layouts of planar products.

5. Stack and queue layouts on direct product

The direct product G�H of two graphs G and H is defined on the direct product V (G)×V (H)

of the vertex sets of the factors. The edge set E(G�H) is the set of all pairs [(u,v),(x,y)] of

vertices for which either u = x and [v,y] ∈ E(H) or [u,x] ∈ E(G) and v = y.

For instance, C4 = K2�C4.

Theorem 5.1. Let P be a path and T be a tree. Then

(1) sn(P�T )≤ 3.

(2) sn(P�T ) = 1 if and only if |P|= 1, T is any tree; or, |P|= 2 and T = P1,P2.

(3) sn(P�T ) = 2 if and only if |P|> 2, T is a path with at least three vertices.

(4) sn(P�T ) = 3 if and only if |P|> 2, T is a tree with δ (T )≥ 3.
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Proof. That sn(P2�P2) = 1 is obvious; sn(Pn�Pm) = 2(m,n ≥ 3), since the vertices of Pn�Pm

may be considered to lie in the line according to the ordering σ ,σ−1,σ ,σ−1, · · · from left to

right, where σ is the layout of the path which gives the stack-number sn(P) = 1 and σ−1 =

|V | − σ(u) + 1 (for all u ∈ V (P)) is the reversed layout of σ , then the partition of edges is

E1 = {uv ∈ E | σ(u)+σ(v) = 2km+1,k = 1,3,5, · · · ,dn+1/2e} and E2 = {uv ∈ E | σ(u)+

σ(v) = 2km+1,k = 2,4,6, · · · ,dn+1/2e}, which is the minimal layout of Pn�Pm in two stacks.

Let ϕ be the layout of T such that sn(T ) = 1 in ϕ . We consider the stack-number of P�T .

Let the vertices of P�T lie in the line according to ϕ,ϕ−1, ϕ,ϕ−1, · · · , and let P be a path with

length l ≥ 3, T be a tree and there is a vertex of degree 3 in T . We know that sn(T ) = 1, for any

x ∈V (P), denote E3 =
⋃

x∈V (P)
E(x�T ), then E1,E2,E3 become a 3− stack partition of E(P�T ),

so we can get sn(P�T ) ≤ 3. According to the supposition above, the direct product of graph

P and T is not a planar, since P�T includes a K3,3 minor, then sn(P�T ) ≥ 3 using the lemma

2. On the other hand, we can find a layout such that sn(P�T ) ≤ 3 according to the method

mentioned above. So we can get a 3− stack layout of P�T , and the bound of sn(P�T ) ≤ 3

is tight. sn(P�T ) = 3 when T is tree with δ (T ) ≥ 3, because P�T is not a planar when P is

a path with at least three vertices and T is a tree with δ (T ) ≥ 3 according to theorem 8 in this

paper.

Meanwhile, according to the method of layout, sn(P�T ) = 2 if and only if any edge in

(T,ϕ) can be added to one of the two stacks E1,E2 to become one stack. If there is a ver-

tex of degree 3 in T , denoted v, then v is adjacent to at least one vertex denoted u where

u /∈ {x : ϕ(x) = ϕ(v)− 1,ϕ(v) + 1}, then the edge uv will cross either stack E1 or E2. So

sn(P�T ) = 2 if and only if T is a path of length l ≥ 1. Then we proved this theorem.

Theorem 5.2. Let P be a path and G be a connected simple graph. Let sn(G) = s, then

sn(P�G) = f (s)≤ s+2. The bound is tight.

(1) f = s+2 when bw(G)≥ 2;

(2) f = s+1 when bw(G) = 1.
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Proof. sn(P�G) = 1 when G is a graph with one vertex. sn(P�G) = 2 when G = Pn,(m,n > 2)

or G = Cn using the theorems 1 and 2. Then we consider the stack number of P�G where G

is an arbitrary simple connected graph. Let ϕ be the layout of G with the minimal stack num-

ber sn(G) = s in ϕ , {E1,E2, · · · ,Es} is a partition of E(G), and let the vertices of P�G lie in

the line according to ϕ,ϕ−1, ϕ,ϕ−1, · · · , then {E1,E2, · · · ,Es,Ea,Eb} is the partition of E(G),

where Ea,Eb is a partition of E(P�P) using the method mentioned in the lemma above. So we

get the upper bound of sn(P�G).

Theorem 5.3. Let P be a path and G be a connected simple graph. Then qn(P�G)≤ qn(G)+1.

Proof.Let ϕ be the vertex ordering in a qn(G)-queue layout of G with the partition Q1,Q2, · · · ,Qq

of E(G), we can make the vertex ordering of P�G according to ϕ,ϕ, · · · ,ϕ , then the P�G ad-

mits (qn(G)+ 1)-queue layout with partition Q1,Q2, · · · ,Qq,Q0 of E(P�G) where Q0 is the

Pm-edges in P�G. qn(P�G) = qn(G) when G is a graph with one vertex.

Theorem 5.4. Let C be a cycle, then sn(Cm�Cn)≤ 3, when m or n is even.

Proof.For n = 2k. Let ϕ be the layout of Cm such that sn(Cm) = 1 in ϕ . We consider the stack-

number of Cm�Cn. Let the vertices of Cm�Cn lie in the line according to ϕ,ϕ−1, ϕ,ϕ−1, · · · ,

then the partition of edges is E1 = {uv ∈ E | σ(u)+σ(v) = 2km+1,k = 1,3,5, · · · ,dn+1/2e}

and E2 = {uv ∈ E | σ(u)+σ(v) = 2km+1,k = 2,4,6, · · · ,dn+1/2e}, E3 =
⋃

x∈V (Cm)
E(x�Cm).

So we can get a 3− stack layout of Cm�Cn, and the bound of sn(Cm�Cn)≤ 3 is tight.

Theorem 5.5. Let C2m be a even cycle and G be a connected simple graph, then sn(C2m�G)≤

sn(G)+2.

Proof. Let ϕ be the layout of G with the minimal stack number sn(G) = s in ϕ , {E1,E2, · · · ,Es}

is a partition of E(G), and let the vertices of C2m�G lie in the line according to ϕ,ϕ−1,

ϕ,ϕ−1, · · · , then {E1,E2, · · · ,Es,Ea,Eb} is the partition of E(G), where Ea,Eb is a partition
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of E(C2m�G) using the method mentioned in the theorem above. So we get the upper bound of

sn(C2m�G).

Theorem 5.6. Let C be a cycle and G be a connected simple graph. Then qn(C�G)≤ qn(G)+

2.

Proof. Let ϕ be the vertex ordering in a qn(G)-queue layout of G with the partition Q1,Q2, · · · ,Qq

of E(G), we can make the vertex ordering of C�G according to ϕ,ϕ, · · · ,ϕ , then the C�G ad-

mits (qn(G)+ 2)-queue layout with partition Q1,Q2, · · · ,Qq,Q0 of E(C�G) where Q0 is the

Cm-edges in C�G, and qn(Q0) = 2. qn(C�G) = qn(G) when G is a graph with one vertex.
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