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Abstract. The purpose of this paper is to prove strong convergence and stability results for S−iteration procedure

which is faster than Picard iteration procedure for the general class of contractive-like operators introduced by

Bosede and Rhoades [4] in a real normed linear space. Our results generalize and improve a multitude of results

in the literature, including the recent results of Akewe and Okeke [2] and many others for the general class of

contractive-like operators using faster iterative procedure.
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1. Introduction

In this paper, we assume that X is a real normed linear space and C is a nonempty subset of

X . In this paper, we use F(T ) to denote the set of fixed points of T which is nonempty, i.e.,

F(T ) = {x ∈C : x = T x} 6= φ . Let T : C→C be a mapping. Let x0 be a initial approximation
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in C and

xn+1 = f (T,xn) (1.1)

define an iteration procedure which produces a sequence {xn} in C. Suppose F(T ) 6= φ and the

sequence {xn} converges strongly to x∗ ∈ F(T ). Let {yn} be any sequence in X and {εn} be a

sequence in [0,∞) defined by

εn = ‖yn+1− f (T,yn)‖.

If limn→∞ εn = 0 implies that limn→∞ yn = x∗, then the iteration procedure {xn} defined by (1.1)

is called T−stable or stable with respect to T .

Stability results established for several iteration procedures in metric spaces, normed linear

spaces and Banach spaces are available in literature for single-valued mappings, ( see e.g. [2]-

[15] and references therein).

A pioneer work of Harder [7], Harder and Hicks [8, 9] where a concept of stable fixed point

iteration procedure was introduced and studied several stability results for certain classes of

nonlinear mappings. Harder and Hicks [9] revealed the importance of investigating the stability

of various iteration schemes for various classes of nonlinear mappings. In [15], Rhoades con-

tinued the study of stability results by using more general contractive definition appears in the

results of Harder and Hicks [8], Rhoades [14].

In [12], Osilike proved several stability results by using following contractive definition (1.2),

which are generalizations and extensions of most of the results of Harder [7] and Rhoades

[14, 15]: for each x,y ∈ X there exists a ∈ [0,1) and L≥ 0 such that

‖T x−Ty‖ ≤ ‖x− y‖+L‖x−T x‖. (1.2)

In [10], Imoru and Olatinwo proved some stability results using the following general contrac-

tive definition: for each x,y ∈ X there exists δ ∈ [0,1) and a monotone increasing function

φ : R+→ R+ with φ(0) = 0 such that

‖T x−Ty‖ ≤ δ‖x− y‖+φ(‖x−T x‖). (1.3)

In [4], Bosede and Rhoades made an assumption implied by (1.2) and the one which renders

all generalizations of the form (1.3) pointless. That is if x = p is a fixed point of T then (1.3)
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becomes

‖p−Ty‖ ≤ δ‖p− y‖, (1.4)

for all δ ∈ [0,1) and for all x,y ∈ X .

In [5], Chidume and Olaleru gave several examples to show that the class of mappings satis-

fying (1.4) is more general than that of (1.2) and (1.3), provided the fixed point exists.

The following example shows that every contraction map with a fixed point satisfies inequal-

ity (1.4), but converse is not true.

Example 1.1. [5] Let X = `∞ with the norm defined by ‖x‖∞ = max
1≤i≤n

|xi|, and C = {x ∈ `∞ :

‖x‖ ≤ 1}. Let T : C→C be mapping defined by

T x =
9

10
(0,x2

1,x
2
2, · · ·),

for x = (x1,x2, · · ·) ∈C. Then

(1) T is continuous.

(2) T p = p implies p = 0.

(3) T satisfy (1.4). Indeed,

‖T x− p‖∞ =
9

10
‖0,x2

1,x
2
2, · · ·‖∞

≤ 9
10
‖0,x1,x2, · · ·‖∞

=
9
10
‖x− p‖∞,

for all x ∈C (since p = 0).

(4) T is not a contraction map. To see that, let x = (3
4 ,

3
4 , · · ·) and y = (1

2 ,
1
2 , · · ·). Clearly,

x,y ∈C, also

‖x− y‖∞ = ‖(3
4
,
3
4
, · · ·)− (

1
2
,
1
2
, · · ·)‖∞

≤ ‖1
4
,
1
4
, · · ·‖∞ =

1
4
.

On the other hand

T (x) = T (
3
4
,
3
4
, · · ·)

=
9

10
(0,

9
16

,
9

16
, · · ·),
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and

T (y) = T (
1
2
,
1
2
, · · ·)

=
9
10

(0,
1
4
,
1
4
, · · ·),

so that, we have

‖T x−Ty‖∞ =
9

10
‖(0, 9

16
,

9
16

, · · ·)− (0,
1
4
,
1
4
, · · ·)‖∞

=
45

160
.

Suppose, there exists a ∈ [0,1), then by definition of contraction mapping, we have

‖T x−Ty‖∞ ≤ a ‖x− y‖∞

45
160
≤ a

4

for the above choice of x and y. But then this implies that a ≥ 180
160 > 1, so, T is not a

contraction.

Most recently, Akewe and Okeke [2] used definition (1.4) and proved strong convergence and

stability results for Picard-Mann hybrid iterative schemes in a real normed linear space as fol-

lows:

Theorem 1.2. [2] Let X be a real normed linear space and T : X → X be a map with a fixed

point p satisfying the condition (1.4). For arbitrary x0 ∈ X, let {xn} be sequence defined by

xn+1 = Tyn

yn = (1−αn)xn +αnT xn for all n ∈ N,
(1.5)

where {αn} is a real sequence in [0,1] such that
∞

∑
n=1

αn = ∞. Then

(1) {xn} converges strongly to p;

(2) iteration procedure defined by (1.5) is T-stable.

On the other hand, Agarwal et al. [1] introduced S− iteration procedure whose rate of con-

vergence is similar to the Picard iteration procedure and faster than other fixed point iteration

procedures (see Theorem 3.2 [1]).
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Let C be a nonempty convex subset of a normed space X and let T : C→ C be a nonlinear

mapping. Then for x0 ∈C, the S−iteration procedure is defined by:

xn+1 = (1−αn)T xn +αnTyn

yn = (1−αn)xn +αnT xn for all n ∈ N,
(1.6)

where {αn} and {βn} are sequences in (0,1) satisfying certain conditions.

The purpose of this paper is to prove strong convergence and stability results for S−iteration

procedure which is faster than Picard iteration procedure for the general class of contractive-

like operators introduced by Bosede and Rhoades [4] in a real normed linear space. Our results

generalize and improve a multitude of results in the literature, including the recent results of

Akewe and Okeke [2] and many others for the general class of contractive-like operators using

faster iterative procedure.

2. Main results

Now, we start with the following useful Lemma for our main result.

Lemma 2.1. [3] Let δ be a real number satisfying 0 ≤ δ < 1 and {εn}∞
n=0 be a sequence of

positive numbers such that limn→∞ εn = 0. Then, for any sequence of positive numbers {un}∞
n=0

satisfying

un+1 ≤ δun + εn, for n = 0,1,2, · · · ,

then limn→∞ un = 0.

Theorem 2.2. Let X be a real normed linear space and C be a nonempty subset of X. Let

T : C→ C be a general class of contractive-like operators with a fixed point p satisfying the

condition (1.4). Suppose that {αn} and {βn} are real sequences such that 0 ≤ αn,βn ≤ 1 and
∞

∑
n=1

αnβn = ∞. For given x0 ∈C, sequence {xn} is defined by (1.6). Let {yn} be a sequence in X

and define a sequence {εn} in [0,∞) by

sn = (1−βn)yn +βnTyn

εn = ‖yn+1− (1−αn)Tyn−αnT sn‖, n ∈ N,
(2.1)

Then we have the following:
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(a) The sequence {xn} converges strongly to fixed point p of T .

(b) For p ∈ F(T ), let {yn} be sequence such that

‖yn+1− p‖ ≤ δ‖yn− p‖+ εn.

(c) limn→∞ yn = p if and only if limn→∞ εn = 0, that is S−iteration procedure defined by

(1.6) is T−stable.

Proof. (a) Let p ∈ F(T ), in the view of (1.4) and (1.6), we have

‖xn+1− p‖= ‖(1−αn)T xn +αnT zn− p‖

≤ (1−αn)‖T xn− p‖+αn‖T zn− p‖

≤ δ

[
(1−αn)‖xn− p‖+αn‖zn− p‖

]
,

(2.2)

where
‖zn− p‖= ‖(1−βn)xn +βnT xn− p‖

≤ (1−βn)‖xn− p‖+βn‖T xn− p‖

≤ (1−βn)‖xn− p‖+δβn‖xn− p‖

≤ (1−βn(1−δ ))‖xn− p‖.

(2.3)

Substituting (2.3) into (2.2), we have

‖xn+1− p‖ ≤ δ

[
(1−αn)‖xn− p‖+αn(1−βn(1−δ ))‖xn− p‖

]
≤ δ (1−αnβn(1−δ ))| xn− p‖

≤ δ‖xn− p‖.

By using the fact that 0 ≤ δ < 1,0 ≤ αn,βn ≤ 1 ,
∞

∑
n=1

αnβn = ∞ and with the help of Lemma

(2.1), we have limn→∞ ‖xn+1− p‖= 0, that is sequence {xn} converges strongly to p.

(b) Form (2.1), we have

‖yn+1− p‖ ≤ ‖yn+1− (1−αn)Tyn−αnT sn‖+‖(1−αn)Tyn +αnT sn− p‖

≤ εn +‖(1−αn)Tyn +αnT sn− p‖

≤ εn +δ

[
(1−αn)‖yn− p‖+αn‖sn− p‖

]
,

(2.4)
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where

‖sn− p‖= ‖(1−βn)yn +βnTyn− p‖

≤ (1−βn)‖yn− p‖+βn‖Tyn− p‖

≤ (1−βn)‖yn− p‖+δβn‖yn− p‖

≤ (1−βn(1−δ )]‖yn− p‖.

(2.5)

Substituting (2.5) into (2.4), we have

‖yn+1− p‖ ≤ εn +δ

[
(1−αn)‖yn− p‖+αn(1−βn(1−δ ))‖yn− p‖

]
≤ εn +δ (1−αnβn(1−δ ))‖yn− p‖

≤ εn +δ‖yn− p‖,

(2.6)

for all n≥ 0, i.e, (b) holds.

(c) Suppose that limn→∞ yn = p. Using (2.1), we have

εn = ‖yn+1− (1−αn)Tyn−αnT sn‖

≤ ‖yn+1− p‖+‖(1−αn)Tyn +αnT sn− p‖

≤ ‖yn+1− p‖+(1−αn)‖Tyn− p‖+αn‖T sn− p‖

≤ ‖yn+1− p‖+(1−αn)δ‖yn− p‖+δαn‖sn− p‖,

≤ ‖yn+1− p‖+δ

[
(1−αn)‖yn− p‖+αn‖sn− p‖

]
(2.7)

form (2.5), we have

εn ≤ ‖yn+1− p‖+δ

[
(1−αn)‖yn− p‖+αn(1−βn(1−δ )

]
‖yn− p‖

≤ ‖yn+1− p‖+δ

[
1−αnβn(1−δ )

]
‖yn− p‖

→ 0 as n→ ∞.

Conversely, suppose that limn→∞ εn = 0. By using the fact that 0 ≤ δ < 1,0 ≤ αn,βn ≤ 1 ,
∞

∑
n=1

αnβn = ∞ and with the help of Lemma (2.1), we have limn→∞ yn = p. This completes the

proof.

The following example shows that the iteration procedure (1.6) is T−stable.
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Example 2.3 Let R denotes set of real numbers and C = [0,1] ⊂ R with usual norm. Let

T : C→C be a mapping defined by T x = x
2 .

Indeed, T satisfy (1.4) with F(T ) = 0. Take p = 0 and yn = 1
n , for each n ≥ 0. Then

limn→∞ yn = 0. We see that

εn =

∣∣∣∣yn+1− (1−αn)Tyn−αnT [(1−βn)yn +βnTyn]

∣∣∣∣
=

∣∣∣∣yn+1− (1−αn)Tyn−αnT
[
(2−βn)yn

2

]∣∣∣∣
=

∣∣∣∣yn+1− (1−αn)Tyn−αn
(2−βn)yn

4

∣∣∣∣
=

∣∣∣∣yn+1− (1−αn)
yn

2
−αn

(2−βn)yn

4

∣∣∣∣
≤
∣∣∣∣ n−1
2n(n+1)

∣∣∣∣+ ∣∣∣∣αnβn

4n

∣∣∣∣→ 0 as n→ ∞.

We have limn→∞ εn = 0. Hence, iteration procedure (1.6) is T stable.

Conclusion The iteration procedure defined by (1.6) relatively faster and independent iteration

procedure as compared many iteration procedures appears in the literatures, so that our Theorem

2.2 generalize and improve a multitude of results in the literature, including the recent results

of Akewe and Okeke [2] and many others for the general class of contractive-like operators.
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