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1. INTRODUCTION 

 

The fuzzy sets theory which was introduced by Zadeh [10] is applied to many mathematical branches. 

Subramanians. S at al [9] discussed some properties of M - fuzzy groups. This concept studied by many 

researchers [5, 6, 7, 8 ]. Li Hongxing [1] introduced the concept of HX group and the authors Luo 

Chengzhong at al [2] introduced the concepts of fuzzy HX group, this concept discussed by Muthuraj. R 

at al [3, 4]. In this paper, we introduce a new algebraic structure of L – fuzzy M – cosets and its types of 

a M – HX group. Some of their related properties also study. 

 

2. PRELIMINARIES  

 

2.1 Definition: Let X be a non empty set and L = ( L, ) be a lattice with least element 0 and 

greater element 1. A L – fuzzy subset  of X is a function : X  L.     
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 } is called a HX group on G, if  {  - G  2  a non empty set  }, {  - G  In 22.2 Definition: [1] 

is a group with respect to algebraic operation defined by AB = {ab; a  A   b  B}, which its 

unit element is denoted by E.                                                          

2.3 Definition: A HX group with operators is an algebraic system consisting of a HX group , a 

set M and a function defined in the product set M   and having values in  such that, if m(AB) 

denotes the element in  determined by element AB of  and the element m of M, then  is 

called M – HX group with operators.                                 

2.4 Definition: A L – fuzzy set  is called a L – fuzzy M- HX subgroup of a M- HX group  if 

for A, B   and m M.                                                                       

       1. (m(AB))  min {(mA), (mB)}                                                        

(A). ) 1- (A2.         

2.5 Definition: Let  be a M- HX group. A L – fuzzy M - HX subgroup  of  is said to be 

(m(BA)).            (m(AB)) = (mB) or ) ) =   1-(m(ABAM,  m  and  normal if for all A,B  

2.6 Definition: Let  be a L – fuzzy M – HX subgroup of  and U = {A  ; (mA) = (mE)}, 

then O() order of  is defined as O() = O(U).                                           

=   is the set  L the level subset of   fuzzy subset of X, for  –be a L  Let Definition:  7.2

{x  X; (x)  }, this is called a L – fuzzy level subset of .                   

2.8 Definition: A L – fuzzy M – HX subgroup  of  is said to be a generalized              

characteristic L – fuzzy M – HX subgroup if for all A, B  . O(A) = O(B) implies (mA) = 

(mB).                                                                                                            

 

3.PROPERTIES OF L – FUZZY M – COSETS OF M – HX GROUPS 

 

3.1 Definition: Let  be a L – fuzzy M – HX subgroup of , for any A   and m       M , then 

.  cosets of  –fuzzy M  –is called the L   (mX)) for every X 1-(A)(mX) = defined by (A A 

3.2 Proposition: If  is a L – fuzzy M – HX subgroup of  and if  A = E,  then the L – fuzzy M - 

cosets A is also L – fuzzy M – HX subgroup of .  

Proof: Straight forward.                                                                                                 

3.3 Theorem: Let  be a L – fuzzy M – HX subgroup of . Then A = B for any A, B   and 

                            (mE).              A)) = 1-(m(BB)) = 1-(m(AM iff    m  
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Proof:                                                                                                                          

Since  is a L – fuzzy M – HX subgroup of . If A = B for any A, B          and m    M. 

Then A(mA) = B(mA) and A(mB) = B(mB) 

(mE)  and B)) = 1-(m(AB)) also 1- B(m(B)) = 1-A(m()) and A1- B(m()) = A1-A(m(thus  

(mE).  A)) = 1-(m(BB)) = 1-(m(A(mE). Therefore A)) = 1-(m(B 

M we have m  and . For every X  (mE) for A, B A)) = 1-(m(BB)) = 1-(m(ANow, if 

(mE), X))} = min{1-(m(BB)), 1-A(m(min{  X))1-BB1-(m(AX)) = 1-(m(A(mX) = A

 (mX) B (mX). By the same methodB (mX) (mX)  then AB X)) =1-(m(BX))}= 1-(m(B

A(mX) hence A(mX) = B(mX) and A = B.                                                                   

 

3.4 Theorem: Let  be a L – fuzzy M – HX subgroup of  and A = B for A, B   and m    

M then (mA) = (mB).                                                                                

Proof:                                                                                                                          

Since  be a L – fuzzy M – HX subgroup of  and A = B for A, B       

A))                                                                            1-(m(BB(mA) =  

A))}                                                        1-(m(B(mB), min{  

   min{(mB),(m(E))}                                                                

  = (mB)                                                                                       

B))                                                                            1-(m(AA(mB) =  

B))}                                                        1-(m(AmA), (min{  

   min{(mA),(m(E))}                                                                

  = (mA)                                                                                       

Thus (mA) = (mB).                                                                                    

  

  A  for every )= (A . Then AHX subgroup of  –fuzzy M  –be a L  Let 3.5 Theorem: 

and t  L.                                                                                                 

 Proof:                                                                                                                          

                                                                           (mB) A )(ALet B  

                                                                      B))  1-(m(A 

                                                                               B 1-A   
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                                                                                A B     

.                                                                            B  for every )= (A Then A 

 

  -      for A, B  = B and A HX subgroup of  –fuzzy M  –be a L  Let 3.6 Theorem: 

and   L. Then (mA) = (mB)                                                                                                 

Proof:                                                                                                                          

                                                                          B) 1-A), m(A1-Since m(B 

A))                                                                            1-(m(BB(mA) =   

A))}                                                        1-(m(B(mB), min{  

   min{(mB),(m(E))}                                                                

  = (mB)                                                                                       

                B))                                                            1-(m(AA(mB) =  

B))}                                                        1-(m(A(mA), min{  

   min{(mA),(m(E))}                                                                

  = (mA)                                                                                       

Thus (mA) = (mB).                                                                                               

   

3.7 Definition: Let  be a L – fuzzy M – HX subgroup of  then for any A, B   and m    M, 

) for every X 1-(mX)B1- (AB)(mX) = is defined by (A B of middle cosets A–fuzzy M  –a L 

 .                                                                                    

 

3.8 Proposition: Let  be a L – fuzzy M – HX subgroup of  then the L – fuzzy M – middle 

.                     1-if B = A HX subgroup of  –fuzzy M  –B is also L A osetsc 

Proof: Straight forward.                                                                                                   

 

3.9 Definition: Let  be a L – fuzzy M – HX subgroup of  and A  . Then   a L –    fuzzy M – 

   m  P  and, p  ( mX) for every X (mX) =  p(A) p )is defined by (A p )pseudo cosets (A

M.                                                                                                  
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3.10 Proposition: If  is a L – fuzzy M – HX subgroup of  and A  . Then   a L –    fuzzy M 

,  p(mE) for every A  if p(mA)  HX subgroup of  –fuzzy M  –is a L  p )pseudo cosets (A –

p P  and m    M.                                                                   

Proof: Straight forward.                                                                                                   

 

3.11 Definition: If ,  are any two L – fuzzy M – HX subgroup of ,then   a L – fuzzy M – 

and  p  } for every A p )(A ,p )= min {(A p )Ais defined by ( p )Apseudo double cosets (

P  .                                                                                             

 

3.12 Theorem: Let  ,  be any L – fuzzy M – HX subgroup of ,then   a L –         fuzzy M – 

.        HX subgroup of  –fuzzy M  –L  also p )Apseudo double cosets ( 

 

Proof:                                                                                                                          

For all X, Y  , m    M.                                                                               

(m(XY))}                                       p )(A (m(XY)),p )(m(XY)) = min{(A p )A( 

= min{ p(A)( m(XY)), p(A)( m(XY))}                                     

= p(A)min{ ( m(XY)), ( m(XY))}                                             

 p(A)min{ min {(mX), (mY)}, min {(mX), (mY)}}          

 p(A)min{ min {(mX), (mX) }, min {(mY), (mY)}}   

 min{min{p(A)(mX),p(A)(mX)},min{ p(A)(mY), p(A)(mY)}}                                            

(mY)}} p )(mY),(Ap )(mX)},min{(Ap )(A (mX),p )min{min{(A  

(mY)                                                        p )A(mX), ( p )A= min{( 

                                          } )1-(mXp )(A ),1- (mXp )) = min{(A1- (mX p )A(  

)}                                       1-( mX ), p(A)1-( mX p(A) min{=  

 min{ p(A)( mX), p(A)( mX)}                                              

                                        (mX) }       p )(A (mX),p )= min{(A 

                                                                           (mX) p )A( = 

.                                            HX subgroup of  –fuzzy M  –L  also p )ATherefore ( 
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3.13 Corollary: Let  ,  be any L – fuzzy normal M – HX subgroup of ,then   a L –     fuzzy 

.                          HX subgroup of  –fuzzy normal M  –L  also p )Apseudo double cosets ( –M  

Proof: Straight forward.                                                                                                   

 

4. CONJUGATE AND ORDER AND OF L – FUZZY M – HX SUBGROUP OF  

 

4.1 Definition: Let ,  be two L – fuzzy M – HX subgroup of , then  and    are       said to 

(mA)C)  for 1- (C(mA) = .  if for some C  HX subgroup of  –fuzzy M  –be conjugate L 

every A   and m  M.                                                                  

 

4.2 Theorem: Let ,  be two L – fuzzy subset of , then  and    are  conjugate L – fuzzy 

subset of  iff  = .                                                                                             

 Proof:                                                                                                                          

Suppose that  and    conjugate L – fuzzy subset of , then for some C   we have (mA) = 

M.                              m  and  (mA)C)  for every A 1- (C 

=  (mA), hence (mA) =  (mA). Then (mEA) =  C(mA)) = 1- (C=  (mA)C)1- (C(mA) = 

.  

 m  and  (mA)E) for every A 1- (E(mA) = e have w  , since E =  Now, suppose that 

M. Thus ,  are conjugate L – fuzzy subset of .                    

 

4.3 Definition: Let  be L – fuzzy M – HX subgroup of ,  U = {A  ; (mX) = (mE)} then 

O() order of  is defined by O() = O(U).                                              

 

4.4 Theorem: {Generalized Lagrange Theorem}                                                                           

    

Let  be a L – fuzzy M – HX subgroup of  a finite M – HX group , then O() O(). 

 

Proof:                                                                                                                             

Suppose  is L – fuzzy M – HX subgroup of  a finite M – HX group  with E 
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as its identity element, since U = {A  ; (mX) = (mE)}is a M – HX subgroup of  for U is  

- level subset of  where  = (mE). By usual Lagrange Theorem  O(U) O() therefore O() 

O().                                                                                         

4.5 Theorem: If  and  are conjugate L – fuzzy M – HX subgroup of  then O() = O().          

                                                                                                                    

Proof:                                                                                                                          

Since  and  are conjugate L – fuzzy M – HX subgroup of                          

O() = order{ A  ; (mA) = (mE)}                                                                  

E)B)}                                        m( 1-(B )B) = mA( 1-(B ;  A  = order{ 

= order{ A  ; (mA) = (mE)}                                                                 

= O().                                                                                                           

 

middle  –fuzzy M  –is a L  1-Aand A HX subgroup of  –fuzzy M  –is a L  If 4.6 Theorem: 

.                                     ) for every A ) = O(1 -A, then O(Acosets of  

Proof:                                                                                                                          

also HX subgroup of  –fuzzy M  –is a L  1-ABy Proposition 3.8 A 

are  conjugate   1-Aand A   , also for any A  ry A (mX)A) for eve1-(A)(mX) = 1 -A(A 

(mX)A) 1-(A)(mX) = 1 -A(A such that  , as there exists A HX subgroup of  –fuzzy M  –L 

                          ).                                    ) = O(1 -AO(A . Then by Theorem 4.5 for every X 

   

4.7 Theorem: Let  be a L – fuzzy M – HX subgroup of   and  be a. L – fuzzy            subset 

of . If  and  are conjugate L – fuzzy subset then  is a L – fuzzy M – HX subgroup of .         

                                                                                                      

Proof:                                                                                                                          

Let A, B   and m  M, then mAB                                                           

                                                          ABX)) for every X 1- m(X((m(AB)) =  

                          BX))                                                1-AXX 1- (m(X=  

BX)))                                                                     1-AX)(X 1- (m((X=  

BX))}                                                 1-(m(X AX)) , 1- (m (Xmin{  

 min{(m A) , (mB)}                                                                          
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                                                          X)) for every X 1-A 1- (m(X(m(AB)) =   

                                        )                                         1-A X) 1- (m (X=  

A X))                                                                                    1- (m (X=  

= (m A)    

Then  is a L – fuzzy M – HX subgroup of .                                                                                    
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