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We consider the one-space dimensional non-linear wave equation

(1)
∂2u

∂t2
=
∂2u

∂x2
+G

(
x, t, u,

∂u

∂x
,
∂u

∂t

)
, 0 < x < 1, t > 0

with the following initial conditions

(2) u(x, 0) = φ(x), ut(x, 0) = ψ(x), 0 ≤ x ≤ 1

and the boundary conditions

(3) u(0, t) = p0(t), u(1, t) = p1(t), t ≥ 0

We assume that the conditions (2) and (3) are given with sufficient smoothness to

maintain the order of accuracy in the numerical method under consideration.

In past several numerical schemes have been developed for the solution of the linear

and non-linear hyperbolic partial differential equation (1) (see [20-28]). First, Fyfe [5] and

Bickley [32] have discussed the second order accurate cubic spline method for the solution

of linear two point boundary value problems. Jain and Aziz [12] have derived fourth

order cubic spline method for solving the non-linear two point boundary value problems

with significant first derivative terms. Recently, Khan and Aziz [1], Kadalbajoo et al

[15-16], and Kumar and Srivastava [17] have studied on the use of cubic spline technique

for solving singular two point boundary value problems.

During last three decades, there has been much effort to develop stable numerical

methods based on cubic spline approximations for the solution of time-dependent par-

tial differential equations. In 1973, Papamichael and Whiteman [18] have used a cubic

spline technique of lower order accuracy to solve one-dimensional heat conduction equa-

tion. Then using the same technique Raggett and Wilson [7] have solved one-dimensional

wave equation. Later, Fleck Jr [9] has proposed a cubic spline method for solving the

wave equation of non-linear optics. In recent years, Ding and Zhang [8] and Rashidinia

et al [10] have discussed spline methods for the solution of linear hyperbolic equations

with first derivative terms. Recently, Mohanty and Jain [19] have developed high accu-

racy cubic spline method for the solution of one-space dimensional quasi-linear parabolic
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Figure 1. Schematic representation of three-level implicit scheme

equations. Twizell [6] has derived a new explicit difference method for the wave equation

with extended stability range. Because of the stability restriction and instability due to

non-uniform mesh, not many numerical methods for the solution of second order hyper-

bolic equations have been developed so far. Third order accurate variable mesh method

for the solution of nonlinear two point boundary value problems have been discussed by

several authors(see [4,14,28,29,30]). To the authors knowledge no high order methods on

a variable mesh for the solution of 1D nonlinear hyperbolic equations have been discussed

in the literature so far. In this paper, using nine-grid points (see Fig.1), we discuss a new

three-level implicit cubic spline finite difference method of order two in time and three

in space on a variable mesh for the solution of non-linear hyperbolic equation (1). In

this method we require only three evaluation of function G. In next section, we discuss

the cubic spline finite difference method. In section 3, we discuss the application of the

proposed method to one dimensional wave equation in polar coordinates. In this section,

we modify our technique in such a way that the solution retains its order and accuracy

everywhere in the solution region. In section 4, we examine our method over a set of

linear and nonlinear second order hyperbolic equations whose exact solutions are known

and compare the results with the results of other known methods. Concluding remarks

are given in section 5.

2. The numerical method based on cubic spline finite difference

approximation
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Let k > 0 be the mesh spacing in the time direction so that tj = jk, 0 < j < J , J being

a positive integers. Further, We discretize the unit interval [0,1] such that 0 = x0 < x1 <

· · · < xN < xN+1 = 1. Let hl = xl − xl−1, l = 1(1)N and σl = (hl+1/hl) > 0 be the mesh

ratio parameter in the space direction. We replace the region Ω by a set of grid points

(xl, tj) denoted by (l, j). The values of the exact solution u(x, t) at the grid points (l, j),

are denoted by U j
l . Let ujl be the approximate solution at the same grid point.

For the derivation of the cubic spline finite difference method for the solution of dif-

ferential equation (1), we follow the ideas given by Jain and Aziz [12]. We use the cubic

spline approximations in x-direction and second order finite difference approximation in

t-direction.

At the grid point (xl, tj), we may write the differential equation (1) as

U j
ttl − U

j
xxl = G(xl, tj, U

j
l , U

j
xl, U

j
tl) ≡ Gj

l , say

We denote:

Pl = σ2
l + σl − 1, Ql = (1 + σl)(1 + 3σl + σ2

l ),

Rl = σl(1 + σl − σ2
l ), Sl = σl(1 + σl)

At the grid point (l, j), we consider the following approximations:

U
j

tl = (U j+1
l − U j−1

l )/(2k) = U j
tl +O(k2)(4a)

U
j

tl+1 = (U j+1
l+1 − U

j−1
l+1 )/(2k) = U j

tl+1 +O(k2 + k2hlσl)(4b)

U
j

tl−1 = (U j+1
l−1 − U

j−1
l−1 )/(2k) = U j

tl−1 +O(k2 − k2hl)(4c)

U
j

ttl = (U j+1
l − 2U j

l + U j−1
l )/(k2) = U j

ttl +O(k2)(4d)

U
j

ttl+1 = (U j+1
l+1 − 2U j

l + U j−1
l+1 )/(k2) = U j

ttl+1 +O(k2 + k2hlσl)(4e)

U
j

ttl−1 = (U j+1
l−1 − 2U j

l + U j−1
l−1 )/(k2) = U j

ttl−1 +O(k2 − k2hl)(4f)
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U
j

xl = (U j
l+1 − (1− σ2

l )U
j
l − σ

2
l U

j
l−1)/(h1Sl) = U j

xl +
h2l σl

6
U30 +O(h3l σ

2
l − h3l σl)(5a)

U
j

xl+1 =

(
(1 + 2σl)U

j
l+1 − (1 + σl)

2U j
l + σ2

l U
j
l−1

)
/(h1Sl)(5b)

= U j
xl+1 −

h2l σl
6

(1 + σl)U30 +O(σlh
3
l + σ2

l h
3
l + σ3

l h
3
l )

U
j

xl−1 =

(
−U j

l+1 + (1 + σl)
2U j

l − σl(2 + σl)U
j
l−1

)
/(h1Sl)(5c)

= U j
xl−1 −

h2l (1 + σl)

6
U30 +O(σlh

3
l + σ2

l h
3
l − σ3

l h
3
l )

U
j

xxl =
2[U j

l+1 − (1 + σl)U
j
l + σlU

j
l−1]

σl(1 + σl)(h2l )
(5d)

G
j

l+1 = G(xl+1, tj, u
j
l+1, U

j

xl+1, U
j

tl+1)(6a)

G
j

l−1 = G(xl−1, tj, u
j
l−1, U

j

xl−1, U
j

tl−1)(6b)

G
j

l = G(xl, tj, u
j
l , U

j

xl, U
j

tl)(6c)

Let Sj(x) be the cubic spline interpolating polynomial of the function u(x, t) in the

interval [xl−1, xl] and is given by

Sj(x) =
(xl − x)3

6hl
M j

l−1 +
(x− xl−1)3

6hl
M j

l(7)

+

(
U j
l−1 −

h2l
6
M j

l−1

)(
xl − x
hl

)
+

(
U j
l −

h2l
6
M j

l

)(
x− xl−1

hl

)
,

xl−1 ≤ x ≤ xl; l = 1, 2, . . . , N + 1; j = 1, 2, . . . , J

which satisfies at jth-level the following properties

(1) Sj(x) coincides with a polynomial of degree three on each [xl−1, xl],

l = 1, 2, . . . , N + 1; j = 1, 2, . . . , J ,

(2) Sj(x) ∈ C2[0, 1], and

(3) Sj(xl) = U j
l , l = 0, 1, 2, . . . , N + 1; j = 1, 2, . . . , J .



HIGH ACCURACY CUBIC SPLINE APPROXIMATION... 1131

where

(8) M j
l = S”

j (xl) = U j
xxl = U j

ttl−G(xl, tj, U
j
l , U

j
xl, U

j
tl), l = 0, 1, . . . , N +1; j = 1, 2, . . . , J.

(9) mj
l = S

′

j(xl) = U j
xl xl−1 ≤ x ≤ xl

The derivations of cubic spline function Sj(x) are given by

(10) S
′

j(x) =
−(xl − x)2

2hl
M j

l−1 +
(x− xl−1)2

2hl
M j

l +
U j
l − U

j
l−1

hl
− hl

6
[M j

l −M
j
l−1]

(11) S”
j (x) =

(xl − x)

hl
M j

l−1 +
(x− xl−1)

hl
M j

l

Also, we have

Sj(x) =
(xl+1 − x)3

6hl+1

M j
l +

(x− xl)3

6hl+1

(12)

+

(
U j
l −

h2l+1

6
M j

l

)(
xl+1 − x
hl+1

)
+

(
U j
l+1 −

h2l+1

6
M j

l+1

)(
x− xl
hl+1

)
,

xl ≤ x ≤ xl+1; l = 0, 1, 2, . . . , N ; j = 1, 2, . . . , J

S
′

l(x) =
−(xl+1 − x)2

2hl+1

M j
l +

(x− xl)2

2hl+1

M j
l+1 +

U j
l+1 − U

j
l

hl+1

− hl+1

6
[M j

l+1 −M
j
l ](13)

From continuity equation: S ′(xj−) = S ′(xj+)

(14)
hl
6
M j

l−1 +
hl+1

6
M j

l+1 +
hl + hl+1

3
M j

l =
U j
l+1 − U

j
l

hl+1

−
U j
l − U

j
l−1

hl

Further, from (10), we have

(15) mj
l−1 = S

′

j(xl−1) = U j
xl−1 =

U j
l − U

j
l−1

hl
− hl

6
[M j

l + 2M j
l−1]

and from (13), we have

(16) mj
l+1 = S

′

j(xl+1) = U j
xl+1 =

U j
l+1 − U

j
l

hl+1

+
hl+1

6
[M j

l + 2M j
l+1]

Combining (10) and (13), we obtain

(17) mj
l = S

′

j(xl) = U j
xl = U

j

xl −
hlσl

6(1 + σl)
[M j

l+1 −M
j
l−1].
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Note that, (8), (15), (16) and (17) are important properties of the cubic spline function

Sj(x).

Further, at the grid point (xl, tj), let us denote

(18) αjl =

(
∂G

∂Ux

)j
l

, βjl =

(
∂G

∂Ut

)j
l

Since the derivative values of Sj(x) defined by (8), (15), (16) and (17) are not known at

each grid point (xl, tj), we use the following approximations for the derivatives of Sj(x).

Let

M
j

l = U
j

ttl −G
j

l(19a)

M
j

l+1 = U
j

ttl+1 −G
j

l+1(19b)

M
j

l−1 = U
j

ttl−1 −G
j

l−1(19c)

m̂j
l = U

j

xl −
hlσl

6(1 + σl)

[
M

j

l+1 −M
j
l−1

]
(20a)

m̂j
l+1 =

U j
l+1 − U

j
l

hl+1

+
hl+1

6

[
M

j

l + 2M j
l+1

]
(20b)

m̂j
l−1 =

U j
l − U

j
l−1

hl
− hl

6

[
M

j

l + 2M j
l−1

]
(20c)

Now we define the following approximations:

Ĝj
l = G(xl, tj, U

j
l , m̂

j
l , U

j

tl),(21a)

Ĝj
l+1 = G(xl+1, tj, U

j
l+1, m̂

j
l+1, U

j

tl+1),(21b)

Ĝj
l−1 = G(xl−1, tj, U

j
l−1, m̂

j
l−1, U

j

tl−1),(21c)

in which we use the cubic spline function U j
l = Sj(xl), approximation of its first order space

derivative defined by (20a)-(20c) in x-direction and central difference approximations of

time derivative defined by (4a)-(4c) in t-direction.
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With the help of the approximations (4a) and (5a), from (6a), we obtain

G
j

l = Gj
l +

h2l σl
6

∂3U j
l

∂x3
αjl +O(h3l + k2)(22a)

G
j

l+1 = Gj
l+1 −

h2l σl(1 + σl)

6

∂3U j
l

∂x3
αjl +O(h3l + k2)(22b)

G
j

l−1 = Gj
l−1 −

h2l (1 + σl)

6

∂3U j
l

∂x3
αjl +O(h3l + k2)(22c)

Now using the approximations (19a)-(19c), (22a)-(22c), and simplifying (20a)-(20c), we

get

m̂j
l = mj

l +O(h3l + k2hl)(23a)

m̂j
l+1 = mj

l+1 +O(h3l + k2hl)(23b)

m̂j
l−1 = mj

l−1 +O(h3l + k2hl)(23c)

Now, with the help of the approximations (4a) and (23a), from (21a), we obtain

Ĝj
l = G(xl, tj, U

j
l ,m

j
l +O(h3l + k2hl), U

j
tl +O(k2))(24a)

= G(xl, tj, U
j
l ,m

j
l , U

j
tl) +O(h3l + k2hl + k2)

= Gj
l +O(h3l + k2hl + k2)

Ĝj
l+1 = Gj

l+1 +O(h3l + k2hl + k2)(24b)

Ĝj
l−1 = Gj

l−1 +O(h3l + k2hl + k2)(24c)

Then at each grid point (xl, tj), a cubic spline finite difference method with accuracy of

O(h3l + k2hl + k2) for the solution of differential equation (1) may be written as

[U j
l+1 − (1 + σl)U

j
l + σlU

j
l−1] =

h2l
12

[PlU
j

ttl+1 +QlU
j

ttl +RlU
j

ttl−1](25)

− h2l
12

[PlĜ
j
l+1 +QlĜ

j
l +RlĜ

j
l−1] + T̂ jl
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Using the approximations (4d)-(4f) and (24a)-(24c), from (25), we obtain the local trun-

cation error

T̂ jl = [U j
l+1 − (1 + σl)U

j
l + σlU

j
l−1]−

h2l
12

[PlU
j
ttl+1 +QlU

j
ttl +RlU

j
ttl−1](26)

+
h2l
12

[PlG
j
l+1 +QlG

j
l +RlG

j
l−1] +O(h5l + k2h3l + k2h2l )

Now substituting the values Gj
l = U j

ttl − U j
xxl and Gj

l±1 = U j
ttl±1 − U j

xxl±1 in (26), and

then using Taylor expansion of U j
l±1, U

j
ttl±1 and U j

xxl±1 at the grid point (xl, tj), the local

truncation error defined in (26) reduces to T̂ jl = O(h5l + k2h3l + k2h2l ).

Note that, the initial and Dirichlet boundary conditions are given by (2) and (3),

respectively. Incorporating the initial and boundary conditions, we can write the method

(25) in a tri-diagonal matrix form. If the differential equation (1) is linear, we can solve

the linear system using Gauss-elimination (tri-diagonal solver) method; in the non-linear

case, we can use Newton-Raphson iterative method to solve the non-linear system (see

Kelly [3], Hageman and Young [11], Varga [31] and Saad [33]).

3. Application to wave equation with singular coefficients

Consider the hyperbolic equation with singular coefficient.

Let us consider the equation of the form

(27) utt = urr +D(r)ur + E(r)u+ f(r, t), 0 < r < 1, t > 0

subject to appropriate initial and Dirichlet boundary conditions given by (2) and (3),

respectively, where D(r) = α/r, E(r) = −α/r2. For α = 0, the equation above represents

time dependent wave equation and for α = 1 and 2, and replacing the variable x by r,

the equation (27) represents wave equation in cylindrical and spherical polar coordinates,

respectively.
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Applying the approximation (25) to the differential equation (27), and neglecting the

local truncation error, we obtain the scheme

12

h2l
[U j

l+1 − (1 + σl)U
j
l + σlU

j
l−1](28)

= [PlU
j

ttl+1 +QlU
j

ttl +RlU
j

ttl−1]− Pl[Dl+1

(
U j
l+1 − U

j
l

hlσl

)
+El+1U

j
l+1 + f jl+1]

−Rl[Dl−1

(
U j
l − U

j
l−1

hl

)
+El−1U

j
l−1 + f jl−1]

+

(
PlDl+1hlσl

6
− RlDl−1hl

6
−Ql

)
[DlU

j

xl + ElU
j
l + f jl ]

+

(
2PlDl+1hlσl

6
− QlDlhlσl

6(1 + σl)

)
[Dl+1U

j

xl+1 + El+1U
j
l+1 + f jl+1]

+

(
QlDlhlσl
6(1 + σl)

− 2RlDl−1hl
6

)
[Dl−1U

j

xl−1 + El−1U
j
l−1 + f jl−1]

− PlDl+1hlσl
6

[U
j

ttl + 2U
j

ttl+1] +
QlDlhlσl
6(1 + σl)

[U
j

ttl+1 − U
j

ttl−1]

+
2RlDl−1hl

6
[U

j

ttl + 2U
j

ttl−1] l = 1(1)N, j = 0, 1, 2, . . .

where the values of Pl, Ql, Rl are already defined in the previous section and Dl = (Drl),

Dl±1 = D(rl±1), El = E(rl), El±1 = E(r±1), f
j
l = f(rl, tj), f

j
l±1 = f(rl±1, tj) etc.

Note that the linear variable mesh scheme (28) is of O(k2 + k2hl + h3l ) accuracy for the

solution of the wave equation (27) with singular coefficients, however, the scheme fails to

compute when the solution is to be determined at l = 1 due to zero division. We overcome

this difficulty by using the following approximations.

Let
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Dl ≡ D0(29a)

Dl+1 = Dl + σlhlDrl +
σ2
l h

2
l

2
Drrl +O(hl)

3 ≡ D1(29b)

Dl−1 = Dl − hlDrl +
h2l
2
Drrl −O(h3l ) ≡ D2(29c)

El ≡ E0(29d)

El+1 = El + σlhlErl +
σ2
l h

2
l

2
Errl +O(hl)

3 ≡ E1(29e)

El−1 = El − hlErl +
h2l
2
Errl −O(h3l ) ≡ E2(29f)

f jl = f(rl, t) ≡ F0(30a)

f jl+1 = f jl + σlhlf
j
rl +

σ2
l h

2
l

2
f jrrl +O(hl)

3 ≡ F1(30b)

f jl−1 = f jl − hlf
j
rl +

h2l
2 rrl
−O(h3l ) ≡ F2(30c)

where Drl = dD(rl)
dr

, Drrl = d2D(rl)
dr2

, Erl = dE(rl)
dr

, Errl = d2E(rl)
dr2

, f jrl =
∂f(rl,tj)

∂r
, f jrrl =

∂2f(rl,tj)

∂r2
, etc.

Now substituting the approximations (29a)-(29f) and (30a)-(30c) in (28) and neglecting

high order terms, we obtain
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12

h2l
[U j

l+1 − (1 + σl)U
j
l + σlU

j
l−1](31)

= [PlU
j

ttl+1 +QlU
j

ttl +RlU
j

ttl−1]− Pl[D1

(
U j
l+1 − U

j
l

hlσl

)
+E1U

j
l+1 + F1]

−Rl[D2

(
U j
l − U

j
l−1

hl

)
+E2U

j
l−1 + F2]

+

(
PlD1hlσl

6
− RlD2hl

6
−Ql

)
[D0U

j

xl + E0U
j
l + F0]

+

(
2PlD1hlσl

6
− QlD0hlσl

6(1 + σl)

)
[D1U

j

xl+1 + E1U
j
l+1 + F1]

+

(
QlD0hlσl
6(1 + σl)

− 2RlD2hl
6

)
[D2U

j

xl−1 + E2U
j
l−1 + F2]

− PlD1hlσl
6

[U
j

ttl + 2U
j

ttl+1] +
QlD0hlσl
6(1 + σl)

[U
j

ttl+1 − U
j

ttl−1] +
2RlD2hl

6
[U

j

ttl + 2U
j

ttl−1]

Note that the numerical method (31) is of O(k2 +k2hl +h3l ) accuracy and free from the

terms 1/(xl±1), hence very easily solved for l = 1(1)N in the solution region 0 < x < 1,

t > 0. This technique shows that the proposed numerical method is applicable to wave

equation with singular coefficients and we do not require the presence of any fictitious

points outside the solution region to handle the numerical scheme near the boundary.

4. Numerical illustrations

Substituting the approximations (4a), (4d), (5a) and (5d) directly into the differential

equations (1), we obtain a lower order variable mesh method

(32) U
j

ttl = U
j

xxl +G(xl, tj, U
j
l , U

j

xl, U
j

tl) +O(k2 + hl), l = 1(1)N, j = 1.2. . . .

In this section, we have solved some benchmark problems using the method described by

equation (25) and compared our results with the results obtained by using the method (32)

for the solution of 1-D non-linear wave equations. The exact solutions are provided in each

case. The right hand side homogeneous functions, initial and boundary conditions may be

obtained using the exact solution as a test procedure. The linear difference equations have
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been solved using a tri-diagonal solver, whereas non-linear difference equations have been

solved using the Newton-Raphson method. While using the Newton-Raphson method,

the iterations were stopped when absolute error tolerance ≤ 10−12 was achieved. All

computations were carried out using double precision arithmetic.

Note that, the proposed method (25) for second order hyperbolic equations is a three-

level scheme. The value of u at t = 0 is known from the initial condition. To start any

computation, it is necessary to know the numerical value of u of required accuracy at

t = k. In this section, we discuss an explicit scheme of O(k2) for u at first time level, i.e.,

at t = k in order to solve the differential equation (1) using the method (25), which is

applicable to problems in Cartesian and polar coordinates.

Since the values of u and ut are known explicitly at t = 0, this implies all their successive

tangential derivatives are known at t = 0, i.e. the values of u, ux, uxx, · · · , ut, utx, · · · , etc.

are known at t = 0.

An approximation for u of O(k2) at t = k may be written as

(33) u1l = u0l + ku0tl +
k2

2
(utt)

0
l +O(k3)

From equation (1), we have

(34) (utt)
0
l = [utt +G(x, t, u, ux, ut)]

0
l

Thus using the initial values and their successive tangential derivative values, from (34)

we can obtain the value of (utt)
0
l , and then ultimately, from (33) we can compute the

value of u at first time level, i.e. at t = k. Replacing the variable x by r in (33), we can

also obtain an approximation of O(k2) for u at t = k.

Since

1 = xN+1 − x0 = (xN+1 − xN) + (xN − xN−1) + . . .+ (x1 − x0)

= hN+1 + hN + . . .+ h1 = h1(1 + σ1 + σ1σ2 + σ1σ2σ3 + . . .+ σ1σ2 · · · σN)

Thus

(35) h1 =
1

1 + σ1 + σ1σ2 + . . .+ σ1σ2 . . . σN
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This determines the starting value of the first step length in x-direction and the subse-

quent step lengths in x-direction are calculated by

h2 = σ1h1, h3 = σ2h2, · · · etc.

For simplicity, we may consider σl = σ (a constant), then h1 reduces to

(36) h1 =
(1− σ)

1− σN+1
, σ 6= 1

Therefore, by prescribing the value of N and σ, we can calculate h1 from the above

relation and the remaining mesh points in x-direction is determined by hl+1 = σhl, l =

1(1)N . We have chosen the value of σ = 1.02. Throughout our computation we use the

time step k = 1.6/(N + 1)2

Example 1 (Wave equation in polar coordinates)

(37) utt = urr +
α

r
ur + f(r, t), 0 < r < 1, t > 0

The exact solution is u = cosh r sin t. The maximum absolute errors are tabulated in

Table 1 at t = 1 for α = 0, 1 and 2.

Example 2 (Van der Pol type nonlinear wave equation)

(38) utt = uxx + γ(u2 − 1)ut + f(x, t), 0 < x < 1, t > 0

with exact solution u = e−γt sin(πx). The maximum absolute errors are tabulated in

Table 2 at t = 2 for γ = 1, 2 and 3.

Example 3 (Dissipative nonlinear wave equation)

(39) utt = uxx − 2uut + f(x, t), 0 < x < 1, t > 0

with exact solution u = sin(πx) sin t. The maximum absolute errors are tabulated in

Table 3 at t = 1 and 2.

Example 4 (Non-linear wave equation)

(40) utt = uxx + γu(ux + ut) + f(x, t), 0 < x < 1, t > 0
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with exact solution u = e−t coshx. The maximum absolute errors are tabulated in Table

4 for γ = 2, 5, and 10 at t = 1.

5. Concluding remarks

Available numerical methods on a variable mesh for the numerical solution of second

order non-linear wave equations are of O(k2 +hl) accurate. In this article, using the same

variable mesh and same number of grid points and three evaluations of the function G

(as compared to five and nine evaluations of the function G discussed in [13, 20, 21] for

constant mesh), we have derived a new stable cubic spline discretization ofO(k2+k2hl+h
3
l )

accuracy for the solution of non-linear wave equation (1). The proposed method produces

stable results for nonlinear equations, which is exhibited from the computed results. The

proposed numerical method (25) is applicable to wave equation in polar coordinates which

produces stable results, whereas the corresponding lower order method (32) is unstable.
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Table 1. The maximum absolute errors

Method (31) Method (32)

N + 1 α = 0 α = 1 α = 2 α = 0,1 and 2

08 0.1045(-03) 0.2574(-04) 0.7176(-04)

16 0.6586(-05) 0.1606(-05) 0.4543(-05) Unstable

32 0.4124(-06) 0.1003(-06) 0.2849(-06)

64 0.2579(-07) 0.6274(-08) 0.1782(-07)

Table 2. The maximum absolute errors

Method (25) Method (32)

N + 1 γ = 1 γ = 2 γ = 3 γ = 1 γ = 2 γ = 3

04 0.3700(-03) 0.2380(-03) 0.2443(-03) 0.1310(-01) 0.5800(-02) 0.2400(-02)

08 0.2676(-04) 0.1610(-04) 0.1473(-04) 0.3300(-02) 0.1600(-02) 0.6426(-02)

16 0.2138(-05) 0.1210(-05) 0.9764(-06) 0.8805(-03) 0.4164(-03) 0.1728(-03)

32 0.2363(-06) 0.1236(-06) 0.7923(-07) 0.2573(-04) 0.1217(-03) 0.5039(-04)

Table 3. The maximum absolute errors

Method (25) Method (32)

N + 1 t = 1 t = 2 t = 1 t = 2

08 0.8583(-04) 0.1064(-04) 0.9300(-02) 0.1410(-01)

16 0.6570(-05) 0.8302(-05) 0.2500(-02) 0.3700(-02)

32 0.7055(-06) 0.9182(-06) 0.7250(-03) 0.1100(-02)

64 0.1108(-06) 0.1810(-06) 0.2781(-03) 0.3941(-03)

Table 4. The maximum absolute errors

Method (25) Method (32)

N + 1 γ = 2 γ = 5 γ = 10 γ = 2 γ = 5 γ = 10

08 0.5008(-04) 0.2193(-03) 0.6101(-02) 0.1100(-02) 0.7500(-02) 0.2670(-00)

16 0.3157(-05) 0.1297(-04) 0.1278(-03) 0.3195(-03) 0.2200(-02) 0.6850(-01)

32 0.2001(-06) 0.9454(-06) 0.1118(-04) 0.1077(-03) 0.6869(-03) 0.2120(-01)

64 0.2843(-07) 0.5431(-07) 0.1692(-05) 0.4569(-04) 0.2748(-03) 0.8400(-02)


