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Abstract. In this article, we investigate a generalized variational inequality based on a regularization iterative

process. Strong convergence theorems of solutions are established in a 2-uniformly smooth and uniformly convex

Banach space.
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1. Introduction-preliminaries

Variational inequality theory, which was introduced in sixties, has emerged as an interesting

and fascinating branch of applicable mathematics with a wide range of applications in finance,

economics, optimization, engineering, and medicine. Variational inequality theory is dynamic

and experiencing an explosive growth in both theory and applications. Recently, fixed-point

methods have been extensively investigated for solving variational inequalities; see [1-13] and

the references therein. Among the fixed-point algorithms, Mann-like iterative algorithms are

efficient for solving several nonlinear problems. However, Mann-like iterative algorithms are

only weakly convergent even in Hilbert spaces. In many disciplines, including economics [14],
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image recovery [15], quantum physics [16], and control theory [17], problems arises in infinite

dimension spaces. In such problems, strong convergence is often much more desirable than

weak convergence, for it translates the physically tangible property that the energy ‖xn− x‖ of

the error between the iterate xn and the solution x eventually becomes arbitrarily small. Recent-

ly, Moudafi [18] introduced a viscosity method for solving fixed points of nonlinear operators

in the framework of Hilbert spaces. He showed that the convergence point is not only a fixed

point of nonlinear operators but a unique solution to some monotone variational inequality; see

[18] for more details and the references therein.

Let C be a nonempty closed and convex subset of a Banach space E. Let E∗ be the dual space

of E and 〈·, ·〉 denote the pairing between E and E∗. For q > 1, the generalized duality mapping

Jq : E→ 2E∗ is defined by

Jq(x) = { f ∈ E∗ : 〈x, f 〉= ‖x‖q,‖ f‖= ‖x‖q−1}

for all x ∈ E. In particular, J = J2 is called the normalized duality mapping. It is known that

Jq(x) = ‖x‖q−2J(x) for all x ∈ E. We denote by j the single normalized duality mapping.

Further, we have the following properties of the generalized duality mapping Jq:

(a) Jq(tx) = tq−1Jq(x) for all x ∈ E and t ∈ [0,∞);

(b) Jq(x) = ‖x‖q−2J2(x) for all x ∈ E with x 6= 0;

(c) Jq(−x) =−Jq(x) for all x ∈ E.

Let U = {x∈X : ‖x‖= 1}. A Banach space E is said to uniformly convex if, for any ε ∈ (0,2],

there exists δ > 0 such that, for any x,y ∈U ,

‖x− y‖ ≥ ε implies
∥∥∥x+ y

2

∥∥∥≤ 1−δ .

A Banach space E is said to be smooth if the limit limt→0
‖x+ty‖−‖x‖

t exists for all x,y ∈U . It

is also said to be uniformly smooth if the limit is attained uniformly for x,y ∈U . The modulus

of smoothness of E is defined by

ρ(τ) = sup{1
2
(‖x+ y‖+‖x− y‖)−1 : x,y ∈ X ,‖x‖= 1,‖y‖= τ},
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where ρ : [0,∞)→ [0,∞) is a function. It is known that E is uniformly smooth if and only if

limτ→0
ρ(τ)

τ
= 0. Let q be a fixed real number with 1 < q ≤ 2. A Banach space E is said to be

q-uniformly smooth if there exists a constant c > 0 such that ρ(τ)≤ cτq for all τ > 0.

Note that typical examples of both uniformly convex and uniformly smooth Banach spaces

are Lp, where p > 1. More precisely, Lp is min{p,2}-uniformly smooth for every p > 1. Note

also that no Banach space is q-uniformly smooth for q > 2; see [19] for more details.

Let C be a nonempty closed convex subset of E. Recall that an operator A of C into E is said

to be accretive iff

〈Ax−Ay, j(x− y)〉 ≥ 0, ∀x,y ∈C,

where j(x− y) ∈ J(x− y).

For α > 0, recall that an operator A of C into E is said to be α-inverse-strongly accretive if

〈Ax−Ay, j(x− y)〉 ≥ α‖Ax−Ay‖2, ∀x,y ∈C,

where j(x− y) ∈ J(x− y).

Let D be a subset of C and Q be a mapping of C into D. Then Q is said to be sunny if

Q(Qx+ t(x−Qx)) = Qx,

whenever Qx+t(x−Qx)∈C for x∈C and t ≥ 0. A subset D of C is called a sunny nonexpansive

retract of C if there exists a sunny nonexpansive retraction from C onto D.

The following result describes a characterization of sunny nonexpansive retractions on a s-

mooth Banach space.

Proposition 1.1. [20] Let E be a smooth Banach space and let C be a nonempty subset of E. Let

Q : E→C be a retraction and let J be the normalized duality mapping on E. Then the following

are equivalent:

(1) Q is sunny and nonexpansive;

(2) ‖Qx−Qy‖2 ≤ 〈x− y,J(Qx−Qy)〉, ∀x,y ∈ E;

(3) 〈x−Qx,J(y−Qx)〉 ≤ 0, ∀x ∈ E,y ∈C.
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Proposition 1.2. [11] Let C be a nonempty closed convex subset of a uniformly convex and

uniformly smooth Banach space E and let T be a nonexpansive mapping of C into itself with

F(T ) 6= /0. Then the set F(T ) is a sunny nonexpansive retract of C.

Recently, Aoyama et al. [7] considered the following generalized variational inequality prob-

lem:

Let E be a smooth Banach space and C a nonempty closed convex subset of E and A an

accretive operator of C into E. Find a point u ∈C such that

〈Au,J(v−u)〉 ≥ 0, ∀v ∈C. (1.1)

Next, we use V I(C,A) to denote the set of solutions of generalized variational inequality prob-

lem (1.1). In Hilbert spaces, generalized variational inequality reduces to the classical monotone

variational inequality.

Aoyama et al. [7] proved that generalized variational inequality (1.1) is equivalent to a fixed

point problem. The element u ∈C is a solution of generalized variational inequality (1.1) if and

only if u ∈C satisfies equation

u = QC(u−λAu), (2.2)

where λ > 0 is a constant and QC is a sunny nonexpansive retraction from E onto C.

For solving solutions of monotone variational inequalities, Iiduka et al. [8] proved the fol-

lowing theorem.

Theorem ITT. Let C be a nonempty closed convex subset of a real Hilbert space H and let

A be an α-inverse strongly monotone operator of H into H with V I(C,A) 6= /0. Let {xn} be a

sequence defined as follows: x1 = x ∈C and

xn+1 = PC(αnxn +(1−αn)PC(xn−λnAxn))

for every n = 1,2, . . . , where C is the metric projection from H onto C, {αn} is a sequence in

[−1,1], and {λn} is a sequence in [0,2α]. If {αn} and {λn} are chosen so that {αn} ∈ [a,b] for

some a,b with−1 < a < b < 1 and {λn} ∈ [c,d] for some c,d with 0 < c < d < 2(1+a)α , then

{xn} converges weakly to some element of V I(C,A).
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Recently, Aoyama, Iiduka and Takahashi [7] obtained a weak Theorem in a uniformly convex

and 2-uniformly smooth Banach space. To be more precise, they proved the following result.

Theorem AIT. Let E be a uniformly convex and 2-uniformly smooth Banach space and C be a

nonempty closed convex subset of E. Let QC be a sunny nonexpansive retraction from E onto C,

α > 0 and A be an α-inverse strongly-accretive operator of C into E with S(C,A) 6= /0, where

S(C,A) = {x∗ ∈C : 〈Ax∗,J(x− x∗)〉 ≥ 0, x ∈C}.

If {λn} and {αn} are chosen such that λn ∈ [a, α

K2 ] for some a > 0 and αn ∈ [b,c] for some b,c

with 0 < b < c < 1, then the sequence {xn} defined by the following manners:

x1 = x ∈C, xn+1 = αnxn +(1−αn)QC(xn−λnAxn) (ϒ′)

converges weakly to some element z of S(C,A), where K is the 2-uniformly smoothness constant

of E.

In this paper, motivated by research work going on this direction, we investigate general-

ized variational inequality (1.1) based on a regularization iterative process. Strong convergence

theorems of solutions are established in a 2-uniformly smooth and uniformly convex Banach

space.

In order to prove our main results, we need the following lemmas and definitions.

Lemma 1.3. [19] Let E be a real 2-uniformly smooth Banach space with the best smooth

constant K. Then the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 +2〈y,Jx〉+2‖Ky‖2, ∀x,y ∈ E.

Lemma 1.4. [21]. Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤ (1− γn)αn +δn,

where γn is a sequence in (0,1) and {δn} is a sequence such that

(i) ∑
∞
n=1 γn = ∞;

(ii) limsupn→∞ δn/γn ≤ 0 or ∑
∞
n=1 |δn|< ∞.
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Then limn→∞ αn = 0.

Lemma 1.5. [7] Let C be a nonempty closed convex subset of a smooth Banach space E. Let

QC be a sunny nonexpansive retraction from E onto C and let A be an accretive operator of C

into E. Then, for all λ > 0, V I(C,A) = F(QC(I−λA)).

Lemma 1.6. [22] Let E be a uniformly convex Banach space, C a nonempty closed convex

subset of E and T : K→ K a nonexpansive mapping. Then I−T is demi-closed at zero.

Lemma 1.7. [23] Let {xn} and {yn} be bounded sequences in a Banach space e and let {βn}

be a sequence in (0,1) with 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1. Suppose that xn+1 = (1−

βn)yn+βnxn for all n≥ 0 and limsupn→∞

(
‖yn+1−yn‖−‖xn+1−xn‖

)
≤ 0. Then limn→∞ ‖yn−

xn‖= 0.

2. Main results

Theorem 2.1. Let E be a 2-uniformly smooth and uniformly convex Banach space with the

best smooth constant K. Let C be a nonempty closed convex subset of E. Let QC be a sunny

nonexpansive retraction from E onto C and let A : C→ E be an α-inverse-strongly accretive

mapping with V I(C,A) 6= /0. Let {xn} be a sequence generated in the following process: x1 ∈C,

yn = QC(xn−λnAxn), xn+1 = αn f (xn)+βnxn + γnyn, n≥ 1, {αn}, {βn}, {γn} are sequences in

(0,1) and {λn} is a sequence in (0,α/K2). Assume that {αn}, {βn}, {γn} and {λn} satisfy αn+

βn + γn = 1, limn→∞ αn = 0, ∑
∞
n=1 αn = ∞, 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1, ∑

∞
n=1 |λn−

λn+1|= 0. Then {xn} converges strongly to x̄, where x̄ = QV I(C,A) f x̄.

Proof. Fixing x∗ ∈V I(C,A), we see x∗ = QC(x∗−λnAx∗). Using Lemma 1.3 and Lemma 1.5,

we have

‖x∗− yn‖2 = ‖QC(x∗−λnAx∗)−QC(xn−λnAxn)‖2

≤ ‖λn(Axn−Ax∗)− (xn− x∗)‖2

≤ ‖xn− x∗‖2 +2K2
λ

2
n ‖Axn−Ax∗‖2−2λn〈Axn−Ax∗,J(xn− x∗)〉

≤ ‖xn− x∗‖2−2λn(α−λnK2)‖Axn−Ax∗‖2

≤ ‖xn− x∗‖2.

(2.1)
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It follows that

‖xn+1− x∗‖ ≤ αn‖ f (xn)− x∗‖+βn‖xn− x∗‖+ γn‖QC(xn−λnAxn)− x∗‖

≤ αnκ‖xn− x∗‖+αn‖ f (x∗)− x∗‖+βn‖xn− x∗‖+ γn‖QC(xn−λnAxn)− x∗‖

≤
(
1−αn(1−κ)

)
‖xn− x∗‖+αn‖ f (x∗)− x∗‖

≤max{‖xn− x∗‖+ ‖ f (x∗)− x∗‖
1−κ

},

which implies that sequence {xn} is bounded, so is {yn}. Notice that

‖yn− yn+1‖ ≤ ‖(xn+1−λn+1Axn+1)− (xn−λnAxn)‖

≤ ‖(xn+1−λn+1Axn+1)− (xn−λn+1Axn)‖+ |λn−λn+1|‖Axn‖

≤ ‖xn+1− xn‖−2λn+1〈Axn+1−Axn,J(xn+1− xn)〉

+2K2
λ

2
n+1‖Axn+1−Axn‖2 + |λn−λn+1|‖Axn‖

≤ ‖xn+1− xn‖−2λn+1α‖Axn+1−Axn‖2

+2K2
λ

2
n+1‖Axn+1−Axn‖2 + |λn−λn+1|‖Axn‖

≤ ‖xn+1− xn‖+ |λn−λn+1|‖Axn‖.

(2.2)

Let xn+1 = (1−βn)qn +βnxn. It follows that

‖qn+1−qn‖= ‖
αn+1 f (xn+1)+ γn+1yn+1

1−βn+1
− αn f (xn)+ γnyn

1−βn
‖

= ‖ αn+1

1−βn+1
f (xn+1)+

1−αn+1−βn+1

1−βn+1
yn+1

−
( αn

1− γn
f (xn)+

1−αn−βn

1−βn
yn
)
‖

≤ αn+1

1−βn+1
‖ f (xn+1)− yn+1‖+

αn

1−βn
‖ f (xn)− yn‖+‖yn+1− yn‖.

Using (2.2), one has

‖qn+1−qn‖−‖xn+1− xn‖

≤ αn+1

1−βn+1
‖ f (xn+1)− yn+1‖+

αn

1−βn
‖ f (xn)− yn‖+ |λn−λn+1|‖Axn‖.

From the restriction imposed on the control sequences, one has

limsup
n→∞

(
‖qn+1−qn‖−‖xn+1− xn‖

)
≤ 0.
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This implies from Lemma 1.7 that limn→∞ ‖qn− xn‖= 0. It follows that

lim
n→∞
‖xn+1− xn‖= 0. (2.3)

On the other hand, one has

‖xn− yn‖ ≤ ‖xn− xn+1‖+‖xn+1− yn‖

≤ ‖xn− xn+1‖+αn‖ f (xn)− yn‖+βn‖xn− yn‖.

Using (2.3) and the fact that limn→∞ αn = 0, we obtain

lim
n→∞
‖xn− yn‖= 0. (2.4)

Next, we show that

limsup
n→∞

〈 f (x̄)− x̄,J(xn− x̄)〉 ≤ 0. (2.5)

To show (2.5), we choose a subsequence {xni} of {xn} such that

limsup
n→∞

〈 f (x̄)− x̄,J(xni− x̄)〉= lim
i→∞
〈 f (x̄)− x̄,J(xni− x̄)〉. (2.6)

Since {xni} is bounded, there exists a subsequence {xni j
} of {xni} which converges weakly to

w. Without loss of generality, we can assume that xni ⇀ w. Next, we show that w ∈ V I(C,A).

From the assumption, we see that sequence {λni} is bounded. So, there exists a subsequence

{λni j
} converges to λ0. We may, without loss of generality, assume that λni → λ0. Observe that

‖xni−QC(xni−λ0Axni)‖ ≤ ‖yni− xni‖+‖QC(xni−λ0Axni)− yni‖

≤ ‖(xni−λ0Axni)− (xni−λniAxni)‖+‖yni− xni‖

≤ ‖yni− xni‖+‖λni−λ0‖K,

where K is an appropriate constant such that K ≥ supn≥1{‖Axn‖}. Using (2.4), one has

lim
i→∞
‖QC(xni−λ0Axni)− xni‖= 0.
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On the other hand, we know that QC(I − λ0A) is nonexpansive. Indeed, for x,y ∈ C, from

Lemma 1.3, we see that

‖QC(I−λ0A)x−QC(I−λ0A)y‖2 ≤ ‖(I−λ0A)x− (I−λ0A)y‖2

≤ ‖x− y‖2−2λ0〈Ax−Ay,J(x− y)〉+2K2
λ

2
0 ‖Ax−Ay‖2

≤ ‖x− y‖2 +2λ0(λ0K2−α)‖Ax−Ay‖2

≤ ‖x− y‖2.

It follows from Lemma 1.6 that w ∈ F(QC(I− λ0A)). This in turn implies w ∈ V I(C,A) =

F(QC(I−λ0A)). From (2.6), we have

limsup
n→∞

〈 f (x̄)− x̄,J(xn− x̄)〉= lim
i→∞
〈 f (x̄)− x̄,J(xni− x̄)〉

= lim
i→∞
〈 f (x̄)− x̄,J(w− x̄)〉 ≤ 0.

(2.7)

Finally, we show that xn→ x̄ as n→ ∞. Observe that

‖xn+1− x̄‖2 = 〈αn f (xn)+βnxn + γnyn− x̄,J(xn+1− x̄)〉

= αn〈 f (xn)− x̄,J(xn+1− x̄)〉+βn〈xn− x̄,J(xn+1− x̄)〉+ γn〈yn− x̄,J(xn+1− x̄)〉

≤ αn‖ f (xn)− f (x̄)‖‖xn+1− x̄‖+αn〈 f (x̄)− x̄,J(xn+1− x̄)〉+βn‖xn− x̄‖‖xn+1− x̄‖

+ γn‖yn− x̄‖‖xn+1− x̄‖

≤
(
1−αn(1−κ)

)
‖xn− x̄‖‖xn+1− x̄‖+αn〈 f (x̄)− x̄,J(xn+1− x̄)〉.

This implies that

‖xn+1− x̄‖2 ≤
(
1−αn(1−κ)

)
‖xn− x̄‖2 +2αn〈 f (x̄)− x̄,J(xn+1− x̄)〉

From assumptions limn→∞ αn = 0, ∑
∞
n=1 αn = ∞ and applying Lemma 1.4, we obtain that

lim
n→∞
‖xn− x̄‖= 0.

This completes the proof.

In the framework of Hilbert space, 2-uniformly smooth and uniformly convex Banach spaces

are reduced to Hilbert space and sunny nonexpansive retraction QCfrom E onto C is reduced to

metric projection Pro jC. Then Theorem 2.1 is reduced to the following.



884 S.Y. CHO, X. QIN

Corollary 2.2. Let E be a Hilbert space and let C be a nonempty closed convex subset of

E. Let A : C→ E be an α-inverse-strongly monotone mapping with V I(C,A) 6= /0. Let {xn}

be a sequence generated in the following process: x1 ∈ C, yn = Pro jC(xn− λnAxn), xn+1 =

αn f (xn)+βnxn + γnyn, n≥ 1, {αn}, {βn}, {γn} are sequences in (0,1) and {λn} is a sequence

in (0,α/K2). Assume that {αn}, {βn}, {γn} and {λn} satisfy αn +βn + γn = 1, limn→∞ αn = 0,

∑
∞
n=1 αn = ∞, 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1, ∑

∞
n=1 |λn− λn+1| = 0. Then {xn} con-

verges strongly to x̄, where x̄ = Pro jV I(C,A) f x̄.
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