Available online at http://scik.org J. Math. Comput. Sci. 2 (2012), No. 4, 1086-1090 ISSN: 1927-5307

THE DEBYE SCATTERING FORMULA IN n DIMENSIONS

THOMAS WIEDER*

https://sites.google.com/site/twieder21stcenturyad/

Abstract. An integral for the Debye scattering formula is given which is valid for any dimension $n \ge 2$. Explicit formulas for n = 2, ..., 8 are provided, too.

Keywords: diffraction; Debye scattering formula.

2000 AMS Subject Classification: 82D30; 82-08

1. The Debye scattering formula in n = 3 dimensions

The Debye scattering formula (also called Debye scattering function) is of fundamental importance for X-ray diffraction in disordered materials and can be found in many textbooks on diffraction [1, 2]. It is based on the assumption that the distance vector $\mathbf{r}_{i,j}$ between two atoms *i* and *j* takes on any orientation in space for an amorphous material. The tip of $\mathbf{r}_{i,j}$ lies on the surface of a sphere of radius $\|\mathbf{r}_{i,j}\| = r_{i,j}$. In the totally disordered case the surface density $f(\mathbf{r}_{i,j})$ of the tip is constant along the surface, that is $f(\mathbf{r}_{i,j}) = 1$. The contribution of $\mathbf{r}_{i,j}$ to the diffraction pattern is obtained from integrating $f(\mathbf{r}_{i,j})$ over the entire surface of the *n*-sphere. If $f(\mathbf{r}_{i,j}) = 1$ and the sphere is of dimension n = 3, then the classical Debye scattering function results (see the entry for n = 3 in table 1).

^{*}Corresponding author

E-mail address: thomas.wieder@t-online.de (T. Wieder)

Received March 17, 2012

If the material is not totally disordered, then $f(\mathbf{r}_{i,j})$ will not be constant any more. This case had been examined in previous papers [3, 4]. In the present paper we assume that $f(\mathbf{r}_{i,j}) = 1$ but *n* can take on arbitrary integer values $n = 2, 3, 4, \ldots$ We will give an integral from which the explicit form of the Debye scattering formula for given *n* can be calculated.

2. An one-dimensional integral over the surface of the *n*-sphere

We consider an *n*-dimensional euclidian coordinate system E_n . Within E_n let $f(\mathbf{a})$ be a continuous real-valued function where \mathbf{a} is a *n*-dimensional vector in E_n . Blumenson [5] gave a simple formula for the integral $F(\mathbf{a},n)$ of $f(\mathbf{a})$ over the surface of the *n*-dimensional sphere of radius r with the origin as center. With $\|\mathbf{a}\| = a$ as the length of \mathbf{a} and with ϕ as the angle between the vectors \mathbf{a} and \mathbf{r} we have

(1)
$$F(\mathbf{a},n) = \int_{\phi=0}^{\pi} \frac{2r^{n-1}\pi^{(n-1)/2}}{\Gamma\left(\frac{n-1}{2}\right)} f(a\,r\,\cos(\phi),r^2)\sin(\phi)^{n-2}d\phi.$$

For $f(a r \cos(\phi), r^2) = 1$ one gets from (1) the surface area of the *n*-sphere, that is $(2\pi^{n/2}/\Gamma(n/2))r^{n-1}$. We have to choose the suitable function f(k, n) in order to derive the *n*-dimensional Debye scattering formula F(k, n) where **k** is the scattering vector. The contribution of $\mathbf{r}_{i,j}$ to the diffracted intensity I(k, n) depends on the scalar product $\mathbf{k} \cdot \mathbf{r}_{i,j} = k r_{i,j} \cos \phi = f(\phi)$. Furthermore, we have to normalize the integral by the volume of the *n*-sphere. We therefore have for the *n*-dimensional Debye scattering function F(k, n)

(2)
$$F(k,n) = \int_{\phi=0}^{\pi} \frac{\Gamma\left(\frac{n}{2}\right)}{\sqrt{\pi}\Gamma\left(\frac{n-1}{2}\right)} \cos(k r_{i,j} \cos(\phi)) \sin(\phi)^{n-2} d\phi.$$

The integral (2) can be solved using a computer algebra program. Care must be taken for the case n=even, in which one sets the upper integration limit equal to $\pi/2$ and subsequently multiplies the resulting integral by the factor 2. The solution of (2) is the *n*-dimensional Debye Scattering formula (3). With J(i, x) as the *i*-th Bessel function of the first kind F(k, n) is

(3)
$$F(k,n) = 2^{\left(\frac{n}{2}-1\right)} \Gamma\left(\frac{n}{2}\right) (k r_{i,j})^{\left(-\frac{n}{2}\right)} \left(J\left(\frac{n}{2}, k r_{i,j}\right) n - J\left(\frac{n}{2}+1, k r_{i,j}\right) k r_{i,j}\right)$$

THOMAS WIEDER*

One can insert concrete values for n into 3. The resulting formulas for n = 2, ..., 8 are compiled in table 1. One observes that the well known formula for n = 3 is recovered. Just as an aside: The factors 1, 1, 2, 3, 8, 15, 48,... in the numerators are equal to the double factorials, see the integer sequence http://oeis.org/A006882 in the Online Encyclopedia of Integer Sequences [6].

3. Examples: Scattering functions for some simplexes

The intensity I(k, n) scattered by an atomic assembly in n dimensions depends on its atoms m = 1, 2, ... with their atomic scattering factors $f(k)_i$ and their mutually distance vectors $\mathbf{r}_{i,j}$. (The $f(k)_m$ should not be confused with the function f in the preceding section.) Then the total intensity I(k, n) scattered from such an assembly of M atoms is equal to

(4)
$$I(k,n) = \sum_{i=1}^{M} \sum_{j=1}^{M} f(k)_{i} f^{*}(k)_{j} F(k,n).$$

As a first simple application of (2) we give in figure 1 the scattering functions for the *n*-simplexes in the dimensions n = 2, 3, 4, that is the scattering functions of the triangle, the tetrahedron and the pentachoron. The n + 1 vertices of the *n*-simplex have the n + 1dimensional position vectors (1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1). From them one gets immediately the required distance vectors $\mathbf{r}_{i,j}$. For simplicity we set $f(k)_m = 1$ for all m and we use arbitrary units.

Figure 1 displays the curves I(k,n) for n = 2, 3, 4. One observes that for k = 0 the scattering curve I(k,n) starts at n(n+1)/2 which is exactly the number of edges of the *n*-simplex, as expected. Furthermore, for higher k the scattering approaches n-1 which corresponds to the average number of neighbours for atom m, again as expected.

4. Conclusion

The *n*-dimensional Debye scattering formula has been derived from a simple onedimensional integral. Admittedly, applications for the cases n > 3 are not known yet, but

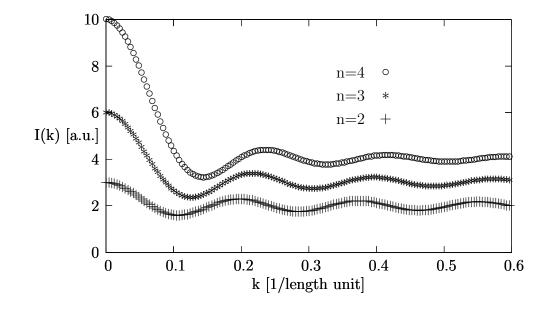


FIGURE 1. Scattering functions for the simplexes in the dimensions n = 2, 3, 4.

we do not want to rule them out. Higher-dimensional X-ray crystallography is common for the description of scattering by quasi-crystalline phases. Perhaps higher-dimensional X-ray crystallography will extend to the description of non-crystalline phases, too.

References

- [1] B.E Warren, X-Ray Diffraction, Dover Publications, New York, 1990.
- [2] M. Birkholz, Thin Film Analysis by X-Ray Scattering; Wiley-VCH Verlag, Weinheim, 2006, chapters 1 and 2.
- [3] T. Wieder, H. Fuess, A generalized Debye scattering equation; Zeitschrift f
 ür Naturforschung 52a (1997), 386 - 392.
- [4] T. Wieder, On a generalized Debye scattering formula and the Hankel transform; Zeitschrift f
 ür Naturforschung 54a (1999), 124 - 130.
- [5] L. E. Blumenson, A derivation of n-dimensional spherical coordinates; The American Mathematical Monthly 67 (1960), 63 - 66.
- [6] The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2012, Sequence http://oeis.org/A006882.

THOMAS WIEDER*

TABLE 1. The Debye scattering formula for the dimensions $n=2,\ldots,8$

 ${\bf Dimension} \ n \qquad {\bf Debye} \ {\bf scattering} \ {\bf formula} \ F(k,n) \\$

(5)
$$n = 2 \qquad J(0, k r_{ij})$$

(6)
$$n = 3$$
 $\frac{\sin(k r_{ij})}{k r_{ij}}$

(7)
$$n = 4$$
 $\frac{2J(1, k r_{ij})}{k r_{ij}}$

(8)
$$n = 5 \qquad \frac{3(\sin(k r_{ij}) - k r_{ij} \cos(k r_{ij}))}{k^3 r_{ij}^3}$$

(9)
$$n = 6 \qquad \frac{8(2J(1,kr_{ij}) - kr_{ij}J(0,kr_{ij}))}{k^3r_{ij}^3}$$

(10)
$$n = 7 \qquad \frac{15(3\sin(kr_{ij}) - 3kr_{ij}\cos(kr_{ij}) - k^2r_{ij}^2\sin(kr_{ij}))}{k^5r_{ij}^5}$$

(11)
$$n = 8 \qquad \frac{48(8J(1,kr_{ij}) - 4kr_{ij}J(0,kr_{ij}) - k^2r_{ij}^2J(1,kr_{ij}))}{k^5r_{ij}^5}$$