

Available online at http://scik.org
J. Math. Comput. Sci. 2 (2012), No. 4, 1086-1090

ISSN: 1927-5307

THE DEBYE SCATTERING FORMULA IN n DIMENSIONS

THOMAS WIEDER*

https://sites.google.com/site/twieder21stcenturyad/

Abstract

An integral for the Debye scattering formula is given which is valid for any dimension $n \geq 2$. Explicit formulas for $n=2, \ldots, 8$ are provided, too.

Keywords: diffraction; Debye scattering formula.

2000 AMS Subject Classification: 82D30; 82-08

1. The Debye scattering formula in $n=3$ dimensions

The Debye scattering formula (also called Debye scattering function) is of fundamental importance for X-ray diffraction in disordered materials and can be found in many textbooks on diffraction [1, 2]. It is based on the assumption that the distance vector $\mathbf{r}_{i, j}$ between two atoms i and j takes on any orientation in space for an amorphous material. The tip of $\mathbf{r}_{i, j}$ lies on the surface of a sphere of radius $\left\|\mathbf{r}_{i, j}\right\|=r_{i, j}$. In the totally disordered case the surface density $f\left(\mathbf{r}_{i, j}\right)$ of the tip is constant along the surface, that is $f\left(\mathbf{r}_{i, j}\right)=1$. The contribution of $\mathbf{r}_{i, j}$ to the diffraction pattern is obtained from integrating $f\left(\mathbf{r}_{i, j}\right)$ over the entire surface of the n-sphere. If $f\left(\mathbf{r}_{i, j}\right)=1$ and the sphere is of dimension $n=3$, then the classical Debye scattering function results (see the entry for $n=3$ in table 1).

[^0]If the material is not totally disordered, then $f\left(\mathbf{r}_{i, j}\right)$ will not be constant any more. This case had been examined in previous papers [3, 4]. In the present paper we assume that $f\left(\mathbf{r}_{i, j}\right)=1$ but n can take on arbitrary integer values $n=2,3,4, \ldots$ We will give an integral from which the explicit form of the Debye scattering formula for given n can be calculated.

2. An one-dimensional integral over the surface of the n-sphere

We consider an n-dimensional euclidian coordinate system E_{n}. Within E_{n} let $f(\mathbf{a})$ be a continuous real-valued function where \mathbf{a} is a n-dimensional vector in E_{n}. Blumenson [5] gave a simple formula for the integral $\mathrm{F}(\mathbf{a}, \mathrm{n})$ of $f(\mathbf{a})$ over the surface of the n-dimensional sphere of radius r with the origin as center. With $\|\mathbf{a}\|=a$ as the length of \mathbf{a} and with ϕ as the angle between the vectors a and \mathbf{r} we have

$$
\begin{equation*}
F(\mathbf{a}, n)=\int_{\phi=0}^{\pi} \frac{2 r^{n-1} \pi^{(n-1) / 2}}{\Gamma\left(\frac{n-1}{2}\right)} f\left(\operatorname{ar} \cos (\phi), r^{2}\right) \sin (\phi)^{n-2} d \phi \tag{1}
\end{equation*}
$$

For $f\left(\operatorname{ar} \cos (\phi), r^{2}\right)=1$ one gets from (1) the surface area of the n-sphere, that is $\left(2 \pi^{n / 2} / \Gamma(n / 2)\right) r^{n-1}$. We have to choose the suitable function $f(k, n)$ in order to derive the n-dimensional Debye scattering formula $F(k, n)$ where \mathbf{k} is the scattering vector. The contribution of $\mathbf{r}_{i, j}$ to the diffracted intensity $I(k, n)$ depends on the scalar product $\mathbf{k} \cdot \mathbf{r}_{i, j}=k r_{i, j} \cos \phi=f(\phi)$. Furthermore, we have to normalize the integral by the volume of the n-sphere. We therefore have for the n-dimensional Debye scattering function $F(k, n)$

$$
\begin{equation*}
F(k, n)=\int_{\phi=0}^{\pi} \frac{\Gamma\left(\frac{n}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{n-1}{2}\right)} \cos \left(k r_{i, j} \cos (\phi)\right) \sin (\phi)^{n-2} d \phi . \tag{2}
\end{equation*}
$$

The integral (2) can be solved using a computer algebra program. Care must be taken for the case $n=$ even, in which one sets the upper integration limit equal to $\pi / 2$ and subsequently multiplies the resulting integral by the factor 2 . The solution of (2) is the n-dimensional Debye Scattering formula (3). With $J(i, x)$ as the i-th Bessel function of the first kind $F(k, n)$ is

$$
\begin{equation*}
F(k, n)=2^{\left(\frac{n}{2}-1\right)} \Gamma\left(\frac{n}{2}\right)\left(k r_{i, j}\right)^{\left(-\frac{n}{2}\right)}\left(J\left(\frac{n}{2}, k r_{i, j}\right) n-J\left(\frac{n}{2}+1, k r_{i, j}\right) k r_{i, j}\right) \tag{3}
\end{equation*}
$$

One can insert concrete values for n into 3 . The resulting formulas for $n=2, \ldots, 8$ are compiled in table 1. One observes that the well known formula for $n=3$ is recovered. Just as an aside: The factors $1,1,2,3,8,15,48, \ldots$ in the numerators are equal to the double factorials, see the integer sequence http://oeis.org/A006882 in the Online Encyclopedia of Integer Sequences [6].

3. Examples: Scattering functions for some simplexes

The intensity $I(k, n)$ scattered by an atomic assembly in n dimensions depends on its atoms $m=1,2, \ldots$ with their atomic scattering factors $f(k)_{i}$ and their mutually distance vectors $\mathbf{r}_{i, j}$. (The $f(k)_{m}$ should not be confused with the function f in the preceding section.) Then the total intensity $I(k, n)$ scattered from such an assembly of M atoms is equal to

$$
\begin{equation*}
I(k, n)=\sum_{i=1}^{M} \sum_{j=1}^{M} f(k)_{i} f^{*}(k)_{j} F(k, n) . \tag{4}
\end{equation*}
$$

As a first simple application of (2) we give in figure 1 the scattering functions for the n-simplexes in the dimensions $n=2,3,4$, that is the scattering functions of the triangle, the tetrahedron and the pentachoron. The $n+1$ vertices of the n-simplex have the $n+1$ dimensional position vectors $(1,0, \ldots, 0),(0,1, \ldots, 0), \ldots,(0,0, \ldots, 1)$. From them one gets immediately the required distance vectors $\mathbf{r}_{i, j}$. For simplicity we set $f(k)_{m}=1$ for all m and we use arbitrary units.

Figure 1 displays the curves $I(k, n)$ for $n=2,3,4$. One observes that for $k=0$ the scattering curve $I(k, n)$ starts at $n(n+1) / 2$ which is exactly the number of edges of the n-simplex, as expected. Furthermore, for higher k the scattering approaches $n-1$ which corresponds to the average number of neighbours for atom m, again as expected.

4. Conclusion

The n-dimensional Debye scattering formula has been derived from a simple onedimensional integral. Admittedly, applications for the cases $n>3$ are not known yet, but

Figure 1. Scattering functions for the simplexes in the dimensions $n=2,3,4$.

we do not want to rule them out. Higher-dimensional X-ray crystallography is common for the description of scattering by quasi-crystalline phases. Perhaps higher-dimensional X-ray crystallography will extend to the description of non-crystalline phases, too.

References

[1] B.E Warren, X-Ray Diffraction, Dover Publications, New York, 1990.
[2] M. Birkholz, Thin Film Analysis by X-Ray Scattering; Wiley-VCH Verlag, Weinheim, 2006, chapters 1 and 2.
[3] T. Wieder, H. Fuess, A generalized Debye scattering equation; Zeitschrift für Naturforschung 52a (1997), 386-392.
[4] T. Wieder, On a generalized Debye scattering formula and the Hankel transform; Zeitschrift für Naturforschung 54a (1999), 124-130.
[5] L. E. Blumenson, A derivation of n-dimensional spherical coordinates; The American Mathematical Monthly 67 (1960), 63-66.
[6] The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2012, Sequence http://oeis.org/A006882.

Table 1. The Debye scattering formula for the dimensions $n=2, \ldots, 8$

Dimension $n \quad$ Debye scattering formula $F(k, n)$

$$
\begin{array}{ll}
n=2 & J\left(0, k r_{i j}\right) \\
n=3 & \frac{\sin \left(k r_{i j}\right)}{k r_{i j}} \\
n=4 & \frac{2 J\left(1, k r_{i j}\right)}{k r_{i j}} \\
n=5 & \frac{3\left(\sin \left(k r_{i j}\right)-k r_{i j} \cos \left(k r_{i j}\right)\right)}{k^{3} r_{i j}^{3}} \\
n=6 & \frac{8\left(2 J\left(1, k r_{i j}\right)-k r_{i j} J\left(0, k r_{i j}\right)\right)}{k^{3} r_{i j}^{3}} \\
n=7 & \frac{15\left(3 \sin \left(k r_{i j}\right)-3 k r_{i j} \cos \left(k r_{i j}\right)-k^{2} r_{i j}^{2} \sin \left(k r_{i j}\right)\right)}{k^{5} r_{i j}^{5}} \\
n=8 & \frac{48\left(8 J\left(1, k r_{i j}\right)-4 k r_{i j} J\left(0, k r_{i j}\right)-k^{2} r_{i j}^{2} J\left(1, k r_{i j}\right)\right)}{k^{5} r_{i j}^{5}} \tag{11}
\end{array}
$$

[^0]: *Corresponding author
 E-mail address: thomas.wieder@t-online.de (T. Wieder)
 Received March 17, 2012

