THE PRODUCTS OF SOFT QUASI-UNIFORMITIES AND SOFT TOPOLOGIES

YONG CHAN KIM

Department of Mathematics, Gangneung-Wonju National University,
Gangneung 210-702, Korea

Copyright © 2016 Yong Chan Kim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we investigate the relations among soft topology, soft closure operators and soft quasi-uniformities in complete residuated lattices. We give their examples.

Keywords: Complete residuated lattices; Soft quasi-uniformities; Soft closure operators; Soft topologies.

2010 AMS Subject Classification: 54A40, 03E72, 03G10, 06A15.

1. Introduction

Hájek [6] introduced a complete residuated lattice which is an algebraic structure for many valued logic. It is an important mathematical tool for algebraic structure of fuzzy contexts [7,11-16,26]. Many researcher introduced the notion of fuzzy uniformities in unit interval [0,1] [3,17], complete distributive lattices [8,32]. Recently, Molodtsov [23] introduced the soft set as a mathematical tool for dealing information as the uncertainty of data in engineering, physics, computer sciences and many other diverse field. Presently, the soft set theory is making progress rapidly [1,5,11-15, 19,23, 30,31]. Pawlak’s rough set [24,25] can be viewed as a special case of soft rough sets [5]. The topological structures of soft sets have been developed by many researchers [4,11-15,27,28].

Received January 17, 2016
Kim [15] introduced a fuzzy soft $F : A \to L^U$ as an extension as the soft $F : A \to P(U)$ where L is a complete residuated lattice. Kim [11-15] introduced the soft topological structures, fuzzy quasi-uniformities and soft closure operators in complete residuated lattices.

In this paper, we investigate the relations among soft topology, soft closure operators and soft quasi-uniformities in complete residuated lattices. We give their examples.

2. Preliminaries

Definition 2.1. [2,6.7,26] An algebra $(L, \wedge, \vee, \odot, \to, 0, 1)$ is called a complete residuated lattice if it satisfies the following conditions:

(C1) $L = (L, \leq, \vee, \wedge, 1, 0)$ is a complete lattice with the greatest element 1 and the least element 0;

(C2) $(L, \odot, 1)$ is a commutative monoid;

(C3) $x \odot y \leq z$ iff $x \leq y \to z$ for $x, y, z \in L$.

In this paper, we assume that (L, \leq, \odot, \to) is a complete residuated lattice and we denote $L_0 = L - \{0\}$.

Lemma 2.2. [2,6.7,26] For each $x, y, z, x_i, y_i, w \in L$, we have the following properties.

(1) $1 \to x = x, 0 \odot x = 0$,

(2) If $y \leq z$, then $x \odot y \leq x \odot z, x \to y \leq x \to z$ and $z \to x \leq y \to x$,

(3) $x \odot y \leq x \land y \leq x \lor y$,

(4) $x \odot (\bigvee_i y_i) = \bigvee_i (x \odot y_i)$,

(5) $x \to (\bigwedge_i y_i) = \bigwedge_i (x \to y_i)$,

(6) $(\bigvee_i x_i) \to y = \bigwedge_i (x_i \to y)$,

(7) $x \to (\bigvee_i y_i) \geq \bigvee_i (x \to y_i)$,

(8) $(\bigwedge_i x_i) \to y \geq \bigvee_i (x_i \to y)$,

(9) $(x \odot y) \to z = x \to (y \to z) = y \to (x \to z)$,

(10) $x \odot (x \to y) \leq y$ and $x \to y \leq (y \to z) \to (x \to z)$,

(11) $(x \to y) \odot (z \to w) \leq (x \odot z) \to (y \odot w)$,
(12) \(x \to y \leq (x \circ z) \to (y \circ z) \) and \((x \to y) \circ (y \to z) \leq x \to z \).

Definition 2.3. [15] Let \(X \) be an initial universe of objects and \(E \) the set of parameters (attributes) in \(X \). A pair \((F,A)\) is called a fuzzy soft set over \(X \), where \(A \subseteq E \) and \(F : A \to \mathcal{L}^X \) is a mapping. We denote \(S(X,A) \) as the family of all fuzzy soft sets under the parameter \(A \).

\[F \subseteq SU_3 \]

For every \((F,A)\) \((SU_2)\) If \(x \leq F \)

\[\tau \]

A map \(\tau \subseteq S(X,A) \) is called a soft topology on \(X \) if it satisfies the following conditions.

(1) \((F,A)\) is a fuzzy soft subset of \((G,A)\), denoted by \((F,A) \leq (G,A)\) if \(F(a) \leq G(a) \), for each \(a \in A \).

(2) \((F,A) \wedge (G,A) = (F \wedge G,A)\) if \((F \wedge G)(a) = F(a) \wedge G(a)\) for each \(a \in A \).

(3) \((F,A) \vee (G,A) = (F \vee G,A)\) if \((F \vee G)(a) = F(a) \vee G(a)\) for each \(a \in A \).

(4) \((F,A) \circ (G,A) = (F \circ G,A)\) if \((F \circ G)(a) = F(a) \circ G(a)\) for each \(a \in A \).

(6) \(\alpha \circ (F,A) = (\alpha \circ F,A) \) for each \(\alpha \in L \).

Definition 2.5. [12] A map \(\tau \subseteq S(X,A) \) is called a soft cotopology on \(X \) if it satisfies the following conditions.

(ST1) \((0_X,A),(1_X,A) \in \tau \), where \(0_X(a)(x) = 0, 1_X(a)(x) = 1 \) for all \(a \in A, x \in X \),

(ST2) If \((F,A),(G,A) \in \tau \), then \((F,A) \circ (G,A) \in \tau \),

(T) If \((F_i,A) \in \tau \) for each \(i \in I, \bigvee_{i \in I} (F_i,A) \in \tau \).

A map \(\tau \subseteq S(X,A) \) is called a soft quasi-uniformity on \(X \) if it satisfies (ST1), (ST2) and (CT) If \((F_i,A) \in \tau \) for each \(i \in I, \bigwedge_{i \in I} (F_i,A) \in \tau \).

The triple \((X,A,\tau)\) is called a soft topological (resp. cotopological) space.

Let \((X,A,\tau_1)\) and \((X,A,\tau_2)\) be soft fuzzy topological spaces. Then \(\tau_1 \) is finer than \(\tau_2 \) if \((F,A) \in \tau_1 \), for all \((F,A) \in \tau_2 \).

Definition 2.6. [13] A subset \(U \subseteq S(X \times X,A) \) is called a soft quasi-uniformity on \(X \) iff it satisfies the properties.

(SU1) \((1_{X \times X},A) \in U \).

(SU2) If \((V,A) \leq (U,A)\) and \((V,A) \in U \), then \((U,A) \in U \).

(SU3) For every \((U,A),(V,A) \in U \), \((U,A) \circ (V,A) \in U \).
(SU4) If \((U,A) \in \mathbf{U}\) then \((1_{\Delta},A) \leq (U,A)\) where

\[
1_{\Delta}(a)(x,y) = \begin{cases}
1, & \text{if } x = y \\
\bot, & \text{if } x \neq y,
\end{cases}
\]

(SU5) For every \((U,A) \in \mathbf{U}\), there exists \((V,A) \in \mathbf{U}\) such that \((V,A) \circ (V,A) \leq (U,A)\) where

\[
((V,A) \circ (V,A))(a)(x,y) = (V(a) \circ V(a))(x,y) = \bigvee_{z \in X} (V(a)(z,x) \circ V(a)(x,y)), \quad \forall x,y \in X, a \in A.
\]

The triple \((X,A,\mathbf{U})\) is called a soft quasi-uniform space.

A soft quasi-uniformity \(\mathbf{U}\) on \(X\) is said to be a soft uniformity if

(U) if \((U,A) \in \mathbf{U}\), then \((U^{-1},A) \in \mathbf{U}\) where \(U^{-1}(a)(x,y) = U(a)(y,x)\).

Definition 2.7. [8] A mapping \(cl : S(X,A) \to S(X,A)\) is called a soft closure operator if it satisfies the following conditions;

(C1) \(cl(0_X,A) = (0_X,A)\),

(C2) \(cl(F,A) \geq (F,A)\),

(C3) If \((F,A) \leq (G,A)\), then \(cl(F,A) \leq cl(G,A)\),

(C4) \(cl(cl(F,A)) = (F,A)\),

(C5) \(cl((F,A) \circ (G,A)) \leq cl(F,A) \circ cl(G,A)\).

The pair \((X,A,\mathbf{cl})\) is called a soft closure space.

Theorem 2.8. [14] Let \((X,A,\mathbf{U})\) be a soft quasi-uniform space. Define \(cl^r_\mathbf{U}, cl^l_\mathbf{U} : S(X,A) \to S(X,A)\) as follows

\[
cl^r_\mathbf{U}(F,A)(y) = \bigwedge_{(U,A) \in \mathbf{U}} \left(\bigvee_{x \in X} (U,A)(y,x) \circ (F,A)(x) \right),
\]

\[
cl^l_\mathbf{U}(F,A)(y) = \bigwedge_{(U,A) \in \mathbf{U}} \left(\bigvee_{x \in X} (U,A)(x,y) \circ (F,A)(x) \right).
\]

Then, for \(cl \in \{cl^r_\mathbf{U}, cl^l_\mathbf{U}\}\), we have following properties.

1. \(cl(0_X,A) = (0_X,A)\) and \(cl(F,A) \leq cl(G,A)\) for \((F,A) \leq (G,A)\).
2.
(2) \((F,A) \leq cl(F,A)\).
3. \(cl(cl(F,A)) = cl(F,A)\).
4. If \(L\) satisfies \(a \circ \bigwedge_{i \in I} b_i = \bigwedge_{i \in I} (a \circ b_i)\), then \(cl((F,A) \circ (G,A)) \leq cl(F,A) \circ cl(G,A)\).
Remark 2.9. If \((L, \odot)\) is a continuous t-norm, then \(a \odot \bigwedge_{i \in I} b_i = \bigwedge_{i \in I} (a \odot b_i)\).

Theorem 2.10. [13] Let \((X, A, U)\) be a soft quasi-uniform space and \(a \odot \bigwedge_{i \in I} b_i = \bigwedge_{i \in I} (a \odot b_i)\) for \(a, b_i \in L\). Define \(\tau^r_U, \tau^l_U \subset S(X, A)\) as follows

\[
\tau^r_U = \{ (F, A) \in S(X, A) \mid cl^r_U(F, A) = (F, A) \},
\]

\[
\tau^l_U = \{ (F, A) \in S(X, A) \mid cl^l_U(F, A) = (F, A) \}.
\]

Then (1) \(\tau^r_U\) is a soft topology on \(X\) such that \(\tau^r_U = \{ cl^r_U(F, A) \mid (F, A) \in S(X, A) \}\).

(2) \(\tau^l_U\) is a soft topology on \(X\) such that \(\tau^l_U = \{ cl^l_U(F, A) \mid (F, A) \in S(X, A) \}\).

Lemma 2.11. [13] For every \((F, A), (G, A) \in S(X, A)\), we define \((U_F, A) \in S(X \times X, A)\) by

\[
U_F(a)(x, y) = F(a)(x) \to F(a)(y).
\]

then we have the following statements

(1) \((1_{X \times X}, A) = (U_{0_X}, A) = (U_{1_X}, A)\),

(2) \((1_{\Delta}, A) \leq (U_F, A)\),

(3) \((U_F, A) \odot (U_F, A) = (U_F, A)\),

(4) \((U_F, A) \odot (U_G, A) \leq (U_{F \odot G}, A)\).

Theorem 2.12. [13] Let \((X, A, \tau)\) be a soft topological space. Define a function \(U_\tau : S(X \times X, A) \to L\) by

\[
U_\tau = \{ (U, A) \in S(X \times X, A) \mid \bigvee_{i=1}^n (U_{G_i}, A) \leq (U, A), (G_i, A) \in \tau \}
\]

where the first \(\bigvee\) is taken over every finite family \(\{U_{(G_i, A)} \mid i = 1, \ldots, n\}\). Then

(1) \(U_\tau\) is a soft quasi-uniformity on \(X\).

(2) \(\tau \subset \tau^l_U\).

3. The products of soft uniformities and soft topologies
Then we have the following properties.

1. \(U_1 \oplus U_2 \) is the coarsest quasi-uniformity on \(X \) which is finer than \(U_1 \) and \(U_2 \).
2. If \(a \circ \bigwedge_{i \in I} b_i = \bigwedge_{i \in I} (a \circ b_i) \) for \(a, b_i \in L \), then
 \[
 cl^{r}_{U_1}(F,A) \circ cl^{r}_{U_2}(G,A) = cl^{r}_{U_1 \oplus U_2}((F,A) \circ (G,A)).
 \]
3. If \(a \circ \bigwedge_{i \in I} b_i = \bigwedge_{i \in I} (a \circ b_i) \) for \(a, b_i \in \mathbb{L} \), then \(\tau^{r}_{U_1} \oplus \tau^{r}_{U_2} = \tau^{r}_{U_1 \oplus U_2} \) where
 \[
 \tau^{r}_{U_1} \oplus \tau^{r}_{U_2} = \{(F,A) = (F_1,A) \circ (F_2,A) \mid (F_i,A) \in \tau^{r}_{U_i} \text{, } i = 1, 2\}.
 \]
4. If \(a \circ \bigwedge_{i \in I} b_i = \bigwedge_{i \in I} (a \circ b_i) \) for \(a, b_i \in \mathbb{L} \), then \(\tau^{l}_{U_1} \oplus \tau^{l}_{U_2} = \tau^{l}_{U_1 \oplus U_2} \) where
 \[
 \tau^{l}_{U_1} \oplus \tau^{l}_{U_2} = \{(F,A) = (F_1,A) \circ (F_2,A) \mid (F_i,A) \in \tau^{l}_{U_i} \text{, } i = 1, 2\}.
 \]
5. If \((X,A, \tau_1) \) and \((X,A, \tau_2) \) are soft fuzzy topological spaces, then \(U_{\tau_1} \oplus \tau_2 \subset U_{\tau_1} \oplus U_{\tau_2} \).

Proof. (1) (SU1) \((1_{X \times X}, A) \in U_1 \oplus U_2 \) because \((1_{X \times X}, A) \circ (1_{X \times X}, A) = (1_{X \times X}, A) \) for \((1_{X \times X}, A) \in U_i, i = 1, 2\).

(SU2) If \((V,A) \leq (U,A) \) and \((V,A) \in U_1 \oplus U_2 \), then there exist \((V_i,A) \in U_i, i = 1, 2, \) with \((V_1,A) \circ (V_2,A) \leq (V,A) \leq (U,A). \) Thus \((U,A) \in U_1 \oplus U_2 \).

(SU3) For every \((U,A), (V,A) \in U_1 \oplus U_2 \), there exist \((U_i,A), (V_i,A) \in U_i, i = 1, 2, \) with \((U_1,A) \circ (U_2,A) \leq (U,A) \) and \((V_1,A) \circ (V_2,A) \leq (V,A). \) Thus \((U_1,A) \circ (U_2,A) \circ (V_1,A) \circ (V_2,A) \leq (U,A) \circ (V,A) \). Hence \((U,A) \circ (V,A) \in U_1 \oplus U_2 \).

(SU4) If \((U,A) \in U_1 \oplus U_2 \), then there exist \((U_i,A) \in U_i, i = 1, 2, \) with \((U_1,A) \circ (U_2,A) \leq (U,A). \) Since \((U_i,A) \in U_i, i = 1, 2, \) by (SU4), \((1_\Delta,A) \leq (U_i,A), i = 1, 2, \) Hence \((1_\Delta,A) \leq (U,A). \)

(SU5) For each \((U,A) \in U_1 \oplus U_2 \), there exist \((U_1,A) \in U_1 \) and \((U_2,A) \in U_2 \) such that \((U_1,A) \circ (U_2,A) \leq (U,A). \) For each \((U_i,A) \in U_i, i = 1, 2, \) there exists \((V_i,A) \in U_i \) such that \((V_i,A) \circ (V_i,A) \leq (U_i,A). \)
Thus, there exists \((V_1, A) \circ (V_2, A) \in U_1 \oplus U_2\) such that \[((V_1, A) \circ (V_2, A)) \circ ((V_1, A) \circ (V_2, A)) \leq (U, A)\).

If \((U_1, A) \in U_1\), then \((U_1, A) \circ (1_{X \times X}, A) = (U_1, A)\) such that \((U_1, A) \in U_1, (1_{X \times X}, A) \in U_2\). Hence \((U_1, A) \in U_1 \oplus U_2\); i.e. \(U_1 \subset U_1 \oplus U_2\). Similarly, \(U_2 \subset U_1 \oplus U_2\). If \(U_1 \subset V\) and \(V\) is a soft quasi-uniformity, for \((U, A) \in U_1 \oplus U_2\), there exists \((U, A) \in U_1\) such that \((U_1, A) \circ (U_2, A) \leq (U, A)\). Since \((U_1, A) \in V\), then \((U_1, A) \circ (U_2, A) \in V\). Hence \((U, A) \in V\). So, \(U_1 \oplus U_2 \subset V\).

\((2)\)

\[
\begin{align*}
cl'_{U_1 \oplus U_2}((F, A) \circ (G, A)) (y) \\
= \bigwedge_{y \in X} (U, A) (y, x) \circ (F, A)(x) \circ (G, A)(x) \\
\geq \bigwedge_{y \in X} (U_1, A)(y, x) \circ (U_2, A)(y, x) \circ (F, A)(x) \circ (G, A)(x) \\
= \bigwedge_{y \in X} (U_1, A)(y, x) \circ (U_2, A)(y, x) \circ (F, A)(x) \circ (G, A)(x) \\
= \bigwedge_{y \in X} (U_1, A)(y, x) \circ (F, A)(x) \\
\circ \bigwedge_{y \in X} (U_2, A)(y, x) \circ (G, A)(x) \\
= cl'_{U_1}(F, A)(y) \circ cl'_{U_2}(G, A)(y).
\end{align*}
\]

Suppose there exist \((F, A) \in U_1, (G, A) \in U_2\) and \(y \in X\) such that

\[
cl'_{U_1}(F, A)(y) \circ cl'_{U_2}(G, A)(y) \not\geq cl'_{U_1 \oplus U_2}((F, A) \circ (G, A))(y).
\]

Then there exist \(U_1 \in U_1, U_2 \in U_2\) such that

\[
\bigvee_{x \in X} (U_1(y, x) \circ (F, A)(x)) \circ \bigvee_{z \in X} (U_2(y, z) \circ (G, A)(z)) \not\geq cl'_{U_1 \oplus U_2}((F, A) \circ (G, A))(y).
\]
It follows

\[\bigvee_{x \in X} ((U_1 \circ U_2)(y,x) \circ ((F,A) \circ (G,A))(x)) \nless c_{U_1 \oplus U_2}^r((F,A) \circ (G,A))(y). \]

It is a contradiction. Hence \(c_{U_1}^r(F,A) \circ c_{U_2}^r(G,A) \geq c_{U_1 \oplus U_2}^r((F,A) \circ (G,A)) \). Thus the result holds.

(3) Let \((F,A) \in \tau_{U_1} \oplus \tau_{U_2} \)

iff \((F,A) = (F_1,A) \circ (F_2,A) = c_{U_1}^r(F_1,A) \circ c_{U_2}^r(F_2,A) \)

iff \((F,A) = (F_1,A) \circ (F_2,A) = c_{U_1 \oplus U_2}^r((F_1,A) \circ (F_2,A)) \)

iff \((F,A) \in \tau_{U_1 \oplus U_2}^r \).

(4) It is similarly proved as (3).

(5) Let \((U,A) \in U_{\tau_1 \oplus \tau_2} \). Then there exist \((F_i,A) \in \tau_i \) such that \(\circ_{j=1}^n(U_{F_{j1}} \circ F_{j2},A) \leq (U,A) \).

Since \((U_{F_{j1}},A) \circ (U_{F_{j2}},A) \leq (U_{F_{j1}} \circ F_{j2},A) \) from Lemma 2.11(4), we have

\[\circ_{j=1}^n(U_{F_{j1}},A) \circ (\circ_{j=1}^n(U_{F_{j2}},A)) \leq \circ_{j=1}^n(U_{F_{j1}} \circ F_{j2},A) \leq (U,A). \]

Since \(\circ_{j=1}^n(U_{F_{j1}},A) \in U_{\tau_1}, \circ_{j=1}^n(U_{F_{j2}},A) \in U_{\tau_2} \), we have \((U,A) \in U_{\tau_1 \oplus U_2} \).

Theorem 3.2. Let \(U \) be a soft quasi-uniformities on \(X \). We define

\[U^{-1} = \{(U,A) \in S(X \times X,A) \mid (U^{-1},A) \in U\}. \]

\[U \oplus U^{-1} = \{(U,A) \in S(X \times X,A) \mid (U_1,A) \circ (U_2,A) \leq (U,A), \ (U_1,A) \in U, \ (U_2,A) \in U^{-1}\}. \]

Then we have the following properties.

(1) \(U^{-1} \) a soft quasi-uniformities on \(X \).

(2) \(U \oplus U^{-1} \) is the coarsest uniformity on \(X \) which is finer than \(U \) and \(U^{-1} \).

(3) If \(a \circ \bigwedge_{i \in I} b_i = \bigwedge_{i \in I} (a \circ b_i) \) for \(a,b_i \in L \), then

\[c_{U}^{r}(F,A) = c_{U^{-1}}^{r}(F,A), \ c_{U}^{l}(F,A) = c_{U^{-1}}^{l}(F,A), \]

\[c_{U}^{r}(F,A) \circ c_{U^{-1}}^{r}(G,A) = c_{U \oplus U^{-1}}^{r}((F,A) \circ (G,A)). \]
(4) If \(a \odot \bigwedge_{i \in I} b_i = \bigwedge_{i \in I} (a \odot b_i)\) for \(a, b_i \in L\), then \(\tau'_U = \tau'_U^{l-1}, \tau_U = \tau_U^{l-1}, \tau'_U \oplus \tau_U^{r-1} = \tau'_U \oplus \tau_U^{l-1}\) where

\[
\tau'_U \oplus \tau_U^{l-1} = \{(F, A) = (F_1, A) \odot (F_2, A) \mid (F_1, A) \in \tau'_U, (F_2, A) \in \tau_U^{l-1}\} = \tau'_U \oplus \tau_U^{l-1}.
\]

Proof. (1) (SU5) For \((U, A) \in U^{-1}\) iff \((U^{-1}, A) \in U\), there exists \((V, A) \in U\) such that \((V, A) \odot \\left((V, A) \leq (U^{-1}, A) \iff (V^{-1}, A) \odot (V^{-1}, A) \leq (U, A)\). Other cases are easily proved.

(2) \(U \oplus U^{-1}\) is the coarsest uniformity on \(X\) from Theorem 3.1(1) and

\[
(U, A) \in U \oplus U^{-1}
\]

iff \((U, A) \geq (U_1, A) \odot (U_2, A), (U_1, A) \in U, (U_2, A) \in U^{-1}\)

iff \((U^{-1}, A) \geq (U_1^{-1}, A) \odot (U_2^{-1}, A), (U_1^{-1}, A) \in U^{-1}, (U_2^{-1}, A) \in U\)

iff \((U^{-1}, A) \in U \oplus U^{-1}\)

(3) It follows from Theorem 3.1(2) and the definition of \(cU'_l\).

(4) By (3), we have \(\tau'_U = \tau'_U^{l-1}, \tau_U = \tau_U^{l-1}\) and

\[
\tau'_U \oplus \tau_U^{l-1} = \{(F, A) = (F_1, A) \odot (F_2, A) \mid (F_1, A) \in \tau'_U, (F_2, A) \in \tau_U^{l-1}\}
\]

\[
= \{(F, A) = (F_1, A) \odot (F_2, A) \mid (F_1, A) \in \tau_U^{l-1}, (F_2, A) \in \tau'_U\}
\]

\[
= \tau'_U \oplus \tau_U^{l-1}.
\]

Example 3.3. Let \(X = \{h_i \mid i = \{1, \ldots, 4\}\}\) with \(h_i\)-house and \(E_y = \{e, b, w, c, i\}\) with \(e\)-expensive, \(b\)-beautiful, \(w\)-wooden, \(c\)-creative, \(i\)-in the green surroundings.

Let \((L = [0, 1], \odot, \rightarrow)\) be a complete residuated lattice defined by

\[
x \odot y = x \wedge y, \quad x \rightarrow y = \begin{cases} 1, & \text{if } x \leq y; \\ y, & \text{otherwise}. \end{cases}
\]

Let \(X = \{x, y, z\}\) be a set and \(W_i(e), W_i(b) \in S(X \times X, A)\) such that

\[
W_i(e) = \begin{pmatrix} 1 & 0.5 & 0.5 \\ 0.7 & 1 & 0.8 \\ 0.4 & 0.4 & 1 \end{pmatrix}, \quad W_i(b) = \begin{pmatrix} 1 & 0.6 & 0.7 \\ 0.4 & 1 & 0.4 \\ 0.5 & 0.6 & 1 \end{pmatrix}
\]
Also, we have

\[W_2(e) = \begin{pmatrix} 1 & 0.4 & 0.3 \\ 0.4 & 1 & 0.3 \\ 0.6 & 0.5 & 1 \end{pmatrix}, \quad W_2(b) = \begin{pmatrix} 1 & 0.3 & 0.3 \\ 0.6 & 1 & 0.7 \\ 0.5 & 0.4 & 1 \end{pmatrix} \]

\[(W_1 \wedge W_2)(e) = \begin{pmatrix} 1 & 0.4 & 0.3 \\ 0.4 & 1 & 0.3 \\ 0.4 & 0.4 & 1 \end{pmatrix}, \quad (W_1 \wedge W_2)(b) = \begin{pmatrix} 1 & 0.3 & 0.3 \\ 0.4 & 1 & 0.4 \\ 0.5 & 0.4 & 1 \end{pmatrix} \]

Define \(U_i = \{(U,A) \in S(X \times X,A) \mid (U,A) \geq (W_i,A)\} \) for \(i = 1,2 \).

1) Since \(W_i(e) \circ W_i(e) = W_i(e) \) and \(W_i(b) \circ W_i(b) = W_i(b), U_i \) is a soft quasi-uniformity on \(X \).

2) From Theorem 2.10(1), we obtain \(\tau_{U_1}^l = \{cl^l_{U_1}(F,A) \mid (F,A) \in L^X\} \) where

\[
cl^l_{U_1}(F,A)(e) = \begin{pmatrix}
F(e)(x) \vee (0.5 \wedge F(e)(y)) \vee (0.5 \wedge F(e)(z)) \\
(0.7 \wedge F(e)(x)) \vee F(e)(y) \vee (0.8 \wedge F(e)(z)) \\
(0.4 \wedge F(e)(x)) \vee (0.4 \wedge F(e)(y)) \vee F(e)(z)
\end{pmatrix}
\]

\[
cl^l_{U_1}(F,A)(b) = \begin{pmatrix}
F(b)(x) \vee (0.6 \wedge F(b)(y)) \vee (0.7 \wedge F(b)(z)) \\
(0.4 \wedge F(b)(x)) \vee F(b)(y) \vee (0.4 \wedge F(b)(z)) \\
(0.5 \wedge F(b)(x)) \vee (0.6 \wedge F(b)(y)) \vee F(b)(z)
\end{pmatrix}
\]

Also, we have \(\tau_{U_2}^l = \{cl^l_{U_2}(F,A) \mid (F,A) \in L^X\} \) where

\[
cl^l_{U_2}(F,A)(e) = \begin{pmatrix}
F(e)(x) \vee (0.4 \wedge F(e)(y)) \vee (0.3 \wedge F(e)(z)) \\
(0.4 \wedge F(e)(x)) \vee F(e)(y) \vee (0.3 \wedge F(e)(z)) \\
(0.6 \wedge F(e)(x)) \vee (0.5 \wedge F(e)(y)) \vee F(e)(z)
\end{pmatrix}
\]

\[
cl^l_{U_2}(F,A)(b) = \begin{pmatrix}
F(b)(x) \vee (0.3 \wedge F(b)(y)) \vee (0.3 \wedge F(b)(z)) \\
(0.6 \wedge F(b)(x)) \vee F(b)(y) \vee (0.7 \wedge F(b)(z)) \\
(0.5 \wedge F(b)(x)) \vee (0.4 \wedge F(b)(y)) \vee F(b)(z)
\end{pmatrix}
\]

3) From Theorem 3.3(3), we obtain \(\tau_{U_1}^r \oplus \tau_{U_2}^r = \tau_{U_1 \oplus U_2}^r = \{cl^r_{U_1 \oplus U_2}(F,A) \mid (F,A) \in L^X\} \) as follows:
\[
cl^r_{U_1 \oplus U_2}(F, A)(e) = \begin{pmatrix}
F(e)(x) \vee (0.4 \wedge F(e)(y)) \vee (0.3 \wedge F(e)(z)) \\
(0.4 \wedge F(e)(x)) \vee F(e)(y) \vee (0.3 \wedge F(e)(z)) \\
(0.4 \wedge F(e)(x)) \vee (0.4 \wedge F(e)(y)) \vee F(e)(z)
\end{pmatrix}
\]

\[
cl^r_{U_1 \oplus U_2}(F, A)(b) = \begin{pmatrix}
F(b)(x) \vee (0.3 \wedge F(b)(y)) \vee (0.3 \wedge F(b)(z)) \\
(0.4 \wedge F(b)(x)) \vee F(b)(y) \vee (0.4 \wedge F(b)(z)) \\
(0.5 \wedge F(b)(x)) \vee (0.4 \wedge F(b)(y)) \vee F(b)(z)
\end{pmatrix}
\]

Similarly, we obtain \(\tau^l_{U_1} \oplus \tau^l_{U_2} = \tau^l_{U_1 \oplus U_2} = \{cl^l_{U_1 \oplus U_2}(F, A) \mid (F, A) \in L^X \} \) as follows:

\[
cl^l_{U_1 \oplus U_2}(F, A)(e) = \begin{pmatrix}
F(e)(x) \vee (0.4 \wedge F(e)(y)) \vee (0.4 \wedge F(e)(z)) \\
(0.4 \wedge F(e)(x)) \vee F(e)(y) \vee (0.4 \wedge F(e)(z)) \\
(0.3 \wedge F(e)(x)) \vee (0.3 \wedge F(e)(y)) \vee F(e)(z)
\end{pmatrix}
\]

\[
cl^l_{U_1 \oplus U_2}(F, A)(b) = \begin{pmatrix}
F(b)(x) \vee (0.4 \wedge F(b)(y)) \vee (0.5 \wedge F(b)(z)) \\
(0.3 \wedge F(b)(x)) \vee F(b)(y) \vee (0.4 \wedge F(b)(z)) \\
(0.3 \wedge F(b)(x)) \vee (0.4 \wedge F(b)(y)) \vee F(b)(z)
\end{pmatrix}
\]

(4) We obtain a soft quasi-uniformity \(U^{-1}_1 = \{(U, A) \in S(X \times X, A) \mid (U, A) \geq (W^{-1}_1, A)\} \)
where

\[
W^{-1}_1(e) = \begin{pmatrix}
1 & 0.7 & 0.4 \\
0.5 & 1 & 0.4 \\
0.5 & 0.8 & 1
\end{pmatrix}
\]

\[
W^{-1}_1(b) = \begin{pmatrix}
1 & 0.4 & 0.5 \\
0.6 & 1 & 0.6 \\
0.7 & 0.4 & 1
\end{pmatrix}
\]

From Theorem 3.2 (2), we obtain a soft uniformity \(U_1 \oplus U^{-1}_1 = \{(U, A) \in S(X \times X, A) \mid (U, A) \geq (W \wedge W^{-1}_1, A)\} \)
where

\[
W \wedge W^{-1}_1(e) = \begin{pmatrix}
1 & 0.5 & 0.4 \\
0.5 & 1 & 0.4 \\
0.4 & 0.4 & 1
\end{pmatrix}
\]

\[
W \wedge W^{-1}_1(b) = \begin{pmatrix}
1 & 0.4 & 0.5 \\
0.4 & 1 & 0.4 \\
0.5 & 0.4 & 1
\end{pmatrix}
\]

(5) Let \(\tau_1 = \{(0_X, A), (1_X, A), (F_1, A)\} \) and \(\tau_2 = \{(0_X, A), (1_X, A), (F_2, A)\} \)
where

\[
F_1(e) = (0.4, 0.5, 0.6), \quad F_1(b) = (0.7, 0.4, 0.9),
\]

\[
F_2(e) = (0.5, 0.1, 0.3), \quad F_2(b) = (0.6, 0.7, 0.4).
\]
Define $U_{\tau_i} = \{(U,A) \in S(X \times X, A) \mid (U,A) \geq (U_{F_i}, A)\}$ for $i = 1, 2$. Since $(U_{F_i}, A) \circ (U_{F_i}, A) = (U_{F_i}, A)$, U_i is a soft quasi-uniformity for $i = 1, 2$ where

\[
U_{\tau_1} = U_{\tau_2} = \{(U,A) \in S(X \times X, A) \mid (U,A) \geq (U_{F_1}, A)\}
\]

Then $U_{\tau_1} \oplus U_{\tau_2} \subset U_{\tau_1} \oplus U_{\tau_2}$.

Conflict of Interests

The authors declare that there is no conflict of interests.

References

[16] W. Kotzé, uniform spaces, Chapter 8, 553-580 in [7].

