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Abstract. In this paper, we deal with the problem of estimating the parameters of the Weibull-Geometric dis-

tribution based on progressive first-failure censoring scheme. The maximum likelihood and Bayes methods of

estimation are used for this purpose. The Monte Carlo Integration (MCI) technique is used for computing the

Bayes estimates. The Bayes estimates of the parameters are compared with their corresponding maximum likeli-

hood estimates via Monte Carlo simulation study.
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1. Introduction

In experiments where failure information is available only on a part of the sample, the data

are said to be censored data. Many types of censoring schemes are well known. One of the most

common censored test is type II censoring. It is noted that one can use type II censoring for

saving time and money. However, when the lifetimes of products are very high, the experimental

time of a type II censoring life test can be still too long. A generalization of type II censoring
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is progressive type II censoring, which is useful when the loss of live test units at points other

than the termination point is unavoidable. Recently, the estimation of Parameters from different

lifetime distribution based on progressive type II censored samples is studied by several authors

including Gupta et al. [9], Childs and Balakrishnan [8], Tse et al. [18], Ali Mousa and Jaheen

[3], Ng et al. [13], Wu and Chang [19], Balakrishnan et al. [6], Wu [20], Soliman [16], and

Sarhan and Abuammoh [15].

Johnson [12] in (1964) described a life test in which the experimenter might decide to

group the test units into several sets, each as an assembly of test units, and then run all the test

units simultaneously until occurrence the first failure in each group. Such a censoring scheme

is called a first-failure censoring scheme. If an experimenter desires to remove some sets of test

units before observing the first failures in these sets this life test plan is called a progressive first-

failure censoring scheme which recently has been introduced by Wu and Kus [21] in (2009).

2. Progressive first-failure censoring scheme

First-failure censoring is combined with progressive censoring and can be described as: Sup-

pose that n independent groups with k items within each group are put on a life test, R1 groups

and the group in which the first failure is observed are randomly removed from the test as soon

as the first failure (say X1:m:n:k) has occurred, R2 groups and the group in which the second first

failure is observed are randomly removed from the test when the second failure (say X2:m:n:k) has

occurred, and finally Rm (m≤ n) groups and the group in which the m-th first failure is observed

are randomly removed from the test as soon as the m-th failure (say Xm:m:n:k) has occurred.The

X1:m:n:k < X2:m:n:k < ... < Xm:m:n:k are called progressively first-failure censored order statistics

with the progressive censoring scheme R = (R1,R2, ...,Rm). It is clear that m is number of the

first-failure observed (1 < m ≤ n) and ∑
m
i=1 Ri +m = n. If the failure times of the n× k items

originally in the test are from a continuous population with distribution function F(x) and proba-

bility density function f(x), the joint probability density function for X1:m:n:k,X2:m:n:k, ...,Xm:m:n:k

is given by
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f1,2,...,m(x1:m:n:k,x2:m:n:k,...,xm:m:n:k)

=Ckm
m

∏
i=1

f (xi:m:n:k)(1−F(xi:m:n:k))
k(Ri+1)−1,

(2.1)

0 < x1:m:n:k < x2:m:n:k < ... < xm:m:n:k < ∞,

where

C = n(n−R1−1)(n−R1−R2−2)...(n−R1−R2− ...−Rm−1−m+1).

Special cases

It is clear from (2.1) that the progressive first-failure censored scheme containing the following

censoring schemes as special cases:

(1) The first-failure censored scheme when R = (0,0, ...,0).

(2) The progressive type-II censored order statistics if k = 1.

(3) Usually type II censored order statistics when k = 1 and R = (0,0, ...,n−m).

(4) The complete sample case when k = 1 and R = (0,0, ...,0).

Also, It should be noted that X1:m:n:k,X2:m:n:k, ...,Xm:m:n:k can be viewed as a progressive type-II

censored sample from a population with distribution function 1− (1−F(x))k. For this reason,

results for progressive type-II censored order statistics can be extended to progressively first-

failure censored order statistics easily. Also, the progressive first-failure censored scheme has

advantages in terms of reducing the test time, in which more items are used, but only m of n×k

items are failures.

3. The Weibull-Geometric model

The Weibull-Geometric (W-G) distribution was first introduced by Barreto-Souzaa et. al.

[7] in (2011) and with a different parametrization, the same law has been studied by Tojeiro

et al. [17], which called it the complementary Weibull-geometric distribution. The W-G dis-

tribution generalizes the exponential-geometric (EG) distribution (proposed by Adamidis and

Loukas [2]) and Weibull distributions. The hazard function of the EG distribution is monotone
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decreasing but the hazard function of the W-G distribution can take more general forms. Unlike

the Weibull distribution, the W-G distribution is useful for modeling unimodal failure rates.

The W-G distribution with the scale parameter β > 0, shape parameter α > 0 and p ∈ (0,1) has

the following probability density function (pd f ) and cumulative distribution function (cd f )

f (x;α,β , p) = αβ
α(1− p)xα−1e−(βx)α

{1− pe−(βx)α

}−2, x > 0, (3.1)

F(x) = (1− e−(βx)α

)(1− pe−(βx)α

)−1, x > 0, (3.2)

respectively.

As it can be seen from (3.1) when p approaches zero we obtain the two-parameter Weibull

distribution. Another special case is obtained for α = 1, which corresponds to the exponential-

geometric (EG) distribution with parameter β > 0.

The corresponding survival or reliability function is

S(x) = 1−F(x) = ((1− p)e−(βx)α

)(1− pe−(βx)α

)−1, x > 0, (3.3)

and the hazard rate function is given by

H(x) =
f (x)
S(x)

= αβ
αxα−1{1− pe−(βx)α

}−2, x > 0. (3.4)

The hazard function (3.4) is decreasing for 0 < α ≤ 1. However, for α > 1 it can take differ-

ent forms.

Hamedani and Ahsanullah [10] presented various characterizations of the W-G distribution.

Jodra and Jimnez-Gamero [11] obtain explicit expressions for the moments of order statis-

tics from the half-logistic distribution, the Weibull-geometric distribution and the long-term

Weibull-geometric distribution.

In this paper, the maximum likelihood and Bayes methods of estimation are used for estimating

the three unknown parameters α , β and p of the model based on progressive first-failure cen-

sored data. Two cases are considered. In the first case, the parameter α is assumed to be known

while in the second one, the three parameters α , β and p are assumed to be unknown. Monte

Carlo simulation study is used to compare the different estimates.
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4. Maximum likelihood estimation

In this section we derive the maximum likelihood estimates (MLEs) of the unknown param-

eters α , β and p of the W-G(α , β , p) with pd f and cd f given by (3.1) and (3.2), respectively.

Thus, from (2.1) the likelihood function for progressive first-failure censored scheme take the

following form

L(α,β , p;x) =Ckm
m

∏
i=1

αβ
α(1− p)k(Ri+1)xα−1

i e−(βxi)
α (k(Ri+1))

×M(1− pe−(βxi)
α

M)−(k(Ri+1)+1),

(4.1)

where

C = n(n−R1−1)(n−R1−R2−2)...(n−R1−R2− ...−Rm−1−m+1)

The logarithm of (4.1) can be written as

l(α,β , p;x) = mM[lnα +α lnβ + ln(1− p)M]+ (α−1)
m

∑
i=1

lnxi

−
m

∑
i=1

(βxi)
αM(k(Ri +1)M)+ ln(1− p)

m

∑
i=1

M(k(Ri +1)−1M)

−
m

∑
i=1

M(k(Ri +1)+1M) ln(1− pe−(βxi)
α

).

(4.2)

Taking the derivatives with respect to α , β and p of (4.2) and putting them equal to zero we

get
∂ l
∂α

=
m
α
+

m

∑
i=1

ln(βxi)−
m

∑
i=1

(βxi)
α

λi ln(βxi)

+ p
m

∑
i=1

(βxi)
α

ηi ln(βxi) = 0,

(4.3)

∂ l
∂β

=
mα

β
−αβ

α−1
m

∑
i=1

xα
i λi−α pβ

α−1
m

∑
i=1

xα
i ηi = 0, (4.4)

∂ l
∂ p

=
−1

1− p
M[m+

m

∑
i=1

(λi−1)M]+
m

∑
i=1

ηi = 0. (4.5)

where

λi = k(Ri +1),
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ηi = e−(βxi)
α

M(λi +1M)M(1− pe−(βxi)
α

M)−1.

We have here two cases. In the first case we considered α is known and solved equations

(4.4) and (4.5) together, numerically. In the second one we considered the three parameters as

unknown and by solving the non-linear equations (4.3), (4.4) and (4.5)together, numerically, we

get the maximum likelihood estimates of α , β and p.

5. Bayesian estimation

Assume that the prior densities for the parameters α and β are the Gamma distribution such

that α is dependent on β , Gamma(u, β ) and Gamma(a, b), respectively. Thus the proposed

priors for parameters α and β may be taken as

g1(β ) =
β a−1e−β/b

Γ(a)ba , a,b > 0, β > 0, (5.1)

g2(α|β ) =
αu−1e−α/β

Γ(u)β u , u,β > 0, α > 0. (5.2)

Assume that the prior density for the parameter p is the Beta distribution B(v, w) which take

the form

g3(p) =
pv−1(1− p)w−1

B(v,w)
, 0≤ p≤ 1. (5.3)

Hence, the joint prior distribution for α , β and p is

g(α,β , p) =
b−a

B(v,w)Γ(u)Γ(a)
α

u−1
β

a−u−1 pv−1(1− p)w−1e−(α/β+β/b). (5.4)

From (4.1) and (5.4) we get the joint posterior q(α,β , p|x) as

q(α,β , p|x) = KCkm
m

∏
i=1

α
u
β

a+α−u−1 pv−1(1− p)λi+w−1xα−1
i

×M(1− pe−(βxi)
α

M)−(λi+1)e−λi(βxi)
α−(α/β+β/b).

(5.5)

where K is the normalizing constant given from

K−1 =
∫

∞

0

∫
∞

0

∫
∞

0
q(α,β , p|x)d pdαdβ .

Under squared error loss function, the Bayes estimator of a function u(α,β , p) is the posterior

mean of the function and is given by a ratio of three integrals as follows
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ûB(α,β , p) = E(u(α,β , p|x
¯
)) =

∫
α

∫
β

∫
p

u(α,β , p)q(α,β , p | x) d pdβdα. (5.6)

Under Linex loss function, the Bayes estimator of u(α,β , p) is given by

ûB(α,β , p) =− 1
ξ

lnM(E(e−ξ u(α,β ,p) | x)M)

=− 1
ξ

lnM(
∫

α

∫
β

∫
p

e−ξ u(α,β ,p)q(α,β , p|x
¯
)d pdβdαM)

(5.7)

It is clear from Equations (5.6) and (5.7), that both of the integrals can not be obtained in

a simple closed form and hence numerical methods of integration must be used. Therefore,

we use the Monte Carlo integration sampling procedure to compute Bayes estimate under two

different types of loss functions.

5.1 Bayes estimation using Monte Carlo integration

The Bayes estimators of the parameters α , β and p can not be obtained in simple closed

form. So, we can use MCI procedure to get the Bayes estimators of the parameters.

We can obtain Bayes estimation using MCI by generating αi, βi and pi, i = 1,2, . . . ,s, from

the prior distribution given by (5.1), (5.2) and (5.3), respectively. Then, we have the Bayes

estimators under squared error and Linex loss functions as the following.

5.1.1 The Bayes estimators under the squared error loss function

We can write the Bayes estimates of α , β and p under the squared error loss function as

α̂BS =
∑

s
i=1 αiL(αi,βi, pi;x

¯
)

∑
s
i=1 L(αi,βi, pi;x

¯
)
, (5.8)

β̂BS =
∑

s
i=1 βiL(αi,βi, pi;x

¯
)

∑
s
i=1 L(αi,βi, pi;x

¯
)
, (5.9)

and

p̂BS =
∑

s
i=1 piL(αi,βi, pi;x

¯
)

∑
s
i=1 L(αi,βi, pi;x

¯
)
, (5.10)

respectively.
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5.1.2 The Bayes estimators under Linex loss function

The posterior expectation with respect to the posterior density of α , β and p are given,

respectively, by

Eα(e−ξ α |x
¯
) =

∑
s
i=1 e−ξ αiL(αi,βi, pi;x

¯
)

∑
s
i=1 L(αi,βi, pi;x

¯
)

, (5.11)

Eβ (e
−ξ β |x

¯
) =

∑
s
i=1 e−ξ βiL(αi,βi, pi;x

¯
)

∑
s
i=1 L(αi,βi, pi;x

¯
)

, (5.12)

and

Ep(e−ξ p|x
¯
) =

∑
s
i=1 e−ξ piL(αi,βi, pi;x

¯
)

∑
s
i=1 L(αi,βi, pi;x

¯
)

. (5.13)

Hence, the Bayes estimates of α , β and p under Linex loss function are given, respectively,

by

α̂BL =− 1
ξ

lnM[
∑

s
i=1 e−ξ αiL(αi,βi, pi;x

¯
)

∑
s
i=1 L(αi,βi, pi;x

¯
)

M], (5.14)

β̂BL =− 1
ξ

lnM[
∑

s
i=1 e−ξ βiL(αi,βi, pi;x

¯
)

∑
s
i=1 L(αi,βi, pi;x

¯
)

M], (5.15)

and

p̂BL(t) =−
1
ξ

lnM[
∑

s
i=1 e−ξ piL(αi,βi, pi;x

¯
)

∑
s
i=1 L(αi,βi, pi;x

¯
)

M]. (5.16)

6. Numerical computations

The performance of the different methods cannot be compared theoretically. Based on Pro-

gressive First-Failure Censoring Scheme, the different estimators are computed and compared

numerically for different combinations of n,m,k and random censoring scheme R. All com-

putations were performed using Mathematica 7.0. We mainly compare the performance of the

MLEs and Bayes estimators of the unknown parameters p and β , where α is known, under two

different losses by using the Monte Carlo simulation.

The comparison between the estimates is taking place according to the following steps.

(1) For a given prior parameters we generate α , β and p from the joint prior density given

by (5.4).
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(2) For different combinations of n,m,k with the generated parameters α , β and p in step

(1), we generate a progressive first-failure censored sample of size m from the density

function with pd f (3.1).

(3) The likelihood estimators are then obtained by solving the two nonlinear equations given

by (4.4) and (4.5) numerically.

(4) The Bayes estimators are then obtained by applying the Monte Carlo integration tech-

nique (MCI) under squared error loss function , given by (5.9) and (5.10), and under

Linex loss function, given by (5.15) and (5.16).

(5) The above four steps are repeated and the quantities (θ̂ − θ)2 are computed where θ̂

stands for an estimate of θ (ML or Bayes).

Progressive first-failure censored data with random removals were generated using the algo-

rithm described in Balakrishnan and Sandhu [4].

From the priors Gamma(2,3) we generate β = 1.1099, Gamma(3, 1
β
) we generate α =

2.5276 and from Beta(2,4) we generate p = 0.5629.

TABLE 1. Mean square error of the estimator β̂

ML MCI

k n m ER(β̂ML) ER(β̂BS) ER(β̂BL)

3 30 10 0.2545 0.0954 0.0702

20 0.1992 0.0509 0.0408

50 30 0.1689 0.0406 0.0337

40 0.1343 0.0318 0.0269

5 30 10 0.2391 0.0781 0.0595

20 0.1820 0.0438 0.0359

50 30 0.2155 0.0314 0.0267

40 0.1672 0.0239 0.0207
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TABLE 2. Mean square error of the estimator p̂

ML MCI

k n m ER(p̂ML) ER(p̂BS) ER(p̂BL)

3 30 10 0.1065 0.0297 0.0351

20 0.1042 0.0273 0.0329

50 30 0.0877 0.0244 0.0303

40 0.0826 0.0173 0.0233

5 30 10 0.1102 0.0288 0.0342

20 0.0952 0.0252 0.0309

50 30 0.1034 0.0238 0.0296

40 0.0860 0.0158 0.0217

7. Conclusions

From the results, in tables (1) and (2), it can be observed that the Bayes estimates under

the symmetric (SEL) and the asymmetric (Linex) loss functions are generally better than their

corresponding MLEs. It can also be seen that the mean squared errors decrease as the sample

sizes increase.

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

[1] K. Adamidis, S. Loukas, A lifetime distribution with decreasing failure rate, Statist. Probab. Lett. 39 (1998),

35-42.

[2] K. Adamidis, T. Dimitrakopoulou, and S. Loukas, On an extension of the exponential-geometric distribu-

tion,Statist. Probab. Lett. 73 (2005), 259-269.

[3] M. A. M. Ali Mousa and Z. F. Jaheen, Statistical Inference for the Burr Model Based on Progressively

Censored Data, An International Computers and Mathematics with Applications, 43 (2002), 10-11, 1441-

1449.



824 Z.F. JAHEEN, SARA M.A.M. ALI

[4] N. Balakrishnan and R.A. Sandhu, A simple simulation algorithm for generating progressively type-II cen-

sored samples,The American Statistician, 49 (1995), 229-230.

[5] N. Balakrishnan and R. Aggarwala, Progressive censoring: theory, methods and applications, Birkhauser

publishers, Boston (2000).

[6] N. Balakrishnan, N. Knnan, C. T. Lin H. and Ng, Point and Interval Estimation for Gaussian Distribution

Based on Progressively Type-II Censored Samples, IEEE Tran- sactions on Reliability 52 (2003), 3, 90-95.

[7] W. Barreto-Souza, A. Lemos de Morais and G. M. Cordeiro, The Weibull-Geometric Distribution, J. Statist.

Comp. Simul. 81 (2011), 5, 645-657.

[8] A. Childs and N. Balakrishnan, Conditional Inference Procedures for the Laplace Distribution When the Ob-

served Samples Are Progressively Censored, Metrika, 52 (2000), 3, 253-265.

[9] P. L. Gupta, S. Gupta and Ya. Lvin, Analysis of Failure Time Data by Burr Distribution, Com. Statist. Theor.

Methods, 25 (1996), 9, 2013- 2024.

[10] G. G. Hamedani and M. Ahsanullah, Characterization Of Weibull Geometric Distribution, J. Statist. Theor.

App. 81 (2011), 5, 645-657.

[11] P. Jodra and M. D. Jimenez-Gamero, On a logarithmic integral and the moments of order statistics from the

Weibull-geometric and half-logistic families of distributions, J. Math. Ann. App. 410 (2014), 2, 882?90.

[12] L. G. Johnson, Theory and Technique of Variation Research, Elsevier, Amsterdam (1964).

[13] K. Ng, P. S. Chan and N. Balakrishnan, Estimation of Parameters from Progressively Censored Data Using

an Algorithm, Com. Statist. Data Ann. 39 (2002), 4, 371-386.

[14] E. M. M. Ortega, G. M. Cordeiro and A. R. Pascoa, The generalized gamma geometric distribution, to appear

in J. Statist. Theor. App.

[15] A. M. Sarhan and A. Abuammoh, Statistical Inference Using Progressively Type-II Censored Data with

Random Scheme, International Mathematical Forum 35 (2008), 3, 1713-1725.

[16] A. A. Soliman, Estimation of Parameters of Life from Progressively Censored Data Using Burr-XII Model,

IEEE Transactions on Reliability, 54 (2005), 1, 34-42.

[17] C. Tojeiro, F. Louzada, M. Roman and P. Borges, The complementary Weibull geometric distribution, J. Stat.

Comput. Simul. 84 (2014), 6, 1345-1362.

[18] S. K. Tse, C. Y. Yang and H. -K. Yuen, Statistical Analysis of Weibull Distribution Lifetime Data under Type

II Progressive Censoring with Binomial Removals, J. App. Stat. 27 (2000), 8, 1033- 1043.

[19] S. -J. Wu and C. -T. Chang, Parameter Estimation Based on Exponential Progressive Type II Censored Data

with Binomial Removals, Info. Mange. Stat. 13 (2002), 3, 37-46.

[20] S. -J. Wu, Estimation for the Two-Parameter Pareto Distribution under Progressive Censoring with Uniform

Removals, J. Stat. Comput. Simul. 73 (2003), 2, 125-134.



BAYES ESTIMATION FOR THE WEIBULL-GEOMETRIC DISTRIBUTION 825

[21] S. -J. Wu and C. Kus, On Estimation Based on Progressive First-Failure Censored Sampling, Com. Statist.

Data Ann. 53 (2009), 10, 3659-3670.


