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Abstract. In this paper, we develop new discrete models for the numerical simulation of non-linear ordinary 

differential equation arising from the dynamics of a tidal wave. A new set of non-standard schemes are proposed 

using the   technique of non-local approximation. Both one step and two step formats have been considered. The 

schemes were found to be suitable for the numerical simulation of the Tsunami equation as proposed.  
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 Introduction 

One of the most important questions in prognostic tsunami modeling is estimation of tsunami 

run-up heights at different points along the coastline. Methods for numerical simulation of 

tsunami wave propagation are well developed and are widely used by a great number of 

scientists. To date, only a few existing numerical models have met current standards, and these 

models remain the only choice for use for real-world forecasts 

 To some earlier modelers, the Tsunamis are assumed to be linear, long gravity waves at single 

frequencies.  Several models that have proven very useful has employed non-linear views. Some 

of these works include: [1],[2],[3],[4],[5] and[6].  Since numerical applications has proven to 

produce alternative discrete model that can be used to approximate non-linear equations. We can 
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apply numerical experiments to simulate various scenario possible for any given dynamical 

system 

  A lot of work has been done in the area of numerical modeling of ordinary differential 

equations. Many of these techniques have been found to be useful for developing discrete 

solution for different type of equations. 

Various researchers have come up with useful models in which the numerical simulations have 

been applied in the management and study of tidal waves among them are: [7],[8],[9],[10] 

and[11].   

 In this work we will use a combination of non-local approximation  of  the derivatives and the 

grid point estimates  to develop   one step and two step  Non-standard  finite difference schemes  

for the Tsunami equation.  

Non-local approximations and renormalization of the denominator functions have been found to 

be appropriate for the solution of differential equations. The works of [12] and [13], [14],[15] 

and [16]  have used these techniques extensively to develop discrete models that correctly follow 

the dynamics of the original  differential equation.  In many cases the schemes have been found 

to possess certain desirable qualitative properties like monotonicity of solutions. linear stability 

and preservation of the properties of the fixed points. The model of non-linear ordinary 

differential equation proposed in the book of [17] will be used for the numerical experiment. The 

significant of this numerical model is in the combination of several techniques in one  scheme to 

simulate the original equation. Some denominator functions developed by these authors have 

been used for the purpose of comparison. These denominator functions have been developed 

based on the rule 2 of non-standard modeling technique proposed by [12].  

 

2.    The Tsunami model (Gill and Cullen 2005) 

The Tsunami Model is given by 

dy

dx
= y√4 − 2y           (1) 

y(x) > 0 is the height of the wave expressed as a function of its position relative to a point off-

sore. This is one of the simplest model for a tidal wave considering the complex dynamics of the 

phenomena being model. The function y(x) has a lot of underlining assumption and as such in 

reality may possess more complex properties. The equilibrium points of this equation are y= 0 

and y=2;  and  
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if   y0 = 2  the analytic solution is  y(x) = 2sech2x    Otherwise   y(x) = 2sech2(x − c)    (2) 

We will develop new schemes that possess the same qualitative properties as that of this 

differential equation. 

 

3. Derivation of the Method 

We will apply rule2&3 (see [12]) and their extensions in  [14]  to each of the components of the 

equation as shown below  

Rule 2 (Mickens 1994) 

Denominator function for the discrete derivatives must be expressed in terms of more 

complicated function of the step-sizes than those conventionally used. This rule allows the 

introduction of complex analytic function of h that satisfy certain conditions in the denominator . 

It must be stated here that the selection of an appropriate denominator is an ‘art’ (Mickens 1999). 

Close examinations of differential equation, for which the exact schemes are known, shows that 

the denominator function generally are functions that are related to particular solutions or 

properties of general solution to the differential equation. This therefore places great importance 

on the necessity of the modeler to obtain as much analytic knowledge as possible about the 

differential equation. A lot of such denominator functions have been developed by this author 

and many others, such will be used directly here. 

Rule 3 (Mickens 1994) 

The non-linear terms must in general be modeled (approximated) non-locally on the 

computational grid or lattice in many different ways.  

Application of the combination of these two rules will give us the following transformations 

dy

dx
 ≡ 

(𝑦𝑘+1−yk)

𝜓
 where   𝜓(ℎ) → ℎ + 0(ℎ2)𝑎𝑠ℎ → 0      (3) 

dy

dx
  ≡ 

(𝑦𝑘+1−𝛽yk)

𝜓
 where   𝜓(ℎ) → ℎ + 0(ℎ2), 𝛽(ℎ) → 1 𝑎𝑠ℎ → 0   (4) 

dy

dx
  ≡ 

(𝑦𝑘+1−𝛽yk−1)

2𝜓
 where   𝜓(ℎ) → ℎ + 0(ℎ2), 𝛽(ℎ) → 1 𝑎𝑠ℎ → 0   (5) 

The following non-local approximations 

𝑦𝑘+1  ≡ 
(𝑦𝑘+1+𝛽yk)

2
 where     𝛽(ℎ) → 1 𝑎𝑠ℎ → 0      (6) 

𝑦𝑘+1  ≡ 
(2𝑦𝑘+𝛽yk−1)

3
 where     𝛽(ℎ) → 1 𝑎𝑠ℎ → 0      (7) 

𝑦𝑘+1  ≡ 
(𝑦𝑘  yk)

yk−1
            (8) 
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𝑦𝑘+1  ≡ 𝑎𝑦𝑘+1 + 𝑏𝑦𝑘   𝑎 + 𝑏 = 1        (9) 

 

Sample renormalisation functions to be employed are 

𝜓 =sin (∝ ℎ) , ∝ϵ R       → ℎ + 0(ℎ2)      𝑎𝑠 ℎ → 0     (10) 

𝜓 = 
(𝑒𝜆h−1)

𝜆
 , λϵ R ,     → ℎ + 0(ℎ2)       𝑎𝑠 ℎ → 0     (11) 

 𝛽 = 𝑐𝑜𝑠(∝ ℎ), ∝ϵ R  → 1       𝑎𝑠 ℎ → 0      (12) 

 

4. Derivation of the schemes 

dy

dx
= y√4 − 2y  (Zill  &Cullen  2005)      (13) 

 

 One step Schemes 

Scheme A 

Applying non-local approximation to grid points using the transformation equations (3)and(9) in 

(1)  

we have the following 

𝑦𝑘+1−𝑦𝑘

𝜓
= (𝑎𝑦𝑘+1 + 𝑏𝑦𝑘)√(4 − 2𝑦𝑘)        (14) 

𝑦𝑘+1 =  𝑦𝑘 + (𝑎𝜓𝑦𝑘+1 + 𝑏𝜓𝑦𝑘)√(4 − 2𝑦𝑘)       (15) 

𝑦𝑘+1 =  
𝑦𝑘(1+𝑏𝜓)√(4−2𝑦𝑘)

(1−𝑎𝜓)√(4−2𝑦𝑘)
         (16) 

We can choose any  𝜓 to form  schemes of the form 

𝑦𝑘+1 =  
𝑦𝑘(1+𝑏𝜓)√(4−2𝑦𝑘)

(1−𝑎𝜓)√(4−2𝑦𝑘)
,  𝜓 = ℎ  , 𝛽 = 𝑐𝑜𝑠(∝ ℎ), λ,∝ϵ R Scheme A1  (17) 

𝑦𝑘+1 =  
𝑦𝑘(1+𝑏𝜓)√(4−2𝑦𝑘)

(1−𝑎𝜓)√(4−2𝑦𝑘)
,  𝜓 = 

(𝑒𝜆h−1)

𝜆
   𝛽 = 𝑐𝑜𝑠(∝ ℎ), λ,∝ϵ R  Scheme A2 

 (18) 

𝑦𝑘+1 =  
𝑦𝑘(1+𝑏𝜓)√(4−2𝑦𝑘)

(1−𝑎𝜓)√(4−2𝑦𝑘)
, 𝜓 = sin (h) , 𝛽 = 𝑐𝑜𝑠(∝ ℎ), λ,∝ϵ R  Scheme A3  (19) 

 

Scheme B 

Applying non-local approximation to derivative  using the transformation equations (3) in (1)  

we have the following 
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𝑦𝑘+1−𝛽𝑦𝑘

𝜓
= √𝑦𝑘

2(4 − 2𝑦𝑘)         (20) 

𝑦𝑘+1 =  𝛽𝑦𝑘 +  𝜓𝑦𝑘√(4 − 2𝑦𝑘)        (21) 

We can choose any  𝜓 to form  schemes of the form 

𝑦𝑘+1 =  𝛽𝑦𝑘 +  𝜓𝑦𝑘√(4 − 2𝑦𝑘),  𝜓 = ℎ  , 𝛽 = 𝑐𝑜𝑠(∝ ℎ), λ,∝ϵ R  Scheme B1 (22) 

𝑦𝑘+1 =  𝛽𝑦𝑘 +  𝜓𝑦𝑘√(4 − 2𝑦𝑘),  𝜓 = 
(𝑒𝜆h−1)

𝜆
   𝛽 = 𝑐𝑜𝑠(∝ ℎ), λ,∝ϵ R  Scheme B2 (23) 

𝑦𝑘+1 =  𝛽𝑦𝑘 +  𝜓𝑦𝑘√(4 − 2𝑦𝑘), 𝜓 = sin (h) , 𝛽 = 𝑐𝑜𝑠(∝ ℎ), λ,∝ϵ R  Scheme B3 (24) 

The direct substitution of a normalized denominator  to replace h in the standard       

Finite Difference Scheme 𝑦𝑘+1 = 𝑦𝑘 + ℎ𝑓(  𝑥𝑘 , 𝑦𝑘), will result in the simple scheme given below in 

(25). 

This scheme will not involve the application of any other Nonstandard modeling rule except the 

replacement of the denominator. 

𝑦𝑘+1 = 𝑦𝑘 +  𝜓𝑦𝑘√(4 − 2𝑦𝑘), 𝜓 = 
(𝑒𝜆h−1)

𝜆
            Scheme  (DIRECT)                       (25) 

 

Two Step Schemes 

Method I 

Scheme C 

Applying non-local approximation to the original differential equation using the transformation              

equations (5) in (1) we obtain  the following 

𝑦𝑘+1−𝛽𝑦𝑘−1

2𝜓
= √𝑦𝑘

2(4 − 2𝑦𝑘)         (26) 

𝑦𝑘+1 =  𝛽𝑦𝑘−1 + (2𝜓𝑦𝑘)√(4 − 2𝑦𝑘)        (27) 

We can choose any  𝜓 to form  schemes of the form 

𝑦𝑘+1 = 𝛽𝑦𝑘−1 + (2𝜓𝑦𝑘)√(4 − 2𝑦𝑘) ,  𝜓 = ℎ , 𝛽 = 𝑐𝑜𝑠(∝ ℎ), λ,∝ϵ R  Scheme C1 (28) 

𝑦𝑘+1 =  𝛽𝑦𝑘−1 + (2𝜓𝑦𝑘)√(4 − 2𝑦𝑘),  𝜓 =  
(𝑒𝜆h−1)

𝜆
    𝛽 = 𝑐𝑜𝑠(∝ ℎ), λ,∝ϵ R Scheme C2 (29) 

𝑦𝑘+1 =  𝛽𝑦𝑘−1 + (2𝜓𝑦𝑘)√(4 − 2𝑦𝑘),  𝜓 = sin (h) , 𝛽 = 𝑐𝑜𝑠(∝ ℎ), λ,∝ϵ R Scheme C3 (30) 

Note that  𝜓 = ℎ is the standard denominator function in Finite difference method 

We will also compute values for the scheme 

 

Definition 1: An initial value problem of a first order ODE can be represented as follows:   

                  y′ = f(t, y) , у(t0)  =  y0        (31)  
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 where  y0  is the value of y at time t0 

It is common fact to write the functional dependence 𝑦𝑛+1 on the quantities  𝑥𝑛 , 𝑦𝑛  and h in the 

form; 

 yn+1 = yn  + h φ(  𝑥𝑛, 𝑦𝑛;  ℎ)                                                   (32)  

Where  φ(  𝑥𝑛, 𝑦𝑛;  ℎ) is called the increment function. 

 

Let us denote 𝑦𝑘  the approximate solution of (31) at grid point  𝑡𝑘  : 𝑦𝑘   =   𝑦 (𝑡𝑘 ) then the 

sequence 𝑦𝑘 is obtained as a solution to a finite difference equation of the form  (32). Lets denote  

(32) by  the sequence 𝑦𝑘 =  𝐹(ℎ ;  𝑦𝑘)         (33 ) 

Definition 2: (Anguelov and Lubuma(2003).) Assume that the solution of equation (31) satisfy some 

property 𝓟,The numerical scheme(32) is called qualitatively stable with respect to property 𝓟 or 𝓟-stable, 

if for every value h˃0 the set of solutions of (32) satisfies 𝓟. 

Definition 3: (Anguelov and Lubuma(2003)) A set G(ῼ) of real-valued functions defined on a subset ῼ 

of [t0,∞) monotonically depend on the initial value(at t0) if for every two functions y,zЄ G(ῼ)  we have  

 y(t0) ≤ z(t0)  ⇒ y(t) ≤ z(t), t Є ῼ            (34) 

 Definition 4: (Anguelov and Lubuma(2003):  The finite difference scheme(33) is stable with respect to 

the property of monotonicity of solutions if for every y0 Єℝ the solution yk of (33)  is an increasing or a 

decreasing sequence according as the y(t)  of equation (31) is increasing  or decreasing. 

Definition 5: (Anguelov and Lubuma(2003): The finite difference method (32) is called elementary 

stable  if for any value of the step size h , its only fixed points ӯ are those of the differential equation (31), 

the linear stability property of each ӯ  being  the same for both the differential equation and the discrete 

method. 

 

The following theorems establish the conditions (sufficient) for the stability properties of the 

discrete equation (33). Proves of the theorems can be found in (Anguelov and Lubuma(2003))  . 

The authors have been able to prove the condition for stability of the fixed points and link the 

properties of linear stability to elementary stability of the fixed points. 

Theorem 1: (Anguelov and Lubuma(2003):  The difference Scheme (32) is stable with respect to  

monotone dependence on initial value if   

  
𝜕𝐹

𝜕𝑦
(ℎ; 𝑦) ≥ 0, 𝑦Єℝ, ℎ˃0                       (35) 

Theorem 2: (Anguelov and Lubuma(2003):    Assume that the difference scheme (32) is stable with 

respect to monotone dependence on initial value. Assume also that for every ℎ˃0   the equations  
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y =  F(h ;  y) and    f(y) = 0         (36) 

in y have the same roots considered their multiplicity. Then the difference scheme (33) is stable with 

respect to monotonicity of solutions.  

 Theorem 3: (Anguelov and Lubuma(2003)): Under the assumptions of theorem (2) the difference 

scheme (32) is  elementary stable. 

 

In the next subsection section we shall use the above theorems (1 –3) to establish the stability or 

otherwise of the non-exact schemes  developed for the Logistic and Combustion equations. Please note 

that a major advantage of having an exact scheme for a differential equation is that questions related to 

the usual considerations of consistency, stability and convergence do not arise (see Mickens 1994). 

In this Section we show that our schemes satisfy the sufficient condition for the stability properties 

described above. 

Stability of Scheme A with respect to monotonicity of solutions.  

 

𝑦𝑘+1 =  
𝑦𝑘(1+𝑏𝜓)√(4−2𝑦𝑘)

(1−𝑎𝜓)√(4−2𝑦𝑘)
         (37)  

𝑦 = 𝐹(ℎ, 𝑦) =  
𝑦𝑘(1+𝑏𝜓)√(4−2𝑦𝑘)

(1−𝑎𝜓)√(4−2𝑦𝑘)
        (38) 

𝑦 = 𝐹(ℎ, 𝑦) =  
𝑦(1+𝑏𝜓)√(4−2𝑦)

(1−𝑎𝜓)√(4−2𝑦)
         (39) 

𝑦(1 − 𝑎𝜓)√(4 − 2𝑦) −  𝑦(1 + 𝑏𝜓)√(4 − 2𝑦) = 0      (40)  

Have roots 0 and 2 

Let  𝑦 ≠ 0 𝑎𝑛𝑑 𝑦 ≠ 2  

𝑙𝑒𝑡 𝑎 + 𝑏 = 1   

(1 − 𝑎𝜓)√(4 − 2𝑦) =  (1 + 𝑏𝜓)√(4 − 2𝑦)       (41) 

       

𝑏𝜓 = −𝑎𝜓 

𝑏 = −𝑎            (42) 

This contradicts the assumption of selecting parameters 𝑎, 𝑏  𝑠. 𝑡.   𝑎 + 𝑏 = 1  

Hence the only roots of 𝑦 = 𝐹(ℎ, 𝑦) is 0 and 2 

𝑓(𝑦) =  𝑦√(4 − 2𝑦) have roots 0 and 2        

The conditions of theorem….  are satisfied  for all scheme A 

We can choose our parameters on 
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Stability of Scheme B&C with respect to monotonicity of solutions.  

𝑦𝑘+1 =  𝛽𝑦𝑘 +  𝜓𝑦𝑘√(4 − 2𝑦𝑘)        (43) 

𝑦 = 𝐹(ℎ, 𝑦) =  𝛽𝑦 + 𝜓𝑦√(4 − 2𝑦)        (44) 

𝑦 −  𝛽𝑦 − 𝜓𝑦√(4 − 2𝑦) = 0 have  root 0 

It will have root 2  iff 𝛽 = 1 

Hence if 𝛽 = cos (ℎ) and ℎ ≠ 0  

and 𝑓(𝑦) =  𝑦√(4 − 2𝑦) have roots 0 and 2 

The condition of theorem 2  is not satisfied we cannot conclude on the property of monotonicity of 

solutions. 

 

However the Scheme given by 

 𝑦𝑘+1 =  𝑦𝑘 +  𝜓𝑦𝑘√(4 − 2𝑦𝑘)        (45) 

Clearly satisfy the conditions of theorem 2 and we conclude that the scheme Direct  has the property of 

monotonicity of solutions 

The above also confirm Elementary Stability as stated in Theorem 3.     

   

Stability of Scheme  A with respect to monotone dependence on initial values of solutions.  

𝜕𝐹

𝜕𝑦
(ℎ; 𝑦) ≥ 0 

𝐹(ℎ, 𝑦) =  
𝑦(1+𝑏𝜓)√(4−2𝑦)

(1−𝑎𝜓)√(4−2𝑦)
         (46) 

 

Let ∝= (1 + 𝑏𝜓)and 𝛽 = (1 − 𝑎𝜓) 

⇒ 𝐹(ℎ, 𝑦) =  
𝑦∝√(4−2𝑦)

𝛽√(4−2𝑦)
  

𝜕𝐹

𝜕𝑦
(ℎ; 𝑦) =  −∝ 𝛽𝑦 − 𝛽[−∝ 𝑦+∝ (4 − 2𝑦)]       (47) 

 =  −∝ 𝛽 + 𝛽 ∝ 𝑦−∝ 𝛽(4 − 2𝑦) 

⇒  −∝ 𝛽(4 − 2𝑦)≥0          (48) 

 

⇒ −∝ 𝛽≥0 

⇒  −(1 + 𝑏𝜓)(1 − 𝑎𝜓)≥0         (49) 

Suppose (1 + 𝑏𝜓) ≤ 0 AND (1 − 𝑎𝜓)≥0       (50) 
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⇒1 + (1 − 𝑎)𝜓 ≤ 0    𝑎 + 𝑏 = 1 

⇒ (1 − 𝑎)𝜓 ≤ −1 

⇒ 1 − 𝑎 ≤  −
1

𝜓
   

⇒ 𝑎 ≥1 +
1

𝜓
    and  𝑏 ≤  −

1

𝜓
           (51) 

 

Suppose (1 + 𝑏𝜓) ≥ 0 AND (1 − 𝑎𝜓) ≤0 

⇒ 𝑎 ≥
1

𝜓
    and  𝑏 ≤ 1 −

1

𝜓
         (52) 

The condition for theorem is satisfied with equation (50)  and the second condition is contained in the first 

for 𝜓 >0 

 

Stability of Scheme B&C with respect to monotone dependence on initial values of solutions.  

𝐹(ℎ, 𝑦) =  𝛽𝑦 + 𝜓𝑦√(4 − 2𝑦)         (53) 

 

𝜕𝐹

𝜕𝑦
(ℎ; 𝑦) ≥ 0 

𝜕𝐹

𝜕𝑦
(ℎ; 𝑦) =   𝛽 − 

𝜓𝑦

√(4−2𝑦)
≥ 0         (54)  

Let  𝑦 ≠ 0 𝑎𝑛𝑑 𝑦 ≠ 2 and  𝑦 > 0  

⇒   𝛽 ≥  
𝜓𝑦

√(4−2𝑦)
  

⇒   𝛽√(4 − 2𝑦) ≥ 𝜓𝑦          (55) 

Taking the positive root ,  the above  is true for 0< 𝑦 < 2,  𝛽 = cos (ℎ),  𝜓 as defined 

𝜕𝐹

𝜕𝑦
(ℎ; 𝑦) ≥ 0  , for 0< 𝑦 < 2 

This is also true when  𝛽 = 1 

⇒  The Direct Scheme 𝑦𝑘+1 =  𝑦𝑘 +  𝜓𝑦𝑘√(4 − 2𝑦𝑘)      (56) 

Satisfies 

𝜕𝐹

𝜕𝑦
(ℎ; 𝑦) ≥ 0  , for 0< 𝑦 < 2 

NUMERICAL EXPERIMENT 

The schemes have been tested using step size h=0.01 and  for about 100 iterations. The result of 

the numerical simulation is here presented in 3D graphs 
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Fig 1:  Graph of scheme A with the Analytic solution 

 

 

Fig 2:  Graph of Error of deviation of scheme A from  the Analytic solution 

 

 

 

 

 

 

 

 

 

 

 

Fig 3:  Graph of scheme B with  the Analytic solution 
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Fig 4:  Graph of Error of deviation of scheme B from the Analytic solution 

 

 

Fig 5:  Graph of Error of deviation of scheme B1andB2  from  the Analytic solution 

 

 

Fig 6:  Graph of Error of deviation of scheme B1 and B2 from  the Analytic solution 
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Fig 7:  Graph of Error of deviation of scheme A and B from  the Analytic solution 

 

 

Fig 8:  Graph  of scheme C   AND  the Analytic solution 

 

 

Fig 9:  Graph of scheme C  AND  the Analytic solution (25 Iterations) 
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Fig 10:  Graph of Error of deviation of scheme C from the Analytic solution 

 

 

Fig 11:  Graph of scheme A,B,C , Scheme Direct  AND  the Analytic solution 

 

 

Fig 12:  Graph of Error of deviation of scheme A, B and C  from  the Analytic solution 

0

0.005

0.01

0.015

0.02

0.025

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

Er
ro

r

tk

h=0.01

ERR C2

ERR C1

0

0.5

1

1.5

2

2.5

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

yk

tk

h=0.01 DIRECTe
x
A1

A2

A3

B1

B2

B3

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

A
b

so
lu

te
 E

rr
o

r

tk

h=0.01 ERRA1

ERRA2

ERRA3

ERRB1

ERRB2

ERRB3

ERRC1

ERRC2



111 

DISCRETE SIMULATION MODEL FOR TSUNAMI TIDAL WAVE 

 

Fig 13:  Graph of Error of deviation of scheme Direct, A, B & C   from  the Analytic solution 

 

DISCUSSION AND CONCLUSION 
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pointer to the fact that the application of a combination of the rules does not necessarily lead 

to a better scheme. 

We can however conclude that the schemes are suitable for the simulation of the Tsunami 

model as proposed. 
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