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Abstract. The concepts of source core and successor core for residuated lattice valued finite state machine are

introduced and their properties are studied. We found the relation between the genetic subset of lattice valued finite

state machine and the source core. Using the implication of complete residuated lattice we introduced the fuzzy

operators namely fuzzy initial core and fuzzy final core which are generalizations of source core and successor core

respectively. Also we have done comparative study of these operators with the source and successor operators.
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1. Introduction

Study of fuzzy automata theory was firstly proposed by Wee in 1967[37] and Wee and Fu in

1969 [38] as a model of learning systems. Since then many authors has been studied fuzzy

automaton for characterizations of fuzzy languages [12, 27, 29, 30, 32, 36]. Algebraic study

of fuzzy automata theory was started by Malik, Mordeson and Sen [19, 20] and then by many
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others[9, 10, 11, 14, 17, 18, 21]. Topological aspects of fuzzy automata was studied by Das [3],

Srivastava and Tiwari [31], Tiwari et.al [35] etc. Many researchers have studied fuzzy automata

theory in allied directions to see them we refer to [5, 8, 22, 23].

Generalization of fuzzy automaton as lattice valued automaton was proposed by Qiu [24, 25].

Since then many researchers have studied fuzzy automata with membership values in complete

residuated lattice, lattice ordered monoid, orthomodular lattice and other kinds of lattices [2,

4, 13, 15, 16, 26, 33, 34, 39]. Tiwari et.al [33, 34] were studied algebraic and topological

characterization of L-valued finite state machines(called it has also L-fuzzy automaton) with

the underlying structure of lattice ordered monoid.

The paper is arranged in six sections. Preliminary section 2 consist of basic concepts of com-

plete residuated lattice and L-valued finite state machine. Section 3 contains the concepts of

source, successor operators and their fuzzified operators. The operators source core and suc-

cessor core studied in section 4. Newly introduced operators Fuzzy initial core and fuzzy final

core are discussed along with their properties in section 5. Lastly, we conclude the discussion

in section 6.

2. Preliminaries

In this section, we discuss complete residuated lattice and L-valued finite state machines. We

begin with the definition of residuated lattice.

Definition 2.1. [1, 6, 24] A residuated lattice is a quintuple L = (L,∧,∨,∗,→,0,1) ,where

(i) (L,∧,∨,0,1) is a lattice with 0 and 1 as its least and greatest elements respectively;

(ii) (L,∗,1) is a commutative monoid with unit 1;

(iii) ∗ and → form an adjoint pair, i.e. they satisfy the adjuction property: i.e. α ∗ β ≤ γ iff

α ≤ β → γ for any α,β ,γ ∈ L.

In literature the structure of residuated lattice is also called as integral, commutative, residu-

ated, l-monoid [6]. If in addition, (L,∧,∨,0,1) is a complete lattice, the L is called as complete

residuated lattice. Throughout this paper, L stands for complete residuated lattice.
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We give an account of some properties of complete residuated lattices as follows: For any

a,b,xi ∈ L

(P1) (∨
i
xi)∗a = ∨

i
(xi ∗a),

(P2) a≤ b⇔ a→ b = 1,

(P3) a≤ b ⇒ c→ a≤ c→ b and b→ c≤ a→ c,

(P4) a→ (∧
i
xi) = ∧

i
(a→ xi),

(P5) (∨
i
xi)→ a = ∧

i
(a→ xi),

(P6) 1→ a = a,

(P7) (a∗b)→ c = a→ (b→ c).

Additionally, some derived formulae are also necessary for us. We just report them as fol-

lows:

i) ¬a = a→ 0, a ∈ L

ii) If A is L-fuzzy subset of Q and q ∈ Q, then Q−A(q) = ¬A(q) = A(q)→ 0.

Definition 2.2. A residuated lattice L = (L,∧,∨,∗,→,0,1) is said to be a residuated lattice

without zero divisiors if for all a,b ∈ L a 6= 0,b 6= 0⇒ a∗b 6= 0.

Definition 2.3. [24] An L-valued finite state machine(In short, L-VFSM) or L-valued semi-

automaton is a triple M = (Q,Σ,δ ), where Q and Σ are non empty finite sets of states and

input symbols respectively, and δ is a L-fuzzy subset of Q×Σ×Q i.e. δ is a function from

Q×Σ×Q into L, called transition function.

Intuitively, δ (p,σ ,q) stands for the membership degree of the transition from state p ∈ Q to

the state q ∈ Q, when the input is σ ∈ Σ.

Note 2.1. The collection of all finite sequence of elements of Σ (called, tapes or string) denoted

by Σ∗, and ε denotes the empty string in Σ∗. For any x ∈ Σ∗, |x| denotes the length of the string

x. Clearly, |ε|= 0.

Definition 2.4. [24] Let M = (Q,Σ,δ ) be L-VFSM. Extend δ : Q×Σ×Q→ L to δ ∗ : Q×Σ∗×

Q→ L inductively as follows:

for any p,q ∈ Q, σ ∈ Σ and x ∈ Σ∗,
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(1) δ ∗(p,ε,q) =


1 i f p = q

0 otherwise

(2) δ ∗(p,xσ ,q) =
∨

r∈Q
{δ ∗(p,x,r)∗δ (r,σ ,q)}.

Then δ ∗ is called extended transition function with respect to ∗.

If we replace ∗ by ∧ in the Definition 2.4, then it reduces to.

Definition 2.5. Let M = (Q,Σ,δ ) be L-VFSM. We extend δ : Q×Σ×Q→ L to δ∧ : Q×Σ∗×

Q→ L as follows:

for any p,q ∈ Q, σ ∈ Σ and x ∈ Σ∗,

(1) δ∧(p,ε,q) =


1 i f p = q

0 otherwise

(2) δ∧(p,xσ ,q) =
∨

r∈Q
{δ∧(p,x,r)∧δ (r,σ ,q)}.

Then δ∧ is called extended transition function with respect to ∧.

Theorem 2.1. [13] Let L be a lattice and X be a finite subset of L. Then ∧-semilattice of L

generated by X, X∧ = {x1 ∧ ·· · ∧ xk|k ≥ 1,x1, . . . ,xk ∈ X} ∪ {1}, is finite. Similarly, the ∨-

semilattice of L generated by X, X∨ = {x1∨·· ·∨ xk|k ≥ 1,x1, . . . ,xk ∈ X}∪{0}, is also finite.

The following theorem shows that the importance of complete lattice.

Theorem 2.2. Let M = (Q,Σ,δ ) be L-VFSM. Then the image set of the extension transition

function δ∧ : Q×Σ∗×Q→ L is finite. i.e. Im(δ∧) = {δ∧(p,x,q)|p,q ∈ Q,x ∈ Σ∗} is a finite

subset of L.

Proof. Let X = Im(δ ). As, Q and Σ are finite, we have X is finite. We have to prove that Im(δ∧)

is finite, for this we first show that, Im(δ∧)⊆ (X∧)∨.

We prove this, by induction on length of x denoted by |x|. When |x| = 0, then δ∧ = 0 or

1 ∈ (X∧)∨ and if |x|= 1, then δ∧ = δ ∈ X ⊆ (X∧)∨.

Now suppose it hold for |x|= k. We want to prove it for |x|= k+1. Let x=σ1σ2 . . .σkσk+1, then

we have for any p,q ∈Q, δ∧(p,σ1σ2 . . .σkσk+1,q) =
∨

r∈Q
{δ∧(p,σ1σ2 . . .σk,r)∧δ (r,σk+1,q)}.

By induction step, we have for any r∈Q, δ∧(p,σ1σ2 . . .σk,r)∈ (X∧)∨ and thus δ∧(p,σ1σ2 . . .σk,r)∧
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δ (r,σk+1,q)∈ ((X∧)∨)∧= (X∧)∨ and therefore, δ∧(p,σ1σ2 . . .σkσk+1,q)∈ ((X∧)∨)∨= (X∧)∨.

Hence Im(δ∧)⊆ (X∧)∨. By Theorem 2.1, (X∧)∨ is finite subset of L. Thus Im(δ∧), as a subset

of (X∧)∨, is also finite subset of L.

Remark 2.1. The above Theorem 2.2 shows that,if we use the definition 2.5, we do not need

completeness of the lattice, but we need the definition 2.4 have we use complete residuated

lattice throughout this paper.

3. Source, successor operators and their fuzzified operators

The study of source and successors operators can be found in Tiwari et.al.[33] and their fuzzified

operators in Tiwari et.al.[34], but their underlying lattice structure was lattice ordered monoid.

Here, we use complete residuated lattice as the structure of membership values, since structure

of residuated lattice, (L,∗,1) is a one kind of lattice ordered monoid structure. So we collect

some of the definitions and results from [33, 34].

Definition 3.1. Let M = (Q,Σ,δ ) be an L-valued finite state machine and A⊆ Q. The source

and the successors of A are respectively the sets

σ(A) = {p ∈ Q|δ ∗(p,x,q)> 0, for some x ∈ Σ
∗and q ∈ A}

s(A) = {q ∈ Q|δ ∗(p,x,q)> 0, for some x ∈ Σ
∗and p ∈ A}

Definition 3.2. An L-VFSM N = (R,Σ,λ ) is called an lattice valued sub finite state machine(In

short, L-VSFSM) of L-VFSM M = (L,Q,Σ,δ ), if R⊆ Q,s(R) = R and δ |R×Σ×R = λ . Further,

this L-VSFSM is called separated if s(Q−R) = Q−R.

Definition 3.3. An L-VFSM M = (L,Q,Σ,δ ) is called connected if M has no separated proper

L-VSFSM.

Definition 3.4. Let M = (Q,Σ,δ ) be an L-valued finite state machine and A ∈FL(Q). The

fuzzy source and the fuzzy successors of A are respectively defined as:

so(A)(q) = ∨
x∈Σ∗

p∈Q

{δ ∗(q,x, p)∗A(p)}



980 A.P. PATIL, S.R. CHAUDHARI

su(A)(q) = ∨
x∈Σ∗

p∈Q

{A(p)∗δ
∗(p,x,q)}

Theorem 3.1. Let L be a complete residuated lattice without zero divisors and A⊆Q. Then for

all p ∈ Q,

i) so(1A)(p)> 0 iff p ∈ σ(A)

ii) su(1A)(p)> 0 iff p ∈ s(A)

Proof. Proof is same as in [34].

Definition 3.5. Let M = (Q,Σ,δ ) be an L-VFSM. Then R ∈FL(Q) is called an L-fuzzy lattice

valued sub finite state machine(In short, L-fuzzy L-VSFSM) of M , if su(R)(q)≤ R(q),∀q ∈ Q.

Further, this L-fuzzy L-VSFSM is called separated, if su(Q−R)(q) = Q−R(q),∀q ∈ Q.

Definition 3.6. Let M = (Q,Σ,δ ) be an L-VFSM. Then an L-VFSM M is called `-connected,

if M has no non-constant separated L-fuzzy L-VSFSM.

Theorem 3.2. Let M = (Q,Σ,δ ) be an L-VFSM. If M is `-connected, then M is connected.

Proof. Let M be `-connected and N = (R,Σ,λ ) be separated L-VSFSM of M . Then s(R) = R

and s(Q−R) = Q−R.

Now, if p ∈ R, then 1R(p) = 1 and su(1R)(p) =
∨

x∈Σ∗

q∈Q

{1R(q)∗δ ∗(q,x, p)≥ 1R(p)∗δ ∗(p,ε, p) =

1∗1 = 1 =⇒ su(1R)(p) = 1

and if p /∈ R, then 1R(p) = 0 and su(1R)(p) =
∨

x∈Σ∗

q∈Q

{1R(q)∗δ ∗(q,x, p)

if q /∈ R, then 1R(q) = 0 and if q∈ R and δ ∗(q,x, p)> 0, then p∈ s(R), but s(R) = R =⇒ p∈ R,

which is contradiction and thus δ ∗(q,x, p) = 0. Therefore, for any q ∈ Q, either 1R(q) = 0 or

δ ∗(q,x, p) = 0 and thus su(1R)(p) = 0.

Therefore, for any p ∈ Q, su(1R)(p) = 1R(p).

Also, since Q−1R = 1Q−R, similarly for any p ∈ Q, we have su(Q−1R)(p) = su(1Q−R)(p) =

1Q−R(p) = Q−1R(p).

Thus, 1R is separated L-fuzzy L-VSFSM, but since M is `-connected, we have 1R is constant

i.e. 1R = 1 or 0 i.e. R = Q or φ .

Hence, there does not exist any separated proper L-VSFSM and thus M is connected.
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4. Source core and successor core operators

We are chiefly motivated from the concept of core (we say here, source core) defined in the

article [33], which is depends on source operator. In this section, we introduce one more core

operator, which will depends on successor operator and so we called it successor core.

Definition 4.1. Let M = (Q,Σ,δ ) be an L-VFSM and A⊆ Q. Then source core and successor

core of A are respectively defined as

µσ (A) = {q ∈ A/σ(q)⊆ A} and

µs(A) = {q ∈ A/s(q)⊆ A}.

We frequently write here, σ(q) and s(q) for σ({q}) and s({q}) respectively. Similarly, we

shall frequently write µσ ({q}) and µs({q}) as just µσ (q) and µs(q).

Theorem 4.1. Let M = (Q,Σ,δ ) be an L-VFSM. Then for A,B⊆ Q

i) if A⊆ B, then µσ (A)⊆ µσ (B) and µs(A)⊆ µs(B)

ii) µσ (A)⊆ A and µs(A)⊆ A

iii) µσ (A∩B) = µσ (A)∩µσ (B) and µs(A∩B) = µs(A)∩µs(B).

Proof. We only prove the properties of µσ , because the properties of µs are similar.

(i) Let q ∈ µσ (A). Then σ(q)⊆ A. But A⊆ B =⇒ σ(q)⊆ B =⇒ q ∈ µσ (B). Thus, µσ (A)⊆

µσ (B).

(ii) Let q ∈ µσ (A). Then σ(q)⊆ A. But q ∈ σ(q)always and hence, q ∈ A. Thus, µσ (A)⊆ A.

(iii) q ∈ µσ (A∩B)⇔ σ(q)⊆ A∩B⇔ σ(q)⊆ A and σ(q)⊆ B⇔ q ∈ µσ (A) and q ∈ µσ (A)⇔

q ∈ µσ (A)∩µσ (B). Thus, µσ (A∩B) = µσ (A)∩µσ (B).

Remark 4.1. From, the above theorem, it is obvious that µσ (µσ (A))⊆ µσ (A) and µs(µs(A))⊆

µs(A). In general µσ (µσ (A)) 6= µσ (A) and µs(µs(A)) 6= µs(A). For this, consider.

Example 4.1. Let L = [0,1] and (∗,→) be the Lukasiewicz pair. i.e. a∗b = max(0,a+b−1)

and a→ b = min(1,1−a+b), a,b ∈ L. Then L is a residuated lattice.

Consider the L-VFSM, M = (Q,Σ,δ ), where Q = {p1, p2, p3, p4},Σ = {σ}, and δ is repre-

sented by the following diagram:
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p1 p2 p3 p4

0.5
σ

0.5
σ

0.5
σ

Let A= {p2, p3, p4}. Then µσ (A)= {p3, p4} and µσ (µσ (A))= {p4}. This shows that µσ (µσ (A)) 6=

µσ (A). Also, if B = {p1, p2, p3}, then µs(B) = {p1, p2} and µs(µs(B)) = {p1}. This shows that

µs(µs(B)) 6= µs(B).

Theorem 4.2. Let M = (Q,Σ,δ ) be an L-VFSM with L as complete residuated lattice without

zero divisors. Then for all A⊆ Q, µσ (µσ (A)) = µσ (A) and µs(µs(A)) = µs(A).

Proof. We prove only, µσ (µσ (A)) = µσ (A). Let q ∈ µσ (A). Then σ(A) ⊆ A. In order to

show that q ∈ µσ (µσ (A)), it is enough to show that σ(q) ⊆ µσ (A). So let p ∈ σ(q). Then

δ ∗(p,x,q) > 0 for some x ∈ Σ∗. Also, if r ∈ σ(p), we have δ ∗(r,y, p) > 0 for some y ∈ Σ∗.

Since, L being without zero divisors, δ ∗(p,x,q)∗δ ∗(r,y, p)> 0. Thus, δ ∗(r,yx,q)> 0, whereby

r ∈ σ(q). But as σ(q) ⊆ A, r ∈ A. Thus σ(p) ⊆ A, implying that σ(q) ⊆ µσ (A). Also, as

µσ (µσ (A))⊆ µσ (A), we have µσ (µσ (A)) = µσ (A).

Definition 4.2. [33] Let M = (Q,Σ,δ ) be an L-VFSM. A subset R⊆ Q is called

(i) genetic if σ(R)⊆ s(R).

(ii) genetically closed if ∃P⊆ R such that σ(P)⊆ s(P) and s(P) = R.

Theorem 4.3. Let M = (Q,Σ,δ ) be an L-VFSM and R⊆ Q. Then R is

(i) genetic iff R⊆ µσ (s(R)).

(ii) genetically closed iff ∃ P⊆ R such that P⊆ µσ (R) and s(P) = R.

Proof. (i) Let R be a genetic and r ∈ R. Then σ(r)⊆ σ(R). But as R is genetic, we have σ(R)⊆

s(R)⇒ σ(r) ⊆ s(R)⇒ r ∈ µσ (s(R)) and hence R ⊆ µσ (s(R)). Conversely, let R ⊆ µσ (s(R))

and q ∈ σ(R)⇒ ∃ p ∈ R such that q ∈ σ(p). Since p ∈ R, we have p ∈ µσ (s(R))⇒ σ(p) ⊆

s(R)⇒ q ∈ s(R). Thus σ(R)⊆ s(R). Hence, R is genetic.

(ii) Follows from (i) and the definition 4.2.
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5. Fuzzy initial core and fuzzy final core operators

In this section we introduce two new fuzzy operators say fuzzy initial core and fuzzy final core.

We show that these operators are the generalizations of source core and successor core operators

respectively.

Definition 5.1. Let M = (Q,Σ,δ ) be an L-VFSM and A ∈FL(Q). Then the fuzzy initial core

and fuzzy final core of A are defined respectively as

Ico(A)(q) = ∧
x∈Σ∗

p∈Q

{δ ∗(p,x,q)→ A(p)} and

Fco(A)(q) = ∧
x∈Σ∗

p∈Q

{δ ∗(q,x, p)→ A(p)}

Remark 5.1. From the following theorem one can conclude that fuzzy initial core (Ico) and

fuzzy final core (Fco) are the generalization of source core (µσ ) and successor core (µs) re-

spectively.

Theorem 5.1. Let M = (Q,Σ,δ ) be an L-VFSM. Then for all q ∈ Q,

(i) Ico(1A)(q) = 1 iff q ∈ µσ (A)

(ii) Fco(1A)(q) = 1 iff q ∈ µs(A).

Proof. (i) Let A ⊆ Q and q ∈ Q. Suppose Ico(1A)(q) = 1. Then ∧
x∈Σ∗

p∈Q

{δ ∗(p,x,q)→ 1A(p)} =

1⇒ for all p ∈ Q,x ∈ Σ∗,δ ∗(p,x,q)→ 1A(p) = 1⇒ for all p ∈ Q,x ∈ Σ∗,δ ∗(p,x,q)≤ 1A(p).

If, p ∈ σ(q), we have δ ∗(p,x,q) > 0, for some x ∈ Σ∗. Therefore, 1A(p) > 0 and thus p ∈ A

Hence, σ(q)⊆ A⇒ q ∈ µσ (A).

Conversely, suppose that q ∈ µσ (A)⇒ σ(q) ⊆ A. For, any p ∈ Q,x ∈ Σ∗, if δ ∗(p,x,q) = 0

then δ ∗(p,x,q) ≤ 1A(p), also if δ ∗(p,x,q) > 0 then p ∈ σ(q) ⊆ A, there fore, 1A(p) = 1 and

thus δ ∗(p,x,q) ≤ 1A(p) =⇒ for all p ∈ Q,x ∈ Σ∗, δ ∗(p,x,q) ≤ 1A(p)⇒ for all p ∈ Q,x ∈

Σ∗, δ ∗(p,x,q)→ 1A(p)}= 1⇒ ∧
x∈Σ∗

p∈Q

{δ ∗(p,x,q)→ 1A(p)}= 1 i.e. Ico(1A)(q) = 1.

(ii) On the same line we can prove.

We now depict few properties of these operators.
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Theorem 5.2. Let M = (Q,Σ,δ ) be an L-VFSM. Then for all A,B ∈FL(Q),

i) if A⊆ B, then Ico(A)⊆ Ico(B) and Fco(A)⊆ Fco(B)

ii) Ico(A)⊆ A and Fco(A)⊆ A

iii) Ico(A∩B) = Ico(A)∩ Ico(B) and Fco(A∩B) = Fco(A)∩Fco(B)

iv) Ico(Ico(A)) = Ico(A) and Fco(Fco(A)) = Fco(A).

Proof. We only prove the properties of Ico, because the properties of Fco are similar.

(i) Let A⊆ B.

Then A(p)≤ B(p),∀p ∈ Q.

Now for any q ∈ Q, we have

Ico(A)(q) = ∧
x∈Σ∗

p∈Q

{δ ∗(p,x,q)→ A(p)} ≤ ∧
x∈Σ∗

p∈Q

{δ ∗(p,x,q)→ B(p)}= Ico(B)(q).

Thus, Ico(A)⊆ Ico(B).

(ii) Let q ∈ Q.

Then Ico(A)(q) = ∧
x∈Σ∗

p∈Q

{δ ∗(p,x,q)→ A(p)} ≤ δ ∗(q,ε,q)→ A(q) = 1→ A(q) = A(q).

Thus, Ico(A)⊆ A.

(iii) Let q ∈ Q. Then

Ico(A∩B)(q) =
∧

x∈Σ∗

p∈Q

{δ ∗(p,x,q)→ (A∩B)(p)}

=
∧

x∈Σ∗

p∈Q

{δ ∗(p,x,q)→ (A(p)∧B(p))}

=
∧

x∈Σ∗

p∈Q

{(δ ∗(p,x,q)→ A(p))∧ (δ ∗(p,x,q)→ B(p))}

=
∧

x∈Σ∗

p∈Q

{δ ∗(p,x,q)→ A(p)}∧
∧

x∈Σ∗

p∈Q

{δ ∗(p,x,q)→ B(p)}

= Ico(A)(q)∧ Ico(B)(q)

= (Ico(A)∩ Ico(B))(q).
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Thus, Ico(A∩B) = Ico(A)∩ Ico(B).

(iv) Let q ∈ Q. Then

Ico(Ico(A))(q) =
∧

x∈Σ∗

p∈Q

{δ ∗(p,x,q)→ Ico(A)(p)}

=
∧

x∈Σ∗

p∈Q

{δ ∗(p,x,q)→
∧

y∈Σ∗

r∈Q

{δ ∗(r,y, p)→ A(r)}}

=
∧

x∈Σ∗

p∈Q

∧
y∈Σ∗

r∈Q

{δ ∗(p,x,q)→ (δ ∗(r,y, p)→ A(r))}

=
∧

x∈Σ∗

p∈Q

∧
y∈Σ∗

r∈Q

{(δ ∗(p,x,q)∗δ
∗(r,y, p))→ A(r)}

=
∧

x,y∈Σ∗

r∈Q

{
∨
p∈Q

(δ ∗(p,x,q)∗δ
∗(r,y, p))→ A(r)}

=
∧

x,y∈Σ∗

r∈Q

{δ ∗(r,yx,q)→ A(r)}= Ico(A)(q).

Thus, Ico(Ico(A)) = Ico(A).

Theorem 5.3. Let M = (Q,Σ,δ ) be an L-VFSM. Then for any A ∈FL(Q),

(i) so(A) = A iff Ico(A) = A,

(ii) su(A) = A iff Fco(A) = A.

Proof. (i) Let so(A) = A. For any q ∈ Q,so(A)(q) = A(q)⇒ for any q ∈ Q,
∨

x∈Σ∗

p∈Q

{δ ∗(q,x, p) ∗

A(p)} = A(q)⇒ for any p,q ∈ Q,x ∈ Σ∗,δ ∗(q,x, p) ∗A(p) ≤ A(q)⇒ for any p,q ∈ Q,x ∈

Σ∗,A(p)≤ δ ∗(q,x, p)→ A(q)⇒ for any p∈Q,A(p)≤
∧

x∈Σ∗

p∈Q

{δ ∗(q,x, p)→ A(q)}⇒ for any p∈

Q,A(p)≤ Ico(A)(p) whence,A≤ Ico(A). But, by Theorem 5.2 Ico(A)≤A and thus Ico(A)=A.

Similarly, we can prove converse.

(ii) On the same line we can prove the result.
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6. Conclusion

In this paper we have introduced successor core operator in an analogue to the source core

operator. Two more new fuzzy operators namely fuzzy initial core and fuzzy final core are

introduced and their properties are studied.
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