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Abstract. In this paper, a procedure for finding maximum likelihood estimates (MLEs) of the parameters of a

finite mixture of two exponentiated – Weibull distributions (MEW) is presented, using classified and unclassified

observations. Estimation of a nonlinear discriminant function on the basis of a small sample size is considered.

Its performance is investigated by a series of simulation experiments. The simulations conducted for estimating a

nonlinear discriminant function by the maximum likelihood method, on the basis of unclassified data drawn from

a mixture of the underlying populations suggest that the error rate can be reduced by a substantial percentage for

widely separated populations. Generally, the performance of the mixture discrimination procedure relative to the

completely classified procedure, measured by total probabilities is good.

Keywords: mixture of exponentiated – weibull distributions; maximum-likelihood estimation; classification rules;

probability of misclassification; Monte Carlo simulation.
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1. Introduction

The exponentiated – Weibull family was first introduced by Mudholkar and Srivastava [1].

This family is an extension of the Weibull family, which is obtained by adding an additional
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shape parameter. The importance of this family lies in its ability to model monotone as well

as non-monotone failure rates, which are quite common in reliability and biological studies.

This family can be widely and effectively used in reliability applications because it has a wide

variety of shapes in its density and failure rate functions making it useful for fitting many types

of data.

The cumulative distribution (cdf), probability density (pdf), and failure rate functions of the

exponentiated – Weibull distribution are given, respectively, by

F(x;λ , α)=
(

1− e−xλ
)α

, x > 0, (α, λ > 0), (1.1)

f (x;λ , α)=αλ xλ−1e−xλ
(

1−e−xλ
)α−1

, (1.2)

R(x;λ , α)=
α λ xλ−1e−xλ

(
1− e−xλ

)α−1

1−
(

1− e−xλ

)α . (1.3)

Mixtures of life distributions occur when two different causes of failure are present each with

the same parametric form of life distribution. Finite mixture of distributions have been used as

models throughout the history of modern statistics. There are several areas of applications of

finite mixture models. For example, in biology it is often required to measure certain charac-

teristics in natural populations of particular species. Samples of individuals are taken from the

natural habitat of the species and the characteristics under investigation is recorded for each in-

dividual in sample. The distribution of many such characteristics may very greatly with the age

of the individuals and age is frequently difficult to ascertain in samples from wide populations.

Consequently the biologist observing the population as a whole is dealing with a mixture of

distributions, where mixing is over a parameter depending on the unobservable variate age. For

examples, see Titterington et al. [2].

A random variable X is said to follow a finite mixture distribution with k components, if the

pdf of X can be written as

f (x) =
k

∑
j=1

p j f j(x), (1.4)

where p j is a non-negative real number known as the jth mixing proportion such that ∑
k
j=1 p j =

1 and f j(x) is the density function known as the jth component, j = 1,2, · · · ,k.
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The property of identifiability is an important consideration on estimating the parameters

in a mixture of distributions, testing hypotheses, classification of random variables, etc., can be

meaningfully discussed only if the class of all finite mixtures is identifiable. Discussion of iden-

tifiability of finite mixtures may be found in several papers, among others, by Teicher [3], [4],

Al-Hussaini and Ahmad [5], Ahmad [6] and Ahmad [7]. Recently, new finite mixtures for dif-

ferent distributions have been constructed and studied by many authors. Among others, see

Sultan et al. [8], Ahmad et al. [9].

The pdf of the MEW distribution is given by

f (x|p,α1,α2,λ ) = p f1(x|α1,λ )+(1− p) f2(x|α2,λ ) (1.5),

where 0 6 p 6 1, for j = 1,2, f j(·) are as given by (1.2) after indexing α by j and λ is a

common shape parameter. The finite MEW distribution has been discussed by Abd-Elrahman

and Mohammed [10], they studied the identifiability problem related to this model and obtained

MLEs for the parameters based on complete samples. Their results are applied for fitting two

different real data sets. They showed that the failure rate function of the MEW model has

bathtub shaped, bathtub-constant shaped, increasing or decreasing.

Unclassified data have been studied in the context of estimating mixtures and discriminant

functions, there have been few practical applications. Unclassified observations have been used

by Fukunga and Kessel [11], Moore et al. [12] for estimating the probability of misclassification

for a discriminant rule. McLachlan [13], [14], discussed the use of unclassified observations for

the special case of equal prior probabilities. For unclassified observations to be of practical

use in estimating discriminant function, there must exist good estimates of the parameters of

the mixture, this problem has been discussed by Day [15] and O’Neill [16]. The performance

of a discriminant function estimated from mixture of two Inverse Gaussian distributions based

on small sample size is studied by Amoh [17]. Mahmoud and Moustafa [18] considered the

estimation of a discriminant function on the basis of small sample size from a mixture of two

gamma distributions, and investigated its performance by a series of simulation experiments.

Ahmad [7] has studied small-sample results for a nonlinear discriminant function estimated

from a mixture of two Burr type-XII distributions. Also, Ahmad and Abd-Elrahman [19] have
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studied a nonlinear discriminant function estimated from a mixture of two Weibull distribu-

tions. Mahmoud and Moustafa [20] have studied the errors of misclassification associated with

the gamma distribution. Ahmad [21] has studied the efficiency of a nonlinear discriminant

function based on unclassified initial samples from a mixture of two Burr type-XII distribu-

tions. Moustafa and Ramadan [22] have estimated a discriminant function from a mixture of

two Gompertz distributions when the sample size is small. Recently, Ahmad et al. [23] have

estimated a discriminant function from a mixture of two Gumbel distributions when the sample

size is small. Sultan and Al-Moisheer [24] discussed the estimation of a discriminant func-

tion from a mixture of two inverse Weibull distributions based on classified and unclassified

observations.

In this article, a mixture of two exponentiated – Weibull distributions is considered and esti-

mation of parameters and nonlinear discriminant functions are studied. Also, three classification

procedures, mixture, completely classified and optimal are compared.

Furthermore, we calculate the total probabilities of misclassification as well as the percentage

biases. Moreover, we investigate the performance of all results through a series of simulation

experiments by means of relative efficiencies. Finally, we give some conclude remarks.

2. Maximum Likelihood Estimation

Let X1,X2, · · · ,Xn be a random sample of size n drawn from a population whose pdf is given

by (1.5). Following the procedure used by Day [15], the likelihood function can be written in

the form

L(x;Ψ) = λ
n

[
n

∏
j=1

xλ−1
j Q(x j)

]
e−∑

n
j=1 xλ

j , (2.1)

where Ψ = (p, α1, α2, λ ) and for j = 1,2, · · · ,n,

Q(x j)= pα1wα1−1
j +qα2wα2−1

j , q = 1− p, w j=1− e−xλ
j ,

Differentiating the log-Likelihood function with respect to p, α1 α2 and λ respectively, and

equating to zero, the normal equations are then given by
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0=
n

∑
j=1

α1wα1
j −α2wα2

j

A j +B j
, (2.2)

0=
n

∑
j=1

pwα1
j [1+α1 lnw j]

A j +B j
, (2.3)

0=
n

∑
j=1

qwα2
j [1+α2 lnw j]

A j +B j
, (2.4)

0=
n
λ
+

n

∑
j=1

lnx j

[
1−

x j
λ

w j
−

xλ
j
(
α1A j +α2B j

)
w j
(
A j +B j

) ]
, (2.5)

where

A j = pα1wα1
j , B j = (1− p)α2wα2

j , (2.6)

and w j is as given in (2.1).

Define

W1 j =
1

1+ exp(a+br j(x j))
=

A j

A j +B j
, W2 j = 1−W1 j, j = 1,2, · · · ,n,

where

a = ln
(

qα2

pα1

)
, b = α2−α1, r(x j) = ln

(
1− exp(−xλ

j )
)
.

Hence, in view of (2.2)-(2.5) and using some initial values for the unknown vector of parame-

ters, say Ψ(0)= (p(0), α
(0)
1 , α

(0)
2 , λ (0))′, an estimate value for Ψ may be then iteratively obtained

as follows: for s = 0,1,2, · · · ,1000,

p̂(s+1) =
1
n

n

∑
j=1

W (s)
1 j , W (s)

1 j =W1 j|Ψ=Ψ̂(s), (2.7)

α̂
(s+1)
1 =−

∑
n
j=1W (s)

1 j

∑
n
j=1W (s)

1 j lnw(s)
j

, w(s)
j = w j|Ψ=Ψ̂(s), (2.8)

α̂
(s+1)
2 =−

∑
n
j=1W (s)

2 j

∑
n
j=1W (s)

2 j lnw(s)
j

, W (s)
2 j =W2 j|Ψ=Ψ̂(s), (2.9)

where A j, B j and w j are as given in (2.6), and Ψ̂(0) = Ψ0.
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In the (s+1)th iteration, s = 0,1,2, · · · ,1000, λ̂ (s+1) may be obtained as the numerical solu-

tion of (2.5), after replacing Ψ by (p̂(s+1), α̂
(s+1)
1 , α̂

(s+1)
2 , λ )′. This iterative procedure contin-

ues until reaching some accuracy. For the iterative procedure the following criterion is used to

terminate the iterations.

For s < 1000, define

δ =
4

∑
i=1
|
ψ̂

(s+1)
i − ψ̂

(s)
i

ψ̂
(s)
i

|,

where Ψ̂(s) = (ψ̂
(s)
1 , ψ̂

(s)
2 , ψ̂

(s)
3 , ψ̂

(s)
4 )′= (p̂(s), α̂

(s)
1 , α̂

(s)
2 , λ̂ (s))′. If δ ≤ 10−4, the iterative proce-

dure will be then terminated, and Ψ̂(s+1) will be accepted as an estimated value for the unknown

vector of parameters Ψ. Otherwise, Ψ̂(1000) will be accepted instead.

Furthermore, Redener and Walker [25] show that mixture problems are very often such that

the log-likelihood function attains its largest local maxima at several different choices of the

parameters of the mixture. That is, for mixture of two exponentiated – Weibull distributions, if

the component parameters p, α1, α2 and λ are interchanging with the component parameters

(1− p), α2, α1 and λ the value of the log-likelihood will not change. In our simulation study, it

is of interest to estimate the component density parameters. So that, for each sample we calcu-

late the distances d1 = |Ψ∗−Ψ| and d2 = |Ψ∗∗−Ψ|, where Ψ is the true vector of parameters,

Ψ∗ = (p̂, α̂1, α̂2, λ̂ )
′ and Ψ∗∗ = (1− p̂, α̂2, α̂1, λ̂ )

′. If d1 ≤ d2, we accept Ψ∗ as an estimate of

the vector of parameters. Otherwise, we accept Ψ∗∗.

3. Classification Rules

Consider two populations π1 and π2 with corresponding densities fi(x), i = 1,2, as given

by (1.2) with parameters α1 and α2, respectively; and common shape parameter λ . Also, con-

sider the nonlinear discriminant function:

NLDo(x) = a+br(x), r(x) = ln
[
1− exp(−xλ )

]
. (3.1)

The probability that an individual x of unknown origin has come from π1 is given by

Pr(x ∈ π1) =
1

1+ exp [NLDo(x)]
,
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which is call the posterior probability, see Afifi and Clark [26]. Then we may classify x in π1

if NLDo(x)< 0 and in π2 if NLDo(x)≥ 0.

If all parameters of the populations π1 and π2 are known, then we have an optimal nonlinear

discriminant function NLDo(x), which is as given by (3.1), where

a = ln
(

qα2

pα1

)
, b = α2−α1. (3.2)

3.1 Estimated discriminant functions

Usually, the parameters of the populations are not known. Available data are then used to

estimate the parameters in the density functions. The estimated discriminant functions are then

constructed. We shall consider the following types of data

i) Classified sample: When data are obtained by sampling from a mixture population and

the origin of each observation is determined after sampling, we will call the resulting

sample classified “c” sample.

ii) Mixed sample: The case where each observation is unclassified will be called mixed

“m” sample.

3.2 Classified sample case

For i=1,2, let (xi1,xi2, . . . ,xini) be a classified sample of size ni from πi with probability den-

sity function given by (1.2); and n1 +n2 = n.

The solution of the following nonlinear equation (h(λ ) = 0), using, for example, Newton-

Raphson iteration scheme, gives an estimated value, λ̃ , of the parameter λ , based on the classi-

fied sample.

g(λ )=
n
λ
+

2

∑
i=1

ni

∑
j=1

ln
(
xi j
){

1−xλ
i j

[
1+

e−xλ
i j

w(xi j)

(
1+

ni

∑
ni
k=1 lnw(xik)

)]}
. (3.2.1)

g(λ )=
n
λ
+

2

∑
i=1

ni

∑
j=1

ln
(
xi j
){

1−xλ
i j

[
1+

e−xλ
i j

w(xi j)

(
1+

ni

∑
ni
k=1 lnw(xik)

)]}
. (3.2.2)
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Once λ̃ is obtained, α̃i is then given by

α̃i =
ni

∑
ni
k=1 ln

(
1− e−xλ̃

ik

) , i = 1,2.

Therefore, the classified nonlinear discriminant function, NLDc(x), is as given by (3.1) with

a, b and λ replaced respectively by ã, b̃ and λ̃ , where

ãc = α̃2− α̃1,

b̃c = ln
[
(1−p̃)α̃2

p̃α̃1

]
,

λ̃c ≡ λ̃

 (3.2.3)

with p̃ = n1
n .

3.3 Mixed sample case

When all the initial observations are unclassified and they are only known to come from a

mixture of π1 and π2. For this mixed sample, the nonlinear discriminant function, NLDm(·), is

as given by (3.1) with a, b and λ replaced by

âm = α̂2− α̂1,

b̂m = ln
[
(1−p̂)α̂2

p̂α̂1

]
,

λ̂m ≡ λ̂ ,

 (3.3.1)

where

p̂, α̂1, α̂2, and λ̂ are calculated as described in Section (2).

4. Probabilities of misclassification

Let Ei j, (i = 1,2; j = o,c,m) denote the conditional probability that an individual from πi is

misclassifying by the jth discriminant function, where
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o denotes optimum

c denotes classified

m denotes mixture.
We also denote by E j the total error rates obtained by weighting the conditional error rates

(total probabilities of misclassification) by the true mixing proportions. Consider the nonlinear

discriminant function

NLD j(x) = a j +b j r
(

xλ j
)
.

(Where λ j is the estimated value of the parameter λ using the jth procedure and r(·) is as given

in (3.1). We classify x in π1 if NLD j(x)< 0. Hence

E1 j = Pr(a j +b j r
(

xλ j
)
> 0|π1).

Let

γ j =

{
− ln

[
1−
(
(1− p)α2

pα1

) 1
α1−α2

]}1/λ

,

then we have

E1 j =

 F(γ j, α1, λ ), α1 < α2,

1−F(γ j, α1, λ ), α1 > α2,
(4.1)

where F(·, α, λ ) is the CDF of the exponentiated – Weibull distribution, which is given by (1.1).

Similarly, E2 j is given by

E2 j =

 1−F(γ j, α2, λ ), α1 < α2,

F(γ j, α2, λ ), α1 > α2,
(4.2)

The overall error rates weighted by the true mixing proportion, E j, is given by

E j = pE1 j +(1− p)E2 j. (4.3)

5. Simulation experiments

A series of simulation experiments were performed to investigate the performance of NLm(x)

relative to NLc(x) and NLo(x) for small
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samples. Three combinations of the parameters were taken in order to cover three different

shapes as depicted in Table 1. For each combination of the parameters classified and mixture

samples of sizes n = 40 and n = 100 were generated from the mixture distribution. The follow-

ing procedure was used for generating a mixture sample:

- Two independent observations U1 and U2 are generated from U (0,1) using DRNUN

routine from IMSL [27].

- If U1 ≤ p, then X = θ

(
− ln

(
−U2

1
α1 +1

)) 1
λ

.

Otherwise, X = θ

(
− ln

(
−U2

1
α2 +1

)) 1
λ

.

X is then an observation from a MEW distribution. This procedure is continue n times. The n

resulting observations will be a mixed sample of size n from a MEW.

Using the parameters and the calculated estimates the individual and total conditional prob-

abilities of misclassification, as defined in (4.1)-(4.3), were evaluated for the completely clas-

sified and mixture discrimination procedures for each sample generated. These were averaged

over 1000 repetitions for each combination of parameters considered. The sample means of

the individual and total conditional probabilities of misclassification are denoted by Ēi j and Ē j

(i = 1,2, j = m,c) respectively. The corresponding optimal probabilities of misclassification

E1o, E2o and Eo were also evaluated for each parameter combination. Table 2 shows the indi-

vidual probabilities of misclassification for the three discrimination procedures for n = 40 and

n= 100. The standard deviations for the conditional probabilities of misclassification are shown

in parentheses. We find that generally Ē1 j ( j = c,m) are closer to the corresponding optimal val-

ues than Ē2 j, considering these conditional probabilities of misclassification as estimates of the

optimal probabilities of misclassification. We observe that for small values of d = |α1−α2|,

the estimates Ē1 j are poor with Ē2 j, consistently exceeding E2o. This is not surprising since

when the parameters are small the components of the mixture population are not well-separated

and hence it is very difficult to discriminate between them. The variance associated with Ēi j are

quite large and every Ēi j lies within one standard deviation of the corresponding optimal value

Eio. Also for every parameter combination, the standard deviation of Eic is smaller than that of

Eim since more information is known in the former case.
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Table 3 shows the total probabilities of misclassification with the standard deviation of Em

and Ec shown in parentheses. Also shown are the standardized biases. The first entry in each

cell under B(Ē j) is the value of the absolute bias from Eo standardized by the standard deviation

of Ē j and the second is the value of the ratio of the absolute bias to Eo. On the other hand, B is

the value of the ratio of the bias of Ēm from Ēc.

From Table 3, we see that the total conditional probabilities of misclassification as estimates

of the optimal probabilities are poor when d = |α1−α2| is small. The standard deviations are

smaller than those for individual probabilities but they are still quite large. When d is large the

estimates are quite good and Ēc dose consistently better than Ēm. From the last column, we

see that the mixture discriminant procedure relative to the classified performs poorly for d large

and as d decrease the performance improves. When the sample size is increased from n = 40 to

n = 100 all the estimates of the three combinations of parameters considered improve.

0

0.5

1

1.5

2

2.5

3

1 2 3 4

FIGURE 1. Graphs for the pdf with different shapes, Bi-Modal (Solid), Uni-

Modal (Dot), and L-Shape (Dash).

TABLE 1. Three Different Mixed Populations.

Populations Parameters

No. Type p α1 α2 λ

1 Bi-Modal 0.4 13.5 0.7 3.5

2 Uni-Modal 0.4 1.9 1.6 1.5

3 L-Shape 0.4 0.9 0.6 0.9
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TABLE 2. Individual probabilities of misclassification.

Classification Procedures

PT n Mixtures Completely Classified Optimal

Ē1m Ē2m Ē1c Ē2c E1o E2o

Bi-Modal 40 0.82929 0.96950 0.82797 0.96987 0.83192 0.97124

(0.05469) (0.01607) (0.04854) (0.01357)

100 0.83259 0.96999 0.83127 0.97039 0.83192 0.97124

(0.03460) (0.01077) (0.03002) (0.00888)

Uni-Modal 40 0.15180 0.94800 0.22905 0.85770 0.04600 0.97417

(0.24109) (0.10338) (0.22097) (0.18756)

100 0.14808 0.93456 0.14114 0.91515 0.04600 0.97417

(0.23124) (0.13218) (0.15909) (0.13133)

L-Shape 40 0.18684 0.92444 0.25897 0.87259 0.19753 0.91221

(0.27692) (0.15714) (0.18962) (0.14325)

100 0.18856 0.91310 0.21293 0.90417 0.19753 0.91221

(0.25316) (0.15841) (0.12980) (0.07432)
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TABLE 3. Total probabilities of misclassification and percentage biases.

Classification Procedures Relative Bias

PT n Mixtures Completely Optimal Optimal Completely

Classified Classified

Ēm Ēc Eo B(Ēm) B(Ēc) B

Bi-Modal 40 0.91754 0.91583 0.91551 0.08055 0.01321 0.00187

(0.02518) (0.02388) 0.00222 0.00034

100 0.91598 0.91543 0.91551 0.02576 0.00505 0.00059

(0.01792) (0.01603) 0.00050 0.00009

Uni-Modal 40 0.64095 0.62494 0.60291 0.50220 0.34976 0.02561

(0.07575) (0.06300) 0.06309 0.03655

100 0.63039 0.61338 0.60291 0.49734 0.23916 0.02773

(0.05526) (0.04380) 0.04559 0.01738

L-Shape 40 0.65167 0.64400 0.62634 0.28516 0.28192 0.01190

(0.08882) (0.06265) 0.04044 0.02820

100 0.63968 0.63446 0.62634 0.20094 0.19341 0.00822

(0.06638) (0.04201) 0.02130 0.01297
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