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Abstract: A new approach to generate quadrilateral and pentagonal finite element meshes in convex, non convex 

and curved domain is presented. The method is based partially on triangle and pentagon, centroid of each triangle is 

considered joining the sides of its midpoints and discretised into quadrilaterals and pentagons.  This procedure is 

applied to each triangle in the domain and a quadrilateral and pentagonal mesh is generated. For this a program has 

been developed in computer algebra and symbolic computational software MAPLE. 
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1.  Introduction 

Finite element mesh generation is one of the most time consuming aspects for solving two 

dimensional partial differential equations in complex domain. The advent of modern computer 

technologies provided a powerful computational tool in numerical solutions of the partial 

differential equations over complex domains. A triangle quadrilateral and pentagonal mesh is 

required for finite element method as it uses in finite elements of a domain discretization.  Finite 

Element Method (FEM) is widely used for many fields of engineering and applied science. Mesh 

generation technique is used in many industrial sectors such as automobile engineering, 

aerospace engineering, civil engineering, medical electronics, manufacturing and others. The 

Finite Element Analysis (FEA) and its applications  comprises three phases  i) Domain 

discretization or Mesh generation ii) Equation solving  iii) Error analysis.   

Mesh generation is the important role in the achievement of accurate solutions of the partial 

differential equation problems. FEM is a numerical solution technique that finds an approximate 
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solution by dividing the analysis region into smaller sub regions these smaller sub regions are the 

elements which are linked with adjacent elements at their nodel points. The procedure of the 

mesh generation technique depends on the geometric data of the elements and their nodes. First 

all the coordinate nodes are created and connecting nodes from arbitrary triangles.  FEM is the 

computational basis of many computer aided design its usefulness is often hampered by the need 

to generate a quadrilateral or pentagonal mesh in complex domain. To creating a mesh in 

complex domain is the first step in a wide range of applications, including computer graphics, 

biomedicine, materials science and scientific and engineering computing. This can be very time 

consuming and error prone task when done manually. A large number of methods have been 

devised to automate the mesh generation task.  Proposed paper is an attempt to create automatic 

mesh generation over convex, non convex and curved domain. From the literature survey a 

quadrilateral mesh generation in plane and curved surfaces in isoperimetric techniques presented 

by [1]. High quality of quadrilateral mesh gives the better accurate solution than a triangle mesh 

is given in [2],[3],[4]. A number of researchers [5],[6],[7] have made effort to develop adaptive 

Finite element method which integrates with error estimation and modification of automatic 

mesh generator. The research literature of various meshing methods and the applications of these 

meshes along with the development of mesh generation method are provided in [8]-[12]. The 

scope of the structured meshes and unstructured meshes by optimization method is discussed in 

[13]. There have been a number of approaches to develop automatic mesh generation based on 

partitioning the domain of interest into sets of sub domains and subsequently meshing those sub 

domains in medical electronics [14], finite element mesh can be usually categorized into 

structured and unstructured triangle or quadrilateral mesh. A structured mesh has a uniform 

defined structure that unstructured meshes lack the uniformity. The automatic generation of both 

structured and unstructured meshes is non trivial task and each comes with challenges of their 

own even though for most of the appropriate numerical solution [15], [16].  In this paper. we 

propose a new technique for generating quadrilateral and pentagonal meshes for geometry 

specified in the coordinate system. First we decompose the convex and non convex polygonal 

domain into sub triangles and every arbitrary triangle is again discretized into three quadrilaterals 

by adding three vertices in the middle of the edges and a node at the centre of the linear 

triangular element. The subsequent quadrilateral and pentagonal meshes are developed by  

Maple 13,   we  demonstrated. In section 2, we present arbitrary triangle divided into 22, 32, 42, 
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52,…..,n2 sub triangles of equal size to generate triangular mesh. In section 3, we explain the 

procedure to split these arbitrary triangle into quadrilaterals. In section 4, we present several 

examples to illustrate the quadrilateral and pentagonal meshes in complex domain. 

 

2.    Discretization of Triangles 

2.1.   Subdivision of an Linear Arbitrary Triangle 

                                                                 

                  a)     22  sub triangle                                                    b)    42  sub triangles 

Fig. 1   Division of an arbitrary triangle into sub triangles  in Cartesian space 

 

Figure 1a and 1b show the division of arbitrary triangle into 22, 32, 42, 52,…..n2   sub triangles of 

equal size in the Cartesian coordinates. The sides of the triangle is divided into equal parts with 

same length, the area of the linear arbitrary triangle ∆ with vertices ( (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, 3)  is 

equal to sum of the  area of the sub triangles ∆/𝑛2 where n is the equal division of all sides in the 

Cartesian space. 

2.2.  Division of Arbitrary triangle into quadrilaterals   

                                                               

                    a)  3 – Quadrilaterals                                            b)  12 – Quadrilaterals 

Fig. 2.    Division of an arbitrary linear triangle into quadrilaterals 

 

We first discretize arbitrary triangle into three quadrilaterals by joining the centroid of the 

midpoints of sides of the linear triangle. The area of the arbitrary linear triangle with vertices 

( (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, 3)  is same as the sum of the three quadrilaterals. to divide the arbitrary linear 

triangle into six node triangles of equal size, then by joining the centroid of  
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 𝐶(
𝑥𝑖+𝑥𝑗+𝑥𝑘

3
,

𝑦𝑖+𝑦𝑗+𝑦𝑘

3
)  these six nodes, linear triangle to the midpoints of their sides. To 

illustrated the same process for the two or more divisions of sides of the arbitrary linear triangles 

to converted into quadrilaterals. 

 

3.   Subdivision of an Linear Arbitrary pentagon  

                                                                                                       

             a) Regular pentagon                                          b)  6 - Pentagons 

Fig.3   Division of an arbitrary pentagon into sub pentagons in Cartesian space 

We first divided arbitrary pentagon into 6   sub pentagon of equal size in the Cartesian 

coordinates, the sides of the pentagon is divided into equal parts with same length,  the area of 

the linear arbitrary pentagon with vertices ( (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, 3,4,5)  is equal to sum of the  area 

of the sub pentagons. We can generate pentagonal mesh in polygonal domain. We first 

discretised the polygonal domain into pieces of arbitrary pentagons and each pentagonal domain 

is again discretised into pentagons. Finally, we can generate pentagonal mesh in polygonal 

domain. We have included some meshes generated by using maple program. We further 

illustrated the applications of the algorithm by generating quadrilateral and pentagonal meshes in 

convex, non-convex polygonal and curved domain. 

                          

            Mesh 1        Mesh 2 
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                          Mesh 3                                                                                  Mesh 4 

 

                                                 

 

                        Mesh 5                                                                              Mesh 6 

                         

                          Mesh 7                                                                                Mesh 8 
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                         Mesh 9                                                                               Mesh 10 

 

                         

                             Mesh 11                                                                       Mesh 12 

 

                       

                     Mesh 13                                                                                  Mesh 14 
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4.   Application Examples  

The mesh generation technique is applied to solve the Saint Venant Torsion problem  in triangle 

and  circle domain, the boundary value problem is described by  

∂2ϕ

∂x2 +
∂2ϕ

∂y2 = −2 ,   within   T  or C                          

 (1)                                                                                                    

ϕ = 0 ,  on  ∆1 ,    
∂ϕ

∂n
= 0,  on   ∆2  

Using  Galerkin weighted residual method. The numerical solution of eq.(1) for the domain T or 

C expressed as  

[𝐾]𝑀 × 𝑀  {𝑈}𝑀×1 = {𝐹}𝑀×1              (2) 

Where 𝐾𝑖,𝑗 = ∬ (
𝜕𝑁𝑖

𝜕𝑢

𝜕𝑁𝑗

𝜕𝑢
+

𝜕𝑁𝑖

𝜕𝑣

𝜕𝑁𝑗

𝜕𝑣
) 𝑑𝑥 𝑑𝑦

𝑇 𝑜𝑟 𝐶
 

 = 𝐾𝑢,𝑢 + 𝐾𝑣,𝑣                                                                                  (3)                                      

𝐾𝑢,𝑢 = ∫ ∫ (
𝜕𝑁𝑖

𝜕𝜉

𝜕𝑣

𝜕𝜂
+

𝜕𝑁𝑖

𝜕𝜂

𝜕𝑣

𝜕𝜉
) ∗ 

1

−1

1

−1
(

𝜕𝑁𝑗

𝜕𝜉

𝜕𝑣

𝜕𝜂
+

𝜕𝑁𝑗

𝜕𝜂

𝜕𝑣

𝜕𝜉
)

1

𝐽
  𝑑𝜉 𝑑𝜂                        (3a)                                                   

         

𝐾𝑣,𝑣 = ∫ ∫ (
𝜕𝑁𝑖

𝜕𝜉

𝜕𝑢

𝜕𝜂
+

𝜕𝑁𝑖

𝜕𝜂

𝜕𝑢

𝜕𝜉
) ∗ 

1

−1

1

−1
(

𝜕𝑁𝑗

𝜕𝜉

𝜕𝑢

𝜕𝜂
+

𝜕𝑁𝑗

𝜕𝜂

𝜕𝑢

𝜕𝜉
)

1

𝐽
  d𝜉 d𝜂                   (3b) 

𝐹𝑖 = ∫ ∫ 𝑓(𝑢(𝜉, 𝜂), 𝑣(𝜉, 𝜂)) 𝐽 𝑁𝑖(𝜉, 𝜂) 𝑑𝜉 𝑑𝜂 
1

−1

1

−1
                                    (3c) 

Integrals of Eqn.3a-c are calculated for each quadrilateral elements by Gauss Legendre 

quadrature rule and assembling is performed to add the effect of all quadrilateral elements into 

account with boundary condition, finding all unknown’s  of  u of eqn. [2] and  these are contour 

plotted in Fig. 4- 5. 



950                                      G. MANJULA, K.T. SHIVARAM AND N.V. VIGHNESAM 

 

Fig. 4  Stress function for bar of triangle cross section  of  Mesh 8 

 

 

 

Fig. 5  Stress function for bar of circle cross section  of Mesh 1 

 

5 . Conclusions 

In this paper, a new technique for automatic quadrilateral and  pentagonal meshes  are generated 

in convex, non convex and curved domain is proposed. The method is based on considering 

arbitrary triangle and each  triangle is discretized into three quadrilaterals by adding three vertex 

in the middle of the edges and a vertex at the centroid of the linear triangular element. A 

simplified version of the method is demonstrated using MAPLE program. is found that more 
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accuracy is obtained by when dense quadrilateral mesh is considered comparing with triangle 

mesh for solving in partial differential equation problems  
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