
Available online at http://scik.org

J. Math. Comput. Sci. 6 (2016), No. 6, 1024-1046

ISSN: 1927-5307

CONFORMAL VARIATIONS OF THE SPECTRAL ZETA FUNCTION OF THE
LAPLACIAN

LOUIS OMENYI

Department of Mathematics and Statistics, Federal University, Ndufu-Alike, Ikwo, Nigeria

Copyright c© 2016 Louis Omenyi. This is an open access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. This work raises and addresses a question about the behaviour of the variations of the spectral zeta

function, ζg(s), of the Laplacian, ∆g, on a closed connected smooth Riemannian manifold, (M,g), at any point

s = s0. We introduce a certain distributional integral kernel and compute a second variation formula of ζg(s) on

closed homogeneous Riemannian manifolds under volume-preserving conformal metric perturbations in terms of

the kernel. Some criticality conditions for the spectral variations are found.
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1. Introduction

The spectral zeta function introduced by Minakshisundaram and Pleijel in [13] and denoted

by ζg(s) has been shown to encode various important spectral information. For instance, the

notions of the determinant of the Laplacian and Casimir energy are defined via the spectral

zeta function, see e.g [24, 9, 21, 8, 10, 23, 7, 15, 25] and [3] among other literature. Various

generalisations of the spectral zeta function have also appeared in Ray and Singer [19]; Osgood,

Philips and Sarnak [17], etc. In particular, variations of the spectral zeta function and the
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spectral determinant came to limelight in various works. Specifically, the work in this paper

is motivated by analogous works done for the determinant of the Laplacian in [19] and [18].

More recently, Osgood, Philips and Sarnak in [17] found that among all fixed volume con-

formal class of metrics {gε = eφε g} on a Riemannian surface M, the constant curvature metric

has maximal determinant. A similar result was obtained by Richardson [20] on 3-dimensional

Riemannian manifolds. He found that the 3-sphere with the standard round metric is a local

maximum for a fixed-volume conformal deformation of the metric. Okikiolu [16] generalised

the result of Richardson to all closed odd n-dimensional Riemannian manifolds.

The work in this paper raises and addresses a related question as those of [17], [20] and

[15] about the behaviour of the second variation of the spectral zeta function, but now, at any

given point s = s0 of the spectral zeta function. For example, “how does the Casimir energy

behave under such volume-preserving conformal variation of the metric of a smooth, compact

and connected n-dimensional Riemannian manifold (M,g)?” Our results are illustrated with the

n-sphere.

2. The Spectral zeta function

Let (M,g) be a closed connected smooth Riemannian manifold. The Laplacian on C∞(M) is the

operator

(2.1) ∆g : C∞(M)→C∞(M)

defined in local coordinates, (see e.g. [2, 4, 6]) by

(2.2) ∆g =− div(grad) =− 1√
|g|∑i, j

∂

∂xi

(√
|g|gi j ∂

∂x j

)
.

The operator ∆g extends to a self-adjoint operator on L2(M)⊃H2(M)→ L2(M) with compact

resolvent. This implies that ∃ orthonormal basis {ψk} ⊂ L2(M) consisting of eigenfunctions,

[16], such that

(2.3) ∆gψk = λkψk

where the eigenvalues are listed with multiplicities:
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(2.4) 0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ ·· · ≤ λk ≤ ·· · ↗ ∞.

Example of such manifold is the unit n-sphere.

Now recall the Riemann zeta function

(2.5) ζR(s) =
∞

∑
k=1

1
ks

which converges absolutely for ℜ(s)> 1 and admits a meromorphic continuation to the whole

s-complex plane with only simple pole at s = 1 and has residue 1; [22, 24].

Following [21], one defines the spectral zeta function ζg(s), using the operator ∆−s
g uniquely

defined by the following properties: it is linear on L2(M) with 1-dimensional null space consist-

ing of constant functions. This ensures that the smallest eigenvalue of ∆−s
g is 0 of multiplicity

1 with corresponding eigenfunction 1√
V

where V is the volume of M; the image of ∆−s
g is con-

tained in the orthogonal complement of constant functions in L2(M) i.e.

∫
M

∆
−s
g ψdVg = 0 ∀ ψ ∈ L2(M) constant; and

∆−s
g ψk(x) = λ

−s
k ψk(x) for all ψk; k > 0 an orthonormal basis of eigenfunction of ∆g.

The integral kernel ζg(s,x,y), also known as the zeta kernel [14], of ∆−s
g is given by

(2.6) ζg(s,x,y) :=
∞

∑
k=1

ψk(x)ψ̄k(y)
λ s

k
; ℜ(s)>

n
2
.

Thus by these properties, we see that ∆−s
g is trace class, with trace given by

(2.7) ζg(s) =
∞

∑
k=1

1
λ s

k
= Tr(∆−s

g ) =
∫

M
ζg(s,x,x)dV ;

which converges absolutely for ℜ(s)> n
2 ; [22]. ζg(s) is known as the spectral zeta function.

Another kernel of interest here is the heat kernel.

Definition 2.1. [6]. The heat kernel,

K(t,x,y) : (0,∞)×M×M→ R,
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is a continuous function on (0,∞)×M×M. It is the so-called fundamental solution to the heat

equation, i.e, it is the unique solution to the following system of equations:

(2.8)

(
∂

∂ t +∆x
)
K(t,x,y) = 0

limt→0
∫

M K(t,x,y)ψ(y)dVy = ψ(x)


for t > 0; x,y ∈M and ∆x is the Laplacian acting on any ψ ∈ L2(M), where the limit in the

second equation of (2.8) is uniform for every ψ ∈C∞(M).

Minakshisundaram-Pleijel gave the expansion of the trace of the heat kernel as

(2.9) Tr(e−∆gt) =
1

(4πt)n/2

{
a0 +a1t +a2t2 + · · ·+aNtN +O

(
tN+1)};

as t→ 0+; where a j are some smooth functions on M which depend only on the geometric data

at the point x ∈M; [11].

The zeta kernel and the heat kernel are related by

ζ (s,x,y) =
1

Γ(s)

∫
∞

0
ts−1(K(t,x,y)− 1

V
)dt,

ℜ(s)> n
2 ; [20].

3. Variations of the spectral zeta function

Consider how a conformal change of metric affects the Laplacian. Let (M,g) be a smooth

homogeneous Riemannian manifold and 0 < ρ ∈ C∞(M). Then the Laplacian with respect to

the conformally equivalent metric h = ρg is given by

∆hψ = ρ
−1

∆gψ +(1− n
2
)ρ−2div(ρ∇g)ψ

with

div(ρ∇g) := gi j(∂iρ)∂ j

where the so-called Einstein summation convention of summing over repeated indices is used;

c.f: [3, 26]. Then one can see that the Casimir energy, defined by ζg(−1
2), is not invariant
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under change of metric. Consider for instance a scaling of the metric with a constant c > 0, one

quickly sees that ∆g 7→ 1
c ∆g and

ζcg(s) =
∞

∑
k=1

cs

λ s
k
= cs

ζg(s).

So, the Casimir energy changes as

ζcg(−
1
2
) = c−

1
2 ζg(−

1
2
).

Consequently, it becomes of much interest to study how the Casimir energy and other points of

the spectral zeta function vary under more general deformation of the metric such as conformal

perturbation of the Riemannian manifold, and in fact, it is sensible to fix the volume so as to

factor out this trivial scaling.

Definition 3.1. (Conformal perturbation)[2, 5]: Let (M,g) and (N, g̃) be two Riemannian man-

ifolds with

g = dS2
M = ∑

i, j
gi jdxidx j; g̃ = dS2

N = ∑
i, j

g̃i jdxidx j

respectively. A local smooth diffeomorphism Φ : M→N is called conformal (angle - preserving)

if there exists a positive function ψ : M→ R such that Φ∗g̃ = ψ ·g.

When M = N: the two metrics g and g̃ on M are called conformal if there exists a positive

function Φ : M→M such that g̃ = Φg. In this case, we say (M,g) and (M, g̃) are conformal.

Now, choose

φ : M× (−c,c)→ R

a family of functions smooth in the first variable x and real analytic in the second ε. Write

φε(x) = φ(x,ε) with φ0 = 0.

Define the corresponding family of conformal metrics gε such that gε = eφε g, with the condition

that

g(1)ε =
∂

∂ε
(gε)|ε=0 = φ̇0g, φ̇0 ∈C∞(M); where φ̇ε =

∂

∂ε

(
φε

)
.

It is well known among other properties of such perturbation that there exists a sequence

of eigenvalues {Λk(ε)} ⊂ R (counted with multiplicities) and ψk(ε) on C∞(M), such that
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∆g(ε)ψk(ε) = Λk(ε)ψk(ε) and Λk(0) = λk where λk is the eigenvalue associated with the un-

perturbed metric g; see e.g Zelditch [26], Bando and Urakawa ([3]). One can now write the

associated spectral zeta kernel of ∆ε on M as

ζgε
(s,x,y) =

∞

∑
k=1

ψk, j(ε,x)ψ̄k, j(ε,y)(
Λk(ε)

)s ; ℜ(s)>
n
2
.

3.1. Change in the Laplacian. Let {h = ρg} be set of Riemannian metrics on M in the con-

formal class. We immediately have that the volume form dVh scales as

(3.1) dVh =
√

det(h)dx = ρ
n
2
√

det(g)dx.

Theorem 3.2. Given 0< ρ ∈C∞(M;ρg), the Laplacian with respect to this conformally changed

metric h = ρg is given by

(3.2) ∆hψ = ρ
−1

∆gψ +(1− n
2
)ρ−2div(ρ∇g)ψ

where div(ρ∇g) is the operator defined by

(3.3) div(ρ∇g) = gi j(∂iρ)∂ j

where the so-called Einstein summation convention of summing over repeated indices is used.

That is,

div(ρ∇g)ψ := 〈∇ρ,∇ψ〉g.

Proof. Using (2.2) gives the formula �

Consequently, the corresponding family of Laplacians ∆ε on ψ ∈C∞(M) are defined as

(3.4) ∆εψ = e−φε ∆gψ +(1− n
2
)e−2φε div(eφε ∇g)ψ.

It is not difficult to verify that the first order variation of the perturbed Laplacian ∆
(1)
0 :=

∂

∂ε
∆ε

∣∣
0 is given by

(3.5) ∆
(1)
0 =−φ̇0∆g +(1− n

2
)〈∇gφ̇0,∇g·〉g.

and that the second order variation of the perturbed Laplacian ∆
(2)
0 := ∂ 2

∂ε2 ∆ε

∣∣
0 is given by

∆
(2)
0 = −φ̈0∆g +(φ̇0)

2
∆g +(n−2)φ̇0〈∇gφ̇0,∇g·〉g

+ (1− n
2
)〈∇gφ̈0,∇g·〉g.(3.6)
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3.2. Changes in the volume and volume form. From (3.1), it follows that dVε =
√
|gε |dx =

e
n
2 φε

√
|g|dx = e

n
2 φε dVg; where |g| is the determinant of the metric g. Suppose now that the

volume of (M,gε) is fixed to be a constant V for the conformal family {gε = eφε g}. Then∫
M dVε =V, we have ∫

M
dVε =

∫
M

e
n
2 φε dVg =V,

so we can observe that

0 =
∂

∂ε

∫
M

e
n
2 φε dVg =

n
2

∫
M

∂

∂ε
(φε)e

n
2 φε dVg

=
∫

M

∂

∂ε
(φε)dVε .

Observation 3.3.

(1.) Since
∫

M φ̇εdVε = 0, it follows that
∫

M φ̇0dVg = 0.

(2.) Also note that

0 =
∂ 2

∂ε2

∫
M

dVε =
∫

M

∂

∂ε

[n
2

∂

∂ε

(
φε

)
e

n
2 φε
]
dVg =

∫
M

[n2

4
(φ̇ε)

2e
n
2 φε +

n
2

φ̈εe
n
2 φε
]
dVg

⇒
∫

M
φ̈dVε =−

n
2

∫
M
(φ̇ε)

2dVε and
∫

M
φ̈dVg =−

n
2

∫
M
(φ̇0)

2dVg.

The following lemmas are salient in this work.

Lemma 3.4. The following properties hold. (i). The expectation values of the commutator

[∆g, φ̇0] with respect to eigenfunctions is zero; and (ii). Tr(∆g ◦ φ̇0e−t∆g) = Tr(φ̇0∆ge−t∆g) where

A◦B denotes composition of the two operators A and B.

Proof. (i). Let ψk be an orthonormal basis of eigenfunction of ∆g, then the expectation value of

[∆g, φ̇0] on ψk is

〈
[∆g, φ̇0]

〉
ψk

:= 〈(∆gφ̇0− φ̇0∆g)ψk,ψk〉g

= 〈∆gφ̇0ψk,ψk〉g−〈φ̇0∆gψk,ψk〉g

= 〈φ̇0ψk,∆gψk〉g−〈∆gψk, φ̇0ψk〉g

= 0,
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and (ii).

Tr(∆g ◦ φ̇0e−t∆g) =
∞

∑
k=0
〈∆g ◦ φ̇0e−t∆gψk,ψk〉g =

∞

∑
k=0
〈φ̇0e−t∆gψk,∆gψk〉g

=
∞

∑
k=0
〈φ̇0e−tλkψk,λkψk〉g =

∞

∑
k=0
〈φ̇0λke−tλkψk,ψk〉g

=
∞

∑
k=0
〈φ̇0∆ge−t∆gψk,ψk〉g = Tr(φ̇0∆ge−t∆g)

the lemma follows �

Lemma 3.5. [6]. ∆ge−t∆g = e−t∆g∆g for all smooth functions on M.

3.3. Changes in the spectral zeta function. We need the following lemma for our proof of

the variational formula for the spectral zeta function.

Lemma 3.6.

Tr(φ̇0e−t∆g) =
∫

M
φ̇0(x)K(t,x,x)dVg(x)

and

Tr(div(φ̇0∇g)e−t∆g) =
1
2

∫
M

div(φ̇0∇g)K(t,x,x)dVg(x).

Proof. Let ψk be orthonormal basis of eigenfunctions of ∆g, we have

Tr(φ̇0e−t∆g) =
∞

∑
k=0
〈φ̇0e−t∆gψk,ψk〉L2

=
∞

∑
k=0

∫
M

φ̇0(x)e−λkt
ψk(x) · ψ̄k(x)dVg(x)

=
∫

M
φ̇0(x) ·

∞

∑
k=0

e−λkt(ψk(x))2dVg(x)

=
∫

M
φ̇0(x)K(t,x,x)dVg(x).
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Similarly,

Tr(div(φ̇0∇g)e−t∆g) =
∞

∑
k=0
〈div(φ̇0∇g) · e−t∆g

ψk,ψk〉L2

=
∞

∑
k=0
〈

n

∑
i, j=1

gi j
∂ jφ̇0∂i · e−t∆g

ψk,ψk〉L2

=
n

∑
i, j=1

∞

∑
k=0
〈gi j

∂ jφ̇0∂i · e−t∆g
ψk,ψk〉L2

=
n

∑
i, j=1

∞

∑
k=0

∫
M

gi j
∂ jφ̇0(x)

∫
M

∂iK(t,x,y)ψk(y)dVg(y)
∣∣
x=y · ψ̄k(x)dVg(x);

where ∂i =
∂

∂xi
and ∂ j =

∂

∂x j
act on functions of x and y respectively.

Now, using the symmetry of K(t,x,y) i.e K(t,x,y) = K(t,y,x) which implies that

∂iK(t,x,x) =
[
∂iK(t,x,y)+∂iK(t,y,x)

]∣∣
x=y = 2∂iK(t,x,y)

∣∣
x=y

we have

∞

∑
k=0
〈div(φ̇0∇g) · e−t∆g

ψk,ψk〉L2

=
n

∑
i, j=1

∞

∑
k=0

∫
M

gi j
∂ jφ̇0(x)

∫
M

∂iK(t,x,y)
∣∣
x=yψk(y)dVg(y) · ψ̄k(x)dVg(x)

⇒ Tr(div(φ̇0∇g)e−t∆g) =
1
2

n

∑
i, j=1

∞

∑
k=0

∫
M

gi j
∂ jφ̇0(x)∂ie−λkt(ψk(x))2dVg(x)

=
1
2

∫
M

n

∑
i, j=1

gi j
∂ jφ̇0(x)∂i ·

∞

∑
k=0

e−λkt(ψk(x))2dVg(x) =
1
2

∫
M

div(φ̇0∇g)K(t,x,x)dVg(x).

�

Theorem 3.7. Let (M,g) be smooth, compact and connected Riemannian manifold and ∆g the

Laplacian on it with eigenvalues {λk} listed according to their multiplicities. Let

{gε = eφε g}

be a family of volume-preserving conformal metrics. Then the spectral zeta function of ∆ε ,

given by

(3.7) ζgε
(s) =

∞

∑
k=1

1(
Λk(ε)

)s



CONFORMAL VARIATIONS OF THE SPECTRAL ZETA FUNCTION OF THE LAPLACIAN 1033

varies as

ζ
(1)
g (s) = s

∫
M

φ̇0(x)ζg(s,x,x)dVg +
1
2
(
n
2
−1)s

∫
M
(∆gφ̇0(x))ζ (s+1,x,x)dVg(3.8)

(c.f: [19] and [20]). We denote this variation evaluated at ε = 0 by ζ
(1)
g (s).

Proof. Recall

ζgε
(s) =

1
Γ(s)

∫
∞

0
(Tr(e−t∆ε )−1)ts−1dt

so,

(3.9) ζ
(1)
g (s) =

∂

∂ε
ζgε

(s)|ε=0 =
∂

∂ε

∣∣
ε=0

( 1
Γ(s)

∫
∞

0
(Tr(e−t∆ε )−1)ts−1dt

)
.

In line with Ray and Singer [19], one gets

ζ
(1)
g (s) = − 1

Γ(s)

∫
∞

0
Tr
(
∆
(1)
ε e−t∆g

)
tsdt

=− 1
Γ(s)

∫
∞

0
Tr
([
− φ̇0∆g +(1− n

2
)div(φ̇0∇g

]
(e−t∆g

)
tsdt

where we have used the variation of ∆ε in (3.5).

So,

ζ
(1)
g (s) =

1
Γ(s)

∫
∞

0
Tr
(
φ̇0∆ge−t∆g

)
tsdt− (1− n

2
)

1
Γ(s)

∫
∞

0
Tr
(
div(φ̇0∇ge−t∆g

)
tsdt

= − 1
Γ(s)

∫
∞

0

∂

∂ t
Tr
(
φ̇0e−t∆g

)
tsdt +(

n
2
−1)

1
Γ(s)

∫
∞

0
Tr
(
div(φ̇0∇ge−t∆g

)
tsdt.

Integrating by parts in the first term, gives

ζ
(1)
g (s) =

s
Γ(s)

∫
∞

0
Tr
(
φ̇0(e−t∆g− 1

V
)
)
ts−1dt

+ (
n
2
−1)

1
Γ(s)

∫
∞

0
Tr
(
div(φ̇0∇g(e−t∆g− 1

V
)
)
tsdt

where 1
V denotes f 7→ 1

V
∫

M f dV and V is the volume of (M,g).

Hence to complete the proof of Theorem (3.7), using lemma (3.6), we have the variation of

the zeta function as

ζ
(1)
g (s) =

s
Γ(s)

∫
∞

0

∫
M

φ̇0(x)(K(t,x,x)− 1
V
))dVgts−1dt

+
1
2
(
n
2
−1)

1
Γ(s)

∫
∞

0

∫
M

div(φ̇0∇g)(K(t,x,x)− 1
V
))dVgtsdt.



1034 LOUIS OMENYI

Since ∫
M

(
φ̇0(x)K(t,x,x)− 1

V

)
dVg(x)→ 0

decays exponentially fast as t→ ∞. Also, recognizing that 1
Γ(s) =

s
Γ(s+1) we have

ζ
(1)
g (s) = s

∫
M

φ̇0(x)
{

1
Γ(s)

∫
∞

0
(K(t,x,x)− 1

V
))ts−1dt

}
dVg

+
1
2
(
n
2
−1)s

∫
M

div(φ̇0∇g)

{
1

Γ(s+1)

∫
∞

0
(K(t,x,x)− 1

V
)tsdt

}
dVg.

Therefore,

ζ
(1)
g (s) = s

∫
M

φ̇0(x)ζg(s,x,x)dVg

+
1
2
(
n
2
−1)s

∫
M

div(φ̇0∇g)ζ (s+1,x,x)dVg.

Thus,

ζ
(1)
g (s) = s

∫
M

φ̇0(x)ζg(s,x,x)dVg +
1
2
(
n
2
−1)s

∫
M
(∆gφ̇0(x))ζg(s+1,x,x)dVg

which completes the proof. �

Therefore by equation (3.8), the Casimir energy has the first order variation at ε = 0, FP[ζ (1)
g (s)]

∣∣
s=− 1

2
,

given by

FP[ζ (1)
g (s)]

∣∣
s=− 1

2
= −1

2

∫
M

φ̇0(x)FP[ζg(s,x,x)]
∣∣
s=− 1

2
dVg

− 1
4
(
n
2
−1)

∫
M
(∆gφ̇0(x))FP[ζg(s+1,x,x)]

∣∣
s=− 1

2
dVg.(3.10)

where FP is the usual Finite Part function defined by

(3.11) FP[ f ](s) :=


f (s) if s is not a pole

limε→0

(
f (s+ ε)− Residue

ε

)
, if s is a pole

see for example ([8]).

Definition 3.8. The metric g is called a critical point of the Casimir energy ζg(−1
2) with respect

to all variations {gε = eφε g}, if the variation ζ
(1)
g (−1

2) vanishes for all gε .

Another result of this work is the following:
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Theorem 3.9. Let ∆ε be the Laplacian on (M,gε) with zeta kernel ζg(s,x,y). Then, g is a

critical point of the Casimir energy ζg(−1
2) for all constant-volume conformal variations of the

metric if FP[ζ (1)
g (−1

2 ,x,x)] is constant in x.

Proof. By the definition of critical point above and the variation of the Casimir energy (3.10),

consider the function

F
φ̇0
(x) := (−1

2
φ̇0(x)FP[ζg(s,x,x)]−

1
4
(
n
2
−1)(∆gφ̇0)FP[ζg(s+1,x,x)])

∣∣
s=− 1

2
(3.12)

where of course,

ζg(s,x,x)
∣∣
s=− 1

2
=

1
Γ(s)

∫
∞

0

[
K(t,x,x)− 1

V

]
ts−1dt

∣∣
s=− 1

2
.

We have a critical point if∫
M

F
φ̇0
(x)dVx = 0 ∀φ̇0 ∈C∞(M) such that

∫
M

φ̇0(x)dVx = 0.(3.13)

Now, suppose FP[ζg(−1
2 ,x,x)] is constant. Then one gets∫

M
F

φ̇0
dVx = −1

2
FP[ζg(−

1
2
,x,x)]

∫
M

φ̇0(x)dVx

− 1
4
(
n
2
−1)

∫
M
(∆gφ̇0(x))FP[ζg(

1
2
,x,x)]dVx

= −1
4
(
n
2
−1)

∫
M
(∆gφ̇0(x))FP[ζg(

1
2
,x,x)]dVx

since
∫

M φ̇0(x)dVx = 0. Now by the self-adjointness of ∆g, we have∫
M

F
φ̇0
(x)dVx = −1

4
(
n
2
−1)

∫
M

φ̇0(x)∆gFP[ζg(
1
2
,x,x)]dVx = 0

since the Laplacian of a constant function is zero. �

We get a corollary by considering homogeneous manifolds.

Definition 3.10. ([4]). A Riemannian manifold (M,g) is called homogeneous if for any two

points x,y∈M, there exists an isometry I : M→M with I(x)= y. That is to say, I acts transitively

on M. More generally, a smooth Riemannian manifold (M,g) endowed with transitive smooth

action of a Lie group G is called a G-homogeneous manifold.
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A nice class of homogeneous manifolds comes from quotients of Lie groups with left-invariant

metrics. For example, the natural action of SO(n+ 1) on the n-sphere Sn is transitive, hence

Sn ≈ SO(n+1)/SO(n) is a homogeneous manifold; see e.g [1, 2] and [5].

Corollary 3.11. The metrics on homogeneous smooth Riemannian manifolds are critical points

of the variation of the Casimir energy ζg(−1
2) under fix-volume conformal variation of the

metric.

Proof. Since ζg(s,x,x) is an invariant under isometries on homogeneous manifolds, one can

map any point to another point via isometry. Hence, ζg(s,x,x) is a constant �

Corollary 3.12. The round metric g on the n-dimensional unit sphere, Sn, is a critical point for

the Casimir energy ζg(−1
2) over the constant-volume conformal class {gε = eφε g}.

Proof. This follows from the fact that Sn is a homogeneous manifold. �

We say that the metric g on M is critical for the heat kernel Kg(t,x,x) at the time t, if for any

volume-preserving deformation {gε = eφε g},

(3.14)
d

dε
Kε(t,x,x)|ε=0 = 0.

The spectral zeta function of the Laplacian ∆ε for ℜ(s)> n
2 is

(3.15) ζgε
(s) =

∞

∑
k=1

1
Λs

k(ε)
=

1
Γ(s)

∫
∞

0
(Kε(t,x,x)−

1
V
)ts−1dt.

For sufficiently large ℜ(s), one has

(3.16)
d

dε
ζgε

(s)|ε=0 =
1

Γ(s)

∫
∞

0

d
dε

(
Kε(t,x,x)

∣∣
ε=0

)
ts−1dt.

If g is critical for the heat kernel at any time t > 0, then its derivative in ε vanishes at ε = 0 for

all s, so also

(3.17) lim
s→−1/2

[ d
dε

ζgε
(s)|ε=0] = 0.

Hence, g is a critical point for the variation of the Casimir energy ζg(−1
2) of the Laplacian on

Sn. Consequently, we write this result as the lemma below:
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Lemma 3.13. If g is a critical metric for the heat kernel at any time t > 0, then it is also a critical

metric for the Casimir energy ζg(−1
2) under all volume-preserving conformal perturbations

{gε}.

Proposition 3.14. The following conditions hold on all closed homogeneous Riemannian man-

ifolds (M,g):

(1.) The metric g is critical for the heat kernel at any time t > 0 under all volume-preserving

conformal deformations.

(2.) The metric g is critical for the Casimir energy ζg(−1
2) under all volume-preserving

conformal deformations.

(3.) For all t > 0, Kε(t,x,x) is constant on M.

Proof. The proposition follows from the lemma (3.13) above. �

4. Hessians of ζg(s) on Homogeneous manifolds

We now compute the second order variation of the spectral zeta function.

Theorem 4.1. Let M be a closed homogeneous manifold with the canonical metric g scaled to

volume V . Let {gε = eφε g} be a family of volume-preserving conformal metrics on M where

∫
M

φ̇0(x)dVg(x) = 0 and
∫

M
(φ̇0(x))2dVg(x)> 0.

Then the second order variation, ζ
(2)
g (s), of the spectral zeta function ζgε

(s) on M at ε = 0 is

given by

ζ
(2)
g (s) = s

∫
M

∫
M

φ̇0(x)Ψs−1(x,y)φ̇0(y)dVg(x)dVg(y)

− (1− n
2
)s
∫

M

∫
M

φ̇0(x)Ψs(x,y)(∆gφ̇0(y))dVg(x)dVg(y)

+
(n−2)2

16
s
∫

M

∫
M
(∆gφ̇0(x))Ψs+1(x,y)(∆gφ̇0(y))dVg(x)dVg(y)
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− 1
8
(n+2)2s

1
V

∫
M

∫
M

φ̇0(x)φ̇0(y)ζ (s,x,y)dVg(x)dVg(y)

− 1
8
(n−2)2sζn(s+1)

1
V

∫
M

φ̇0(x)(∆gφ̇0(x))dVg(x)

+ (1− n
2
)sζn(s)

1
V

∫
M
(φ̇0(x))2dVg(x),(4.1)

where for ℜ(s) sufficiently large, we introduce the integral kernel Ψs and define it to be

(4.2) Ψs(x,y) =
1

Γ(s)

∫
∞

0

∫
∞

0
(K(u,x,y)− 1

V
)(K(v,x,y)− 1

V
)(u+ v)s−1dudv.

Proof. Using that ζgε
(s) = Tr(∆−s

ε ), let Pε be the projection with respect to the metric gε onto

the kernel of ∆ε . Then, since the kernel for all values of ε is the constant functions, we get for

ℜ(s)<−1,

(4.3) Tr
(

Ṗε∆
−s−1
ε

)
=−Tr

(
Pε Ṗε∆

−s−1
ε

)
= 0,

is true for ℜ(s) sufficiently large. So,

ζgε
(s) = Tr

(
∆
−s
ε −Pε

)
=

1
Γ(s)

∫
∞

0
Tr
(

e−t∆ε −Pε

)
ts−1dt.

Now the decay in the integrand allows us to bring the derivative inside, and we obtain:

∂

∂ε

(
ζgε

(s)
)

= − s
Γ(s+1)

∫
∞

0
Tr
(

∆̇ε

(
e−t∆ε −Pε

))
tsdt− 1

Γ(s)

∫
∞

0
Tr(Ṗ)ts dt

= − 1
Γ(s)

∫
∞

0
Tr
(

∆̇ε

(
e−t∆ε −Pε

))
tsdt.(4.4)

Hence at ε = 0, we get

ζ
(1)
g (s) =− 1

Γ(s)

∫
∞

0
Tr
(

∆
(1)
0
(
e−t∆0−P

))
tsdt

(P ≡ P0) which we can check agrees with the first-order variation of the spectral zeta function

(3.9).

Differentiating (4.4) a second time, we get

∂ 2

∂ε2

(
ζgε

(s)
)

= −sTr
(

∆̈ε∆
−s−1
ε

)
− sTr

(
∆̇ε(

∂

∂ε
(∆−s−1

ε )
)

= − s
Γ(s+1)

∫
∞

0
Tr
(

∆̈εe−t∆ε

)
tsdt

− s
Γ(s+1)

∫
∞

0
Tr
(

∆̇ε

( ∂

∂ε
(e−t∆ε )−Pε

)
)
)

tsdt.(4.5)
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By Duhamel’s formula, see e.g [4, 6],

∂

∂ε
e−t∆ε =−

∫ t

0
e−u∆ε ∆̇εe−(t−u)∆ε du

for times 0 < u < t < T.

Thus at ε = 0, we have

ζ
(2)
g (s) =

1
Γ(s)

∫
∞

0

∫ t

0
Tr
(

∆
(1)
0 e−u∆g∆

(1)
0 e−(t−u)∆g

)
tsdudt

− 1
Γ(s)

∫
∞

0
Tr
(

∆
(2)
0
(
e−t∆g−P0

))
tsdt.

We write this for simplicity as

ζ
(2)
g (s) = var1(s)+var2(s) where

var1(s) :=
1

Γ(s)

∫
∞

0

∫ t

0
Tr
(

∆
(1)
0 e−u∆g∆

(1)
0 e−(t−u)∆g

)
tsdudt and

var2(s) := − 1
Γ(s)

∫
∞

0
Tr
(

∆
(2)
0 e−t∆g−P0

)
tsdt.

For easier handling of the computation of the terms of this second-order variation, we rewrite

the operator ∆ε defined by (3.4) in terms of the Laplacian as follows. Define the operator

(4.6) G
φ̇0
= 〈∇φ̇0,∇·〉g

and immediately observe that for any f ∈C∞(M)

G
φ̇0

f =
1
2
(∆φ̇0) f +

1
2

φ̇0∆ f − 1
2
(∆◦ φ̇0) f .(4.7)

Thus, for any ψ ∈C∞(M) , ∆εψ can be written as

∆εψ = e−φε ∆gψ +
1
2
(1− n

2
)e−φε (∆gφε)ψ

+
1
2
(1− n

2
)e−φε φε(∆gψ)− 1

2
(1− n

2
)e−φε (∆g ◦φε)ψ.(4.8)

Note that G1 ◦G2 denotes composition of operators; e.g

(e−φε (∆g ◦φε)ψ)(x) = e−φε ∆g(φε(x)ψ(x)).

Similarly, one can re-write (3.5) as

∆
(1)
0 =−1

2
(
n
2
+1)φ̇0∆g−

1
2
(
n
2
−1)(∆gφ̇0)+

1
2
(
n
2
−1)∆g ◦ φ̇0.(4.9)
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4.1. Computation of var1(s). We now compute the term

var1(s) :=
1

Γ(s)

∫
∞

0

∫ t

0
Tr
(

∆
(1)
0 e−u∆g∆

(1)
0 e−(t−u)∆g

)
tsdudt.(4.10)

First we make a few notes. In what follows, we will often drop the subscript g of ∆g and write

K(u,x,y) and K(t−u,y,x) for the kernels of the operators e−u∆g and e−(t−u)∆g respectively.

If A and B are differential operators, then their compositions with smoothing operators are

bounded, see e.g [12, 19]. So by the vanishing of trace on commutators of bounded operators,

and by change of variables,∫ t

0
Tr
(

Ae−u∆Be−(t−u)∆
)

du =
∫ t

0
Tr
(

Be−(t−u)∆Ae−u∆

)
du

=
∫ t

0
Tr
(

Ae−(t−u)∆Be−u∆

)
du =

∫ t

0
Tr
(

Be−u∆Ae−(t−u)∆
)

du.(4.11)

Observe that for any f ∈C∞(M),∫
M

div(φ̇0∇g) f dVg(x) =
∫

M
〈∇gφ̇0,∇g f 〉gdVg(x) =

∫
M
(∆gφ̇0) f dVg(x).(4.12)

We denote K(u,x,y)− 1
V by K̃u and K(v,x,y)− 1

V by K̃v. For f1, f2 ∈C∞(M) we also define

the notation

(4.13) Tr[ f1K̃u f2K̃v] :=
∫

M

∫
M

f1(x)K̃u f2(y)K̃vdVg(x)dVg(y).

Using (4.9), we get the terms inside the trace in the formula for var1(s). The terms are sim-

plified further via the following lemmata.

Lemmata 4.2.

Tr[φ̇0(∆K̃u)(∆φ̇0)K̃v] =−
∂

∂u
Tr[φ̇0K̃u(∆φ̇0)K̃v]

Tr[φ̇0(∆K̃u)φ̇0(∆K̃v)] =
∂ 2

∂u∂v
Tr[φ̇0K̃uφ̇0K̃v]

Tr[φ̇0(∆K̃u)∆◦ φ̇0K̃v] =
∂ 2

∂u2 Tr[φ̇0K̃uφ̇0K̃v]

Tr[∆◦ φ̇0K̃u∆◦ φ̇0K̃v] =
∂ 2

∂u∂v
Tr[φ̇0K̃uφ̇0K̃v].

Proof. Use (4.11) and the properties of K as a solution operator to the heat equation (2.8) �
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By a change of coordinates (u, t) to (u,v) := (u, t−u), the double integral in var1(s) becomes

a double integral over the first quadrant in u and v. Further, because the derivatives we obtain

through applying Lemmata (4.2) are applied to functions that are constant in the other variable,

these derivatives carry through under the coordinate change to derivatives with respect to u and

v.

Finally, collecting like terms gives

var1(s) =
1
8
(n2 +4)

1
Γ(s)

∫
∞

0

∫
∞

0

∂ 2

∂u∂v
Tr[φ̇0K̃uφ̇0K̃v](u+ v)sdudv

− 1
8
(n2−4)

1
Γ(s)

∫
∞

0

∫
∞

0

∂ 2

∂u2 Tr[φ̇0K̃uφ̇0K̃v](u+ v)sdudv

+ (1− 1
2
)

1
Γ(s)

∫
∞

0

∫
∞

0

∂

∂u
Tr[φ̇0K̃u(∆φ̇0)K̃v](u+ v)sdudv

+
1

16
(n−2)2 1

Γ(s)

∫
∞

0

∫
∞

0
Tr[(∆φ̇0)K̃u(∆φ̇0)K̃v](u+ v)sdudv

:= T1 +T2 +T3 +T4(4.14)

where we have used (4.11) to treat terms involving ∂ 2

∂u2 and ∂ 2

∂v2 as like terms and those involving
∂

∂u and ∂

∂v similarly.

To simplify the T1 term, we proceed as follows.

T1 :=
1
8
(n2 +4)

1
Γ(s)

∫
∞

0

∫
∞

0

∂ 2

∂u∂v
Tr[φ̇0K̃uφ̇0K̃v](u+ v)sdudv

integrating by parts in u and using the fact that

(4.15) Tr
(
K(t,x,y)− 1

V

)
→ 0

exponentially fast as time t→ ∞, we obtain

T1 = −1
8
(n2 +4)

1
Γ(s)

∫
∞

0

∂

∂v
Tr[φ̇0(δ (x,y)−

1
V
)φ̇0K̃v]vsdv

− 1
8
(n2 +4)

s
Γ(s)

∫
∞

0

∫
∞

0

∂

∂v
Tr[φ̇0K̃uφ̇0K̃v](u+ v)s−1dudv.
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Since K0 is the Dirac δ distribution and K̃ = K− 1
V , this is

T1 = −1
8
(n2 +4)

1
Γ(s)

∫
∞

0

∂

∂v
Tr[(φ̇0(x))2Kv]vsdv

+
1
8
(n2 +4)

1
Γ(s)

1
V

∫
∞

0

∂

∂v
Tr[φ̇0(x)φ̇0(y)K̃v]vsdv

− 1
8
(n2 +4)

s
Γ(s)

∫
∞

0

∫
∞

0

∂

∂v
Tr[φ̇0K̃uφ̇0K̃v](u+ v)s−1dudv.

Similarly, integrating by parts in v and using K̃ = K− 1
V , we obtain:

T1 :=
1
8
(n2 +4)

s
Γ(s)

∫
∞

0
Tr[(φ̇0(x))2Kv]vs−1dv

− 1
8
(n2 +4)

s
Γ(s)

1
V

∫
∞

0
Tr[φ̇0(x)φ̇0(y)K̃v]vs−1dv

+
1
8
(n2 +4)

s
Γ(s)

∫
∞

0
Tr[(φ̇0)

2Ku]us−1du

− 1
8
(n2 +4)

s
Γ(s)

1
V

∫
∞

0
Tr[φ̇0(x)K̃uφ̇0(y)]us−1du

+
1
8
(n2 +4)

s
Γ(s−1)

∫
∞

0

∫
∞

0
Tr[φ̇0K̃uφ̇0K̃v](u+ v)s−2dvdv

Now expanding the trace and combining terms, we get finally

T1 =
1
8
(n2 +4)s

∫
M

∫
M

φ̇0(x)Ψs−1(x,y)φ̇0(y)dVg(x)dVg(y)

− 1
4
(n2 +4)s

1
V

∫
M

∫
M

φ̇0(x)φ̇0(y)ζ (s,x,y)dVg(x)dVg(y)

+
1
4
(n2 +4)sζn(s)

1
V

∫
M
(φ̇0(x))2dVg(x)

where Ψs(x,y) is defined in (4.2).

The calculation for the terms T2, T3 and T4 are the same as the one for T1, except the following

lemmas which are not difficult to prove. We use the first to reduce terms involving

∆xζ (s+1,x,y) to those containing ζ (s,x,y) only and the second to deal with the second deriv-

ative in u
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Lemma 4.3.

∫
M

∫
M

φ̇0(x)(∆gφ̇0(y))ζ (s+1,x,y)dVg(x)dVg(y)

=
∫

M

∫
M

φ̇0(x)φ̇0(y)ζ (s,x,y)dVg(x)dVg(y).

Lemma 4.4.

s
Γ(s)

∫
∞

0

∫
∞

0

∂

∂u
Tr[φ̇0(x)K̃uφ̇0(y)K̃v](u+ v)s−1dudv

= −s
∫

M

∫
M

φ̇0(x)Ψs−1(x · y)φ̇0(y)dVg(x)dVg(y)

+ s
1
V

∫
M

∫
M

φ̇0(x)φ̇0(y)ζ (s,x,y)dVg(x)dVg(y)

− s
∫

M
φ̇0(x)φ̇0(x)ζ (s,x,x)dVg(x).(4.16)

Applying the lemmata (4.2, 4.3) and (4.4) gives

var1(s) = s
∫

M

∫
M

φ̇0(x)Ψs−1(x,y)φ̇0(y)dVg(x)dVg(y)

− (1− n
2
)s
∫

M

∫
M

φ̇0(x)Ψs(x,y)(∆gφ̇0(y))dVg(x)dVg(y)

+
1

16
(n−2)2s

∫
M

∫
M
(∆gφ̇0(x))Ψs+1(x,y)(∆gφ̇0(y))dVg(x)dVg(y)

− 1
8
(n+2)2s

1
V

∫
M

∫
M

φ̇0(x)φ̇0(y)ζ (s,x,y)dVg(x)dVg(y)

− 1
8
(n−2)2sζn(s+1)

1
V

∫
M

φ̇0(x)(∆gφ̇0(x))dVg(x)

+ 2sζn(s)
1
V

∫
M
(φ̇0(x))2dVg(x).(4.17)

4.2. Computation of var2(s).. Next, we compute the term

(4.18) var2(s) =−
1

Γ(s)

∫
∞

0
Tr
(

∆
(2)
ε (e−t∆g−P)

)
tsdt.
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Substituting the expression for ∆
(2)
0 given in Equation (3.6) into (4.18) gives

var2(s) =
1

Γ(s)

∫
∞

0
Tr
(

φ̈0∆g(e−t∆g−P)
)

tsdt

− 1
Γ(s)

∫
∞

0
Tr
(
(φ̇0)

2
∆g(e−t∆g−P)

)
tsdt

− (n−2)
1

Γ(s)

∫
∞

0
Tr
(

φ̇0〈∇gφ̇0,∇g·〉g(e−t∆g−P)
)

tsdt

− (1− n
2
)

1
Γ(s)

∫
∞

0
Tr
(
〈∇gφ̈0,∇g·〉g(e−t∆g−P)

)
tsdt.

Using the same argument as in the calculation of var1(s) we get

var2(s) = s
∫

M
φ̈0(x)ζ (s,x,x)dVg(x)

− s
∫

M
(φ̇0(x))2

ζ (s,x,x)dVg(x)

− (n−2)s
∫

M
φ̇0(x)〈∇gφ̇0(x),∇gζ (s+1,x,x)〉gdVg(x)

− (1− n
2
)s
∫

M
〈∇gφ̈0,∇gζ (s+1,x,x)〉gdVg(x).

The homogeneity of M implies that ζ (s+1,x,x) is constant in x, so the third and fourth terms

here vanish. Further, using the identity
∫

M φ̈0(x)dVg =−n
2
∫

M(φ̇0(x))2dVg (by observation (3.3)),

we get that var2(s) simplifies to

var2(s) =−
(n+2)s

2V
ζn(s)

∫
M
(φ̇0(x))2dVg(x).(4.19)

Combining (4.17) and (4.19), we get that the second order variation ζ
(2)
g (s) of the spectral

zeta function ζgε
(s) on M is given by (4.1) for ℜ(s) large enough. Thus, the proof of the

Theorem (4.1) is complete �

5. Conclusion

We make a number of concluding remarks. Firstly, we observed that our second variation

formula (4.1) reduces to a well-known result for the variation of the determinant of the Laplacian
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on S3. That is,

d
dε

(
ζ
(2)
g (s)

)∣∣
s=0 =

1
16

Tr
[(

∆gφ̇0∆
−1
g
)2]− ζS3(1)

8V
〈∆gφ̇0, φ̇0〉L2(S3)

− 5
8V
〈φ̇0, φ̇0〉L2(S3).(5.1)

This is exactly the result of Richardson [20].

Other special values of s can be computed using the formula. For example, with the aid of

Mathematica, we computed

ζ
(2)
g (

10
3
) = 0.0797 where we choose φ̇0(θ) =

2
3

cos(3θ) on S3.

A numerical check using 500 eigenvalues of the Laplacian on Sn confirmed this number.

We hope that the result of this paper can be used for further numerical and analytical studies

of the spectral zeta function and the Casimir energy.
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