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Abstract. In this paper, we study the motion of a robot end-effector using the curvature theory of a dual Lorentzian

unit spherical spacelike curve which corresponds to a timelike ruled surface with spacelike ruling generated by a

line fixed in the end-effector. In this way, we determine linear and angular time dependent differential properties

of motion such as velocities and accelerations which are important information in kinematics and robot trajectory

planning. Moreover, motion of a robot end-effector in Lorentzian space whose generating surface is a helicoid is

examined as a practical example.
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1. Introduction

Motion of a robot end-effector is referred to as robot trajectory, and the process of computing

this robot trajectory is called robot trajectory planning [14]. Recently, since robot end-effectors

can be used in transportation, painting, welding industry, medical science, and etc., accurate
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trajectory planning of a robot end-effector becomes an important research area of robotics and

engineering.

In the research area of robot trajectory planning, two important problems attract author’s

attention. These are describing path of a robot end-effector and determining linear and angular

time-dependent properties of motion. The well-known methods used for these problems in robot

trajectory planning are the joint interpolating method and the Cartesian interpolating method

[3,10]. These methods have not been sufficient to allow a robot end-effector to follow a smooth

and differentiable trajectory and they have not been efficient for computer programming since

they have been based on the matrix representation which requires excessive computation. As

an alternative to these traditional methods, Ryuh and Pennock proposed a new method based

on the curvature theory of a ruled surface generated by a line fixed in the end-effector. It was

the first attempt to use the curvature theory of ruled surfaces for robot trajectory planning. They

gave a relationship between differential geometry of a ruled surface and kinematics of a robot

end-effector.

The research area of robot trajectory planning is not only interesting for researcher who

study in Euclidean space but also for researchers who study in Lorentzian space. Ekici et al.,

for example, used the curvature theory of timelike ruled surface with timelike ruling to study

the motion of a robot end-effector in Lorentzian space [4].

As a robot end-effector moves on a specified trajectory in Lorentzian space, a line fixed in

the end-effector generates a ruled surface. In this paper, we assume that this ruled surface is a

timelike ruled surface with spacelike ruling. First, we introduce three reference frames which

can be used to study the motion of a robot end-effector in Lorentzian space. From transference

principle (also known as E.Study mapping), a dual Lorentzian unit spherical spacelike curve

corresponds to this generating ruled surface. By the aid of this mapping, we are allowed to use

the dual Lorentzian curve instead of a ruled surface to study the motion of robot end-effector

moves in Lorentzian space. Then, we give dual Darboux frame of the dual Lorentzian curve

and define a dual frame called dual tool frame on robot end-effector. By using the relationship
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between these two frames, we determine time-dependent linear and angular differential proper-

ties of motion of a robot end-effector such as velocities and accelerations which play important

roles in kinematics and robot trajectory planning.

2. Preliminaries

In this section, we give a brief summary of Lorentzian space, dual space, dual Lorentzian

space, and some basic concepts in these spaces.

The Lorentzian space IR3
1 is the vector space IR3 provided with the following Lorentzian

inner product

〈a,b〉= a1b1 +a2b2−a3b3

where a,b ∈ IR3 [8].

Let a = (a1, a2, a3) and b = (b1, b2, b3) be two vectors in IR3
1, the Lorentzian vector product

of a and b can be defined by [18]

a×b = (−a2b3 +a3b2, a1b3−a3b1, a1b2−a2b1).

If 〈a,a〉 > 0 or a = 0, then a is called spacelike, if 〈a,a〉 < 0, then a is called timelike, if

〈a,a〉= 0 and a 6= 0, then a is called null (lightlike) vector [8].

Let a and b be spacelike vectors in IR3
1 and they span a timelike vector subspace, then there

is a real number θ ≥ 0 such that |〈a,b〉| = ‖a‖‖b‖coshθ , where θ is called the central angle

between the vectors a and b [11].

A surface in Lorentzian space IR3
1 is called a timelike surface if the induced metric on the

surface is a Lorentzian metric, i.e., the normal vector on the surface is a spacelike vector [17].

A dual number, as introduced by W. Clifford, can be defined as an ordered pair of real num-

bers ā = (a,a∗), where a and a∗ are called real part and dual part of the dual number, respec-

tively. The set of all dual numbers is denoted by ID. The dual numbers can also be expressed as

ā = a+ εa∗, where ε is the dual unit which satisfies the condition that ε2 = 0 [20]. Two inner

operations and equality in ID can be defined as follows [1,5]:

Addition : (a,a∗)+(b,b∗) = (a+b, a∗+b∗),

Multiplication : (a,a∗) (b,b∗) = (ab, ab∗+a∗b),
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Equality : (a,a∗) = (b,b∗)⇔ a = b, a∗ = b∗.

The set ID with the above operations is a commutative ring over the real number field.

Since εn = 0 for n > 1, a function of a dual number f (ā) can be expanded in Maclaurin series

as

f (ā) = f (a+ εa∗) = f (a)+ εa∗ f ′(a),

where f ′(a) is the derivative of f (a) with respect to a [2].

Similar to dual numbers, a dual vector can be defined as an ordered pair of two real vectors

(a,a∗), where a,a∗ ∈ IR3. Dual vectors can also be expressed as ã= a+εa∗, where ε2 = 0 [15].

The set of all dual vectors denoted by ID3 is a module over the ring ID and is called dual space

or ID-module.

For two dual vectors ã= a+εa∗ and b̃= b+εb∗, the dual Lorentzian inner product and the

dual Lorentzian vector product can be defined, respectively, as [19]〈
ã, b̃
〉
= 〈a,b〉+ ε (〈a,b∗〉+ 〈a∗,b〉)

and

ã× b̃ = a×b+ ε (a×b∗+a∗×b) ,

where 〈 , 〉 and × denote the Lorentzian inner product and the Lorentzian vector product, re-

spectively. A dual vector ã= a+εa∗ is said to be timelike if a is timelike, spacelike if a is

spacelike or a = 0 and lightlike (null) if a is lightlike (null) and a 6= 0 [19]. The set of all dual

Lorentzian vectors is called dual Lorentzian space and it is denoted by ID3
1 [19].

Let ã = a+ ε a∗ ∈ ID3
1. Then ã is said to be dual unit timelike (resp. spacelike) vector if the

vectors a and a∗ satisfy the following equations:

〈a,a〉= −1 (resp. 〈a,a〉= 1), 〈a , a∗〉= 0.

The set of all dual unit spacelike vectors is called dual Lorentzian unit sphere, and can be

denoted by S̃2
1 [19].

Let ã and b̃ be dual spacelike vectors in ID3
1 that span a dual timelike vector subspace.

Then there is a dual number θ̄ = θ + εθ ∗ called the dual central angle such that
〈
ã, b̃
〉
=

‖ã‖
∥∥b̃
∥∥ cosh θ̄ , where θ and θ ∗ are central angle and Lorentzian shortest distance between the

lines corresponding the dual spacelike vectors ã and b̃, respectively [19].
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There exists one-to-one correspondence between dual unit vectors in dual space ID3 and the

directed lines in line space IR3 [7,16]. This correspondence is known as E. Study mapping or

transference principle. If we consider 3-dimensional Lorentzian space IR3
1 instead of IR3, we

have the correspondence which can be stated that: The spacelike unit vectors of the Lorentzian

unit sphere S̃2
1 in the dual Lorentzian space ID3

1 are in one-to-one correspondence with the

directed spacelike lines in Lorentzian space IR3
1 [19]. Thus, a timelike ruled surface with space-

like ruling in Lorentzian space can be represented by a dual spacelike unit spherical curve lying

fully on S̃2
1.

3. Reference Frames of a Robot End-Effector in Lorentzian Space

In [4], three reference frames were defined to study the motion of a robot end-effector moving

in Lorentzian space such that generating ruled surface is a timelike ruled surface with timelike

ruling. In this section, similar to the procedure used in [4], we introduce three reference frames

for the case of timelike ruled surface with spacelike ruling. These frames are a tool frame, a sur-

face frame and a generator trihedron. The aim of this section is to provide better understanding

the geometrical meaning of the dual procedure to be used in Section 4.

Analogously in [4,12], a tool frame defined on robot end-effector consists of three orthonor-

mal vectors: the orientation vector O, the approach vector A, and the normal vector N (see

Figure 1). The origin of the tool frame is called tool center point and denoted by TCP.

As a robot end-effector moves on a specified trajectory in Lorentzian space, a line called tool

line which passes through TCP and whose direction vector is parallel to the orientation vector

O, generates a ruled surface. This ruled surface is assumed to be timelike ruled surface with

spacelike ruling in this paper and it can be expressed by

X(t,v) = α(t)+ v R(t)

where α(t) is the specified trajectory traced by TCP, R(t) is the spacelike ruling of the ruled

surface with constant magnitude which is parallel to the orientation vector O, v is an arbitrary

real valued parameter and t is the parameter of time. For simplicity in formulations, a normal-

ized parameter s which is the arc-length parameter of the spherical image curve of R can be
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used instead of the parameter of time t and it can be obtained as

s(t) =
∫ t

0

∥∥∥∥ dR
dt

∥∥∥∥ dt.

From now on, it is assumed that approach vector A is a spacelike vector during motion. This

assumption restricts the motion that a robot end-effector moves in a restricted area such that

the approach vector A should be always a spacelike vector. But in general, the approach vector

A may be timelike or null vector during the motion. The procedure to be used to study this

restricted motion of a robot end-effector can be adapted to the case of the Lorentzian character

of A which may be timelike or null. Since A is assumed to be a spacelike vector and the ruled

surface is a timelike ruled surface with spacelike ruling, the orientation vector O should be a

space vector and the normal vector N should be a timelike vector.

The spacelike approach vector A may not be always perpendicular to the ruled surface in

Lorentzian manner as a robot end-effector moves in Lorentzian space. As shown in Figure 1,

there may be an angle between the spacelike approach vector A and the spacelike surface normal

vector which can be denoted by Sn. This angle is called central spin angle and it can be denoted

by η .

A surface frame which consists of the spacelike orientation vector O, the spacelike surface

normal vector Sn and the timelike surface binormal vector Sb is defined on the directrix of the

ruled surface to describe the orientation of the tool frame relative to the ruled surface. The

spacelike surface normal vector Sn can be expressed as

Sn =
Xv×Xs

‖Xv×Xs‖

where Xv and Xs are derivations of X with respect to v and s, respectively. The timelike surface

binormal vector Sb can also be given as

Sb = O×Sn.
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Figure 1 A robot end-effector, its tool frame and the surface frame.

The tool frame and the surface frame have a common vector O, and the relation between

these frames can be expressed by
O

A

N

=


1 0 0

0 coshη sinhη

0 sinhη coshη




O

Sn

Sb

 (3.1)

where η is a central spin angle which is the angle between A and Sn.

The generator trihedron is defined on the line of striction of the ruled surface which is a unique

curve given by c(s) = α(s)−µ(s)R(s), where µ = 〈α ′,R′〉. The generator trihedron consists of

three orthonormal vector: the spacelike generator vector e, the spacelike central normal vector

t, and the timelike central tangent vector g. These vectors can be given as, respectively,

e =
R
‖R‖

, t = R′, g = e× t,

where the prime indicates differentiation with respect to s. The first-order derivation formulae

of the generator trihedron can be expressed in matrix form as

d
ds


e

t

g

=
1
‖R‖


0 1 0

−1 0 γ

0 γ 0




e

t

g

 ,
where γ is called geodesic curvature of a timelike ruled surface with spacelike ruling.

The generator vector e is a common vector of the generator trihedron and the surface frame.

The vectors t and g of generator trihedron and the vectors Sn and Sb of the surface frame are in
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the same Lorentzian plane. Thus, the orientation of the surface frame relative to the generator

trihedron can be given in matrix form as
O

Sn

Sb

=


1 0 0

0 coshσ sinhσ

0 sinhσ coshσ




e

t

g

 , (3.2)

where σ is a central angle between Sn and t (see Figure 2).

By substituting equation (3.1) into equation (3.2), the relation between the tool frame and the

generator trihedron can be obtained as
O

A

N

=


1 0 0

0 coshϕ sinhϕ

0 sinhϕ coshϕ




e

t

g

 ,
where

ϕ = η +σ . (3.3)

Figure 2 shows the relations between the three reference frames which are the tool frame, the

surface frame and the generator trihedron as a robot end-effector moves on a specified trajectory.

Figure 2 Relations between three reference frames.

4. Differential properties of the motion of a robot end-effector

In [9], the dual representation and the dual Darboux frame of a timelike ruled surface with

timelike ruling are given in detail. In this section, similar to the procedure used in [9], we give
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the dual Darboux frame of a timelike ruled surface with spacelike ruling which corresponds to

a dual Lorentzian unit spherical spacelike curve. Then we define a dual tool frame on robot

end-effector and determine the time dependent differential properties of the motion of a robot

end-effector by using the relationship between the dual tool frame and the dual Darboux frame.

The timelike ruled surface with spacelike ruling which is generated by a line fixed in the

end-effector can be given by the equation

X(s,v) = α(s)+ v R(s)

where α is the directrix of the ruled surface (specified trajectory of robot end-effector), R is the

ruling with constant magnitude and s is the arc-length parameter of spherical image curve of

R. From E. Study mapping (or transference principle), this ruled surface corresponds to a dual

spacelike curve on dual Lorentzian unit sphere which can be expressed as ẽ(s) = e(s)+ εe∗(s),

where e is the spacelike generator vector of the ruled surface as defined in Section 3, e∗ is the

moment vector of e about the origin and it can be determined as e∗ = c× e, where c is the line

of striction of the ruled surface.

The dual Darboux frame of a dual Lorentzian unit spherical spacelike curve consists of three

orthonormal dual unit vectors. The first is the dual curve itself, i.e., ẽ(s). Dual arc-length of the

dual curve ẽ can be given by [9]

s̄ =
∫ s

0

∥∥ ẽ′(u)
∥∥du =

∫ s

0
(1− ε∆)du = s− ε

∫ s

0
∆du,

where ∆ = det(c′,e, t). The second and the third dual unit vectors of the dual Darboux frame

can be given, respectively, as

t̃ =
dẽ
ds̄

=
ẽ′

s̄′
=

ẽ′

1− ε∆
= t+ ε(c× t).

and

g̃ = ẽ× t̃ = g+ ε(c×g).

where t and g are the spacelike central normal vector and the timelike central tangent vector,

respectively, as defined in Section 3.
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The derivation formulae of the dual Darboux frame of a dual curve lying on dual Lorentzian

unit sphere can also be expressed in matrix form as

d
ds̄


ẽ

t̃

g̃

=


0 1 0

−1 0 γ̄

0 γ̄ 0




ẽ

t̃

g̃

 , (4.1)

where γ̄ is called dual geodesic curvature.

Dual tool frame to be used to study the motion of a robot end-effector can be defined by three

orthonormal dual unit vectors which correspond to three lines which pass through TCP of robot

end-effector. These lines can be called orientation line, approach line and normal line, and their

direction vectors are the spacelike orientation vector O, the spacelike approach vector A and the

timelike normal vector N, respectively (see Figure 3). From E.Study mapping, the orientation

line, the approach line and the normal line correspond to three dual unit vectors which may be

denoted by Õ, Ã and Ñ and called dual spacelike orientation vector, the dual spacelike approach

vector and the dual timelike normal vector, respectively. It is pointed that since A is assumed

to be a spacelike vector, dual approach vector Ã is also a spacelike vector. In general motion,

it may be dual timelike or lightlike. For these cases, formulations to be required to determine

the differential properties of the motion of a robot end-effector can be adapted to the case of

Lorentzian casual character of Ã.

Figure 3 The dual tool frame of a robot end-effector.
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Let the dual central angle between the dual unit vectors Ã and t̃ be ϕ̄ = ϕ + ε ϕ∗, where ϕ is

the Lorentzian angle and ϕ∗ is the Lorentzian shortest distance between the corresponding lines

of Ã and t̃. From Section 3, we know that ϕ∗ is the distance from line of striction to directrix of

generating ruled surface, i.e., ϕ∗= µ‖R‖. Thus, the dual tool frame relative to the dual Darboux

frame can be given in matrix form as
Õ

Ã

Ñ

=


1 0 0

0 cosh ϕ̄ sinh ϕ̄

0 sinh ϕ̄ cosh ϕ̄




ẽ

t̃

g̃

 . (4.2)

By differentiating equation (4.2) and substituting equation (4.1) into the result, we have
Õ′

Ã′

Ñ′

=


0 1 0

−cosh ϕ̄ δ̄ sinh ϕ̄ δ̄ cosh ϕ̄

−sinh ϕ̄ δ̄ cosh ϕ̄ δ̄ sinh ϕ̄




ẽ

t̃

g̃

 ,
where δ̄ = ϕ̄ ′+ γ̄ and the prime denotes derivation with respect to the dual arc-length parameter

s̄. By using equation (4.2), the derivation formulas of the dual tool frame in terms of itself can

be obtained in matrix form as
Õ′

Ã′

Ñ′

=


0 cosh ϕ̄ −sinh ϕ̄

−cosh ϕ̄ 0 δ̄

−sinh ϕ̄ δ̄ 0




Õ

Ã

Ñ

 .
The dual instantaneous rotation vector of the dual tool frame can be found as

w̃O = δ̄ Õ+ sinh ϕ̄ Ã− cosh ϕ̄ Ñ.

By using equation (4.2), the dual instantaneous rotation vector of the dual tool frame can be

expressed in terms of the dual Darboux frame as

w̃O = δ̄ ẽ− g̃. (4.3)

The dual instantaneous rotation vector w̃O = wO + εw∗O plays the same role to the dual Pfaff

vector which is dual velocity vector in dual spherical motion [6]. Thus, dual vector w̃O can be

considered as dual velocity vector of the motion of a robot end-effector. The dual tool frame

rotates along the axis
w̃O

‖w̃O‖
with the dual angle ‖w̃O‖. This dual Lorentzian motion includes
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both rotational and translational motion in real Lorentzian space. wO and w∗O correspond to the

instantaneous angular velocity vector and the instantaneous linear velocity vector, respectively.

By separating equation (4.3) into the real and dual parts, we get

wO = δe−g (4.4)

and

w∗O = δe∗+δ
∗e−g∗ (4.5)

respectively.

The instantaneous angular and linear velocity vector given in equations (4.4) and (4.5) are

obtained in terms of s which is the arc-length parameter of spherical image curve of R. In

order to determine the time dependent differential properties (angular and linear velocities) of

motion, these vectors should be associated with t which is the parameter of time. Now, we can

give the following corollary concerning time dependent linear and angular velocities of a robot

end-effector which moves on a specified trajectory in Lorentzian space.

Corollary 4.1. Let a robot end-effector moves on a specified trajectory in Lorentzian space such

that tool line fixed in the end-effector generates a timelike ruled surface with spacelike ruling.

Linear and angular velocities of robot end-effector can be given, respectively, as

vL = w∗O ṡ (4.6)

and

vA = wO ṡ (4.7)

where w∗O and wO are given by equations (4.5) and (4.4), respectively, and the dot indicates

differentiation with respect to time, i.e., ṡ =
ds
dt

.

By differentiating equation (4.3) and using equation (4.1), derivation of the dual instanta-

neous rotation vector of dual tool frame can be obtained as

w̃
′
O = δ̄

′ ẽ+ ϕ̄
′ t̃. (4.8)
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By separating equation (4.8) into real and dual parts, the instantaneous angular acceleration

vector and the instantaneous linear acceleration vector can be found as

w
′
O = δ

′ e+ϕ
′ t (4.9)

and

w∗
′

O = δ
′ e∗+δ

∗′e+ϕ
′ t∗+ϕ

∗′t. (4.10)

By relating the parameter of time, we can give the following corollary concerning time de-

pendent linear and angular accelerations of a robot end-effector which moves on a specified

trajectory in Lorentzian space.

Corollary 4.2. Let a robot end-effector moves on a specified trajectory in Lorentzian space such

that tool line fixed in the end-effector generates a timelike ruled surface with spacelike ruling.

Linear and angular accelerations of the robot end-effector can be given, respectively, as

aL = w∗O s̈+w∗
′

O ṡ2 (4.11)

and

aA = wO s̈+w
′
Oṡ2 (4.12)

where w∗
′

O and w
′
O are given by equations (4.10) and (4.9), respectively, and s̈=

d2s
dt2 .

Now, let us consider some special cases which may be encountered in motion of robot end-

effector. A robot end-effector can move on a specified trajectory such that the central spin angle

η may be constant during the motion, or more specifically, η may be equal to zero, namely,

approach vector of robot end-effector may be always perpendicular in Lorentzian manner to

generating ruled surface. For this special case, we can give the following corollaries concerning

time dependent linear and angular velocities and accelerations of a robot end-effector.

Corollary 4.3. Let a robot end-effector moves on a specified trajectory in Lorentzian space

such that tool line fixed in the end-effector generates a timelike ruled surface with spacelike

ruling. If the central spin angle η is constant, then linear and angular velocities of the robot

end-effector can be expressed as

vL = ((σ ′+ γ)e∗+δ
∗e−g∗) ṡ
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and

vA = ((σ ′+ γ)e−g) ṡ

respectively.

Corollary 4.4. Let a robot end-effector moves on a specified trajectory in Lorentzian space such

that tool line fixed in the end-effector generates a timelike ruled surface with spacelike ruling.

If the central spin angle η is constant, then the linear and angular accelerations of the robot

end-effector can be expressed as

aL = ((σ ′+ γ)e∗+δ
∗e−g∗) s̈+((σ ′′+ γ

′) e∗+δ
∗′e+σ

′ t∗+ϕ
∗′t)ṡ2

and

aA = ((σ ′+ γ)e−g) s̈+((σ ′′+ γ
′) e+ϕ

′ t) ṡ2

respectively.

Now, let us consider another special case of motion of robot end-effector. A robot end-

effector may follow a specified trajectory which may also be line of striction of ruled surface,

in other words, directrix and line of striction of ruled surface can be the same curve. For this

special case, we can give the following corollaries concerning time dependent linear and angular

velocities and accelerations of a robot end-effector.

Corollary 4.5. Let a robot end-effector moves on a specified trajectory in Lorentzian space such

that tool line fixed in the end-effector generates a timelike ruled surface with spacelike ruling. If

the specified trajectory is also the line of striction of the ruled surface which robot end-effector

moves on, then the linear and angular velocities of the robot end-effector can be expressed as

vL = ((η ′+ γ)e∗+ γ
∗e−g∗) ṡ

and

vA = ((η ′+ γ)e−g) ṡ

respectively.

Corollary 4.6. Let a robot end-effector moves on a specified trajectory in Lorentzian space

such that tool line fixed in the end-effector generates a timelike ruled surface with spacelike
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ruling. If the specified trajectory is also the line of striction of the ruled surface which robot

end-effector moves on, then the linear and angular accelerations of the robot end-effector can

be expressed as

aL = ((η ′+ γ)e∗+ γ
∗e−g∗) s̈+((η ′′+ γ

′) e∗+ γ
∗′e+η

′ t∗)ṡ2

and

aA = ((η ′+ γ)e−g) s̈+((η ′′+ γ
′) e+η

′ t) ṡ2

respectively.

5. Example

As seen in Figure 4, let a robot end-effector moves on a specified trajectory in Lorentzian

space such that generating surface is a helicoid given by the equation X(t,v)= (vcos t, vsin t, ct),

where t is the parameter of time, c 6= 0 and η be a central spin angle during the motion. Directrix

and ruling of the helicoid are α(t) = (0, 0, ct) and R(t) = (cos t, sin t, 0), respectively. Since

µ = 〈α ′,R′〉 = 0, directrix is also line of striction of the ruled surface, i.e., c = α . From trans-

ference principle, the helicoid corresponds to a dual Lorentzian curve which can be expressed

as

ẽ(s) = (coss, sins, 0)+ ε(cssins, −cscoss, 0)

where s is the arc-length parameter of the spherical image curve of R. The second and third

elements of dual Darboux frame of the dual Lorentzian curve can be found as

t̃(s) = (−sins, coss, 0)+ ε(cscoss, cssins,0)

and

g̃(s) = (0, 0, 1)

respectively. By using equation (4.1), dual geodesic curvature can be found as γ̄ = γ + εγ∗ =

0+ε0. Since dual geodesic curvature equals to zero and the directrix is also the line of striction,

we have ϕ∗ = 0, σ = 0, ϕ̄ = η and so δ̄ = η ′. Thus, the dual instantaneous rotation vector of
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the dual tool frame can be found as

w̃O = wO + εw∗O = (η ′ coss, η
′ sins, −1)+ ε(cssins, −cscoss, 0).

The angular and linear velocities of the robot end-effector can be obtained by substituting wO

and w∗O into equations (4.7) and (4.8), respectively. By differentiating the dual instantaneous

rotation vector of the dual tool frame, we get

w̃′O = w
′
O + εw∗

′
O = (η ′′ coss−η

′ sins, η
′′ sins+η

′ coss, 0)

+ ε(csins+ cscoss, −ccoss+ cssins, 0)

The angular and linear accelerations of the robot end-effector can be obtained by substituting

w
′
O and w∗

′
O into equations (4.12) and (4.11), respectively.

Figure 4 Motion of a robot end-effector whose generating surface is a helicoid.

6. Conclusions

In this paper, it is shown that dual curvature theory of dual Lorentzian unit spherical spacelike

curve which corresponds to a ruled surface generated by a line fixed in the robot end-effector

can be used to study the motion of a robot end-effector. Linear and angular time-dependent dif-

ferential properties of motion such as velocities and accelerations of robot end-effector which

are important in robot trajectory planning are determined. Dual curvature theory of a ruled sur-

face is much simpler in expression than curvature theory in real space and it reduces redundant
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parameters in formulations. This paper is believed to be an original contribution to the research

area of robot trajectory planning. We would like to emphasize that examining of motion in this

paper is a restricted study such that generating ruled surface is a timelike ruled surface with

spacelike ruling. Studying of motion such that generating ruled surface are spacelike ruled sur-

faces and timelike ruled surfaces with timelike rulings which correspond to dual Lorentzian unit

spherical timelike curves and the dual hyperbolic unit spherical curves are not included in this

paper. They are the subject of ongoing research works.
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