
Available online at http://scik.org

J. Math. Comput. Sci. 7 (2017), No. 1, 39-58

ISSN: 1927-5307

NUMERICAL SOLUTION OF HAMMERSTEIN INTEGRAL EQUATION USING
CHEBYSHEV WAVELET METHOD

J. IQBAL∗, R. ABASS

Department of Mathematical Sciences, BGSB University, Rajouri-185234, J and K, India

Copyright c© 2017 J. Iqbal and R. Abass. This is an open access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. The aim of this work is to solve Hammerstein integral equations of both Fredholm as well as Volterra

type by Chebyshev wavelet method which is widely applicable in engineering and technology. The Chebyshev

wavelets together its properties are used to converts the problem into algebraic equations. Illustrative examples

of Hammerstein type equations have been discussed to demonstrate the validity and applicability of the technique

and the results have been compared with the existing method in the literature as well as with exact solution.
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1. Introduction

Many problems of mathematical physics can be stated in the form of integral equations.

These equations also occur as reformulations of other mathematical problems such as partial

differential equations and ordinary differential equations. The study of integral equations and

∗Corresponding author

Received September 2, 2016

39



40 J. IQBAL, R. ABASS

methods for solving them are very useful in many fields including many problems in mathemat-

ical physics, the dynamic model of chemical reactor, problems in control theory, and various

reformulations of an elliptic partial differential equation with nonlinear boundary conditions. In

this paper, we consider the nonlinear Fredholm-Hammerstein integral equations and nonlinear

Volterra-Hammerstein integral equations respectively by the general forms [1, 13]

y(t) = f (t)+λ

∫ 1

0
K(t,x)F(x,y(x))dx, (1.1)

y(t) = f (t)+λ

∫ t

0
K(t,x)F(x,y(x))dx, (1.2)

where the parameter λ and functions f (t),K(t,x) and F(x,y(x)) ∈ L2[0,1] are known func-

tions and y(t) ∈C[0,1] is unknown function. Hammerstein integral equations appear in many

areas of scientific fields like chemical kinetics, electrochemical machining, fluid dynamics,

mathematical biology and plasma physics [12] . From past two decades, a broad class of nu-

merical methods for approximating the solution of Hammerstein integral equations are known.

For Fredholm-Hammerstein integral equations (1.1), the classical method of successive approx-

imations was introduced in [23]. A variation of the Nystrom method was presented in [16]. A

collocation-type method was developed in [14]. In [5], Brunner applied a collocation-type

method to nonlinear Volterra-Hammerstein integral equations and integro-differential equa-

tions, and discussed its connection with the iterated collocation method. Han [9] introduced and

discussed the asymptotic error expansion of a collocation-type method for Volterra-Hammerstein

integral equations. The methods in [9, 14] transform a given integral equation into a system of

nonlinear equations, which has to be solved with some kind of iterative method. In [14], the

definite integrals involved in the solution may be evaluated analytically only in favorable cases,

while in [9] the integrals involved in the solution have to be evaluated at each time step of the

iteration.
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Over the last couple of decades, wavelets have been studied extensively and have emerged

as a powerful computational tool for attaining numerical solutions for a wide range of prob-

lems including integral, algebraic, differential, partial-differential, functional-delay and integro-

differential equations. Wavelets are calculated as continuously oscillatory functions and pos-

sess attractive features: zero-mean, fast decay, short life, time-frequency representation, multi-

resolution, etc. Wavelets have the ability to detect information at different scales and at different

locations throughout a computational domain. Wavelets can provide a basis set in which the ba-

sis functions are constructed by dilating and translating a fixed function known as the mother

wavelet. The wavelet method allows the creation of very fast algorithms when compared with

the algorithms ordinarily used. Wavelets are considerably useful for solving Fredholm cum

Volterra Hammerstein integral equations and provide accurate solutions.

In recent years, different types of wavelets and approximating functions based on orthogo-

nal functions have been used to approximate the numerical solution of integral and differential

equations such as Chebyshev [24], Legendre [2, 10], Daubechies [20], Alpert [12], Modifed

Homotopy Perturbation [7] and Haar [17] wavelets. Among all the wavelet families, the Cheby-

shev wavelets have gained popularity among researchers due to their useful properties such as

simple applicability, orthogonality and compact support. The main characteristic of Chebyshev

wavelet is that it converts the problems into nonlinear system of algebraic equations and this

system may be solved by using an appropriate numerical method. This approach used opera-

tional matrix P of integration and product operation matrix to eliminate the integral operator.

The rest of the paper is as follows: In section 2, Chebyshev wavelet, its properties, function

approximations and convergence are discussed. Operational Matrix of Integration(OMI) is pre-

sented in section 3. In section 4, product operation matrix of Chebyshev wavelets have been

discussed. Section 5, is devoted to present a computational method for solving Hammerstein in-

tegral equations utilizing Chebyshev wavelets and approximate the unknown function. Section

6, deals with the illustrative examples and their solutions by the proposed approach compared

with exact as well as with existing literature. Finally, we conclude the article in section 7.

2. Wavelets and Chebyshev Wavelets
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Wavelets constitute the family of functions constructed from the dilation and translation of a

single function known as the Mother wavelet. When the dilation parameter a and translation

parameter b vary continuously we have the following family of continuous wavelets [8]

ψa,b(t) = |a|−
1
2 ψ

(
t−b

a

)
; a, b ∈ R, a 6= 0. (2.1)

If we choose a = a−k and b = nba−k where a > 1, b > 0 and n,k ∈Z+ then we get the following

family of discrete wavelets:

ψk,n(t) = |a|−
k
2 ψ(akt−nb). (2.2)

These family of functions are a wavelet basis for L2(R) and makes an orthonormal basis for the

special case a = 2 and b = 1.

Chebyshev wavelets ψn,m(t)=ψ(k,m,n, t) have four arguments, k= 0,1,2, ....., n= 1,2, .....,2k, m

is the degree of Chebyshev polynomial of first kind and t denotes the normalized time. They

are defined on the interval [0,1) by

ψn,m(t) =


αm2k/2
√

π
Tm(2k+1t−2n+1), n−1

2k ≤ t ≤ n
2k

0, otherwise

(2.3)

where

αm =


√

2, m = 0

2, m = 1,2, . . .

Tm(t) in (2.3) are well known Chebyshev polynomial of order m, which is orthogonal with

respect to the weight function ω(t) = 1√
1−t2 and satisfy the following recursive formula:

T0(t) = 1

T1(t) = t

Tm+1(t) = 2tTm(t)−Tm−1(t), m = 1,2,3, ......



NUMERICAL SOLUTION OF HAMMERSTEIN INTEGRAL EQUATION 43

Moreover, the set of Chebyshev wavelet are an orthogonal set with respect to the weight func-

tion ωn(t) = ω(2k+1t−2n+1).

A function f (t) ∈ L2[0,1] may be expanded as

f (t) =
∞

∑
n=1

∞

∑
m=0

cnmψnm(t), (2.4)

where the wavelet coefficients of the series representation in (2.4) become

cnm = 〈 f (t),ψnm(t)〉wn(t). (2.5)

The convergence of the series (2.4), in L2[0,1], means that

lim
s1,s2→∞

∥∥∥ f (x)−
s1

∑
n=1

s2

∑
m=0

cnmψnm(t)
∥∥∥= 0.

If the infinite series in (2.4) is truncated then equation (2.4) can be written as

f (t)∼=
2k−1

∑
n=1

M−1

∑
m=0

cnmψnm(t) =CT
Ψ(t), (2.6)

where C and Ψ(t) are 2k−1M×1 matrices given by:

C = [c1,0,c1,1, . . . ,c1,M−1,c2,0,c2,1, . . . ,c2,M−1, . . . ,c2k−1,0, . . . ,c2k−1M−1]
T , (2.7)

Ψ(t) = [ψ1,0,ψ1,1, . . . ,ψ1,M−1,ψ2,0,ψ2,1, . . . ,ψ2,M−1, . . . ,ψ2k−1,0, . . . ,ψ2k−1,M−1]
T . (2.8)

In the same way, a function of two variable K(x, t)∈ L2 ([0,1]× [0,1]) may be approximated as:

K(x, t)≈Ψ
T (x)KΨ(t), (2.9)

where K is 2k−1M×2k−1M matrix, with Ki j = (ψi(x),(K(x, t),ψ j(t))).

The integration of the product of two Chebyshev wavelets vector functions with respect to the

weight function Wn(t), is derived as

∫ 1

0
Wn(t)ψ(t)ψT (t)dt = I, (2.10)
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where I is the identity.

Also the integer powers of a function may be approximated as

[y(t)]p = [Y T
Ψ(t)]p = Y ∗T

p Ψ(t), (2.11)

where Y ∗p is a 2k−1× 1 matrix, whose elements are nonlinear combinations of the elements of

the vector Y . Y ∗p is called the operational vector for production of the pth power of the function

y(t) [3, 8, 18].

Since the truncated Chebyshev wavelets series can be an approximate solution of singular inte-

gral equations, one has an error function E(t) for f (t) as follows:

E(t) =
∣∣ f (t)−CT

Ψ(t)
∣∣ .

3. Operational Matrix of Integration(OMI)

In this section, we will first derive the operational matrix P of integration [21, 22, 24] which help

us in dealing with the concerned problems Hammerstein integral equations . First we construct

the matrix P for k = 2 and M = 3. In this case, the six basis functions are given by

ψ1,0 =
2√
π
,

ψ1,1 = 2
√

2
π
(4t−1),

ψ1,2 = 2
√

2
π

(
(4t−1)2−1

)


for t ∈ [0,1/2) , (3.1)

ψ2,0 =
2√
π
,

ψ2,1 = 2
√

2
π
(4t−3),

ψ2,2 = 2
√

2
π

(
(4t−3)2−1

)


for t ∈ (1/2,1] . (3.2)
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By integrating the above defined basis (3.1) and (3.2) from 0 to t and using wavelet coefficient,

we obtain

∫ t

0
ψ1,0(t)dt =


2√
π

t, t ∈ [0, 1
2)

1√
π

t, t ∈ (1
2 ,1]

=

[
1
4
,

1
4
√

2
,0,

1
2
,0,0

]T

Ψ6(t),

∫ t

0
ψ1,1(t)dt =


2
√

2√
π
, t ∈ [0, 1

2)

0, t ∈ (1
2 ,1]

=

[
− 1

8
√

2
,0,

1
16

,0,0,0
]T

Ψ6(t),

∫ t

0
ψ1,2(t)dt =


2
√

2√
π
,
(32

3 t3−8t2 + t
)

t ∈ [0, 1
2)

−1
3

√
2
π
, t ∈ (1

2 ,1]

=

[
− 1

6
√

2
,−1

8
,0,− 1

3
√

2
,0,0

]T

Ψ6(t),

∫ t

0
ψ2,0(t)dt =


0, t ∈ [0, 1

2)

2√
π

t− 1
π
, t ∈ (1

2 ,1]

=

[
0,0,0,

1
4
,

1
4
√

4
,0
]T

Ψ6(t),

∫ t

0
ψ2,1(t)dt =


0, t ∈ [0, 1

2)

2
√

2
π
(2t2−3t)+1, t ∈ (1

2 ,1]

=

[
0,0,0,− 1

8
√

2
,0,− 1

16

]T

Ψ6(t),

∫ t

0
ψ2,2(t)dt =


0, t ∈ [0, 1

2)

2
√

2
π

(32
3 t3−24t2 +17t− 23

6

)
, t ∈ (1

2 ,1]

=

[
0,0,0,− 1

6
√

2
,−1

8
,0
]T

Ψ6(t).

The integration of the vector Ψ(t), defined in (2.8), can be obtained as
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∫ t

0
Ψ(t)dt = PΨ(t), (3.3)

where P is the 2k−1M×2k−1M operational matrix of integration [3, 4] determined as follows.

P6×6 =
1
4



1 1√
2

0 2 0 0

− 1
2
√

2
0 1

4 0 0 0

−
√

2
3 −1

2 0 −2
√

2
3 0 0

0 0 0 1 1√
2

0

0 0 0 − 1
2
√

2
0 1

4

0 0 0 −
√

2
3 −1

2 0


. (3.4)

For general case, we have

P2k−1M×2k−1M =
1
2k



L F F . . . F

O L F . . . ...

O O L . . . F
... . . . . . . . . . F

O . . . O O L


, (3.5)

where L, F and O are M×M matrices given by

L =



1
2

1
2
√

2
0 0 . . . 0 0 0

− 1
8
√

2
0 1

8 0 . . . 0 0 0

− 1
6
√

2
−1

4 0 1
12 . . . 0 0 0

...
...

...
... . . . ...

...
...

− 1√
2(M−1)(M−3)

0 0 0 . . . − 1
4(M−3) 0 − 1

4(M−1)

− 1
2
√

2M(M−2)
0 0 0 . . . 0 − 1

4(M−2) 0


,
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F =



√
2 0 0 . . . 0

0 0 0 . . . 0

−
√

2
3 0 0 . . . 0

0 0 0 . . . 0

−
√

2
15 0 0 . . . 0
...

...
... . . . ...

−
√

2
M(M−2) 0 0 . . . 0



and

O =


0 0 . . . 0

0 0 . . . 0
...

... . . . ...

0 0 . . . 0

 .

4. Product Operation Matrix of Chebyshev Wavelets

The following properties of the product of two Chebyshev wavelet function vectors is also used

for solving differential a well as integral equations:

CT
Ψ(t)ΨT (t)≈ C̃Ψ

T (t), (4.1)

where C and Ψ(t) are give in Eq.(2.7) and (2.8), respectively and C̃ is (2k−1M)× (2k−1M)

product operational matrix [11]. To illustrate the calculation procedures, we choose M = 3, k =

2 and using Ψ(t) similarly to Eq.(2.8),we have
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Ψ(t)ΨT (t) =



ψ10ψ10 ψ10ψ11 ψ10ψ12 ψ10ψ20 ψ10ψ21 ψ10ψ22

ψ11ψ10 ψ11ψ11 ψ11ψ12 ψ11ψ20 ψ11ψ21 ψ11ψ22

ψ12ψ10 ψ12ψ11 ψ12ψ12 ψ12ψ20 ψ12ψ21 ψ12ψ22

ψ20ψ10 ψ20ψ11 ψ20ψ12 ψ20ψ20 ψ20ψ21 ψ20ψ22

ψ21ψ10 ψ21ψ11 ψ21ψ12 ψ21ψ20 ψ21ψ21 ψ21ψ22

ψ22ψ10 ψ22ψ11 ψ22ψ12 ψ22ψ20 ψ22ψ21 ψ22ψ22



. (4.2)

As we know, the support of ψm,n, the entries of vector Ψ(t) are the intervals
[

n−1
2k ,

n
2k

]
, there-

fore ψi jψkl = 0 if i 6= k. We also have

ψi0ψi j =
2√
π

ψi j,

ψi1ψi1 =
2√
π

ψi0 +
√

2
π

ψi2.

If we retain only the elements of Ψ(t), then we have

Ψ(t)ΨT (t) =
1√
π



2ψ10 2ψ11 2ψ12 0 0 0

2ψ11 2ψ10 +
√

2ψ12
√

2ψ11 0 0 0

2ψ12
√

2ψ11 2ψ10 0 0 0

0 0 0 2ψ20 2ψ21 2ψ22

0 0 0 2ψ21 2ψ20 +
√

2ψ22
√

2ψ21

0 0 0 2ψ22
√

2ψ21 2ψ22


.
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Therefore the 6×6 matrix C̃ in Eq.(4.1) can be written as

C̃ =


B1 0

0 B2

 , (4.3)

where Bi, i = 1,2, are 3×3 matrices given by

Bi =
1√
π



2ci0 2ci1 2ci2

2ci1 2ci0 +
√

2ci2
√

2ci1

2ci2
√

2ci1 2ci0


, (4.4)

where ci,d, d = 0,1,2 taken from Eq.(2.7).

For general case, C̃ is a 2kM×2kM matrix in the form as

C̃ =


B1 0 . . . 0

0 B2 . . . 0
...

... . . . . . .

0 0 . . . B2k

 , (4.5)

for Bi, i = 1,2, . . . ,2k taken from Eq.(4.4).

5. Description of the Proposed Method

In this section, we will use the operational matrix of integration and product operation matrix

of Chebyshev wavelets to solve Hammerstein integral equation of Fredholm and Volterra type.

Firstly, we consider Fredholm Hammerstein integral equation as:

y(t) = f (t)+
∫ 1

0
K(t,x)[y(x)]p dx, (5.1)
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where f ∈ L2[0,1], K ∈ L2([0,1]× [0,1]) and y is an unknown function [6] and p ∈ Z+. Now

we approximate f (t), y(t), k(t,x) and [y(t)]p in the following way:

f (t)'Ψ(t)T F y(t)'Ψ(t)TY, (5.2)

K(t,x)'Ψ(t)T KΨ(t) and [y(t)]p 'Ψ(t)TY ∗, (5.3)

where Y ∗ is a column vector function of the elements of the vector Y [3, 4, 18].

By substituting the approximation function mentioned in Eq.(5.2) and Eq.(5.3) into Eq.(5.1) we

obtain

Ψ(t)T Y = Ψ(t)T F +
∫ 1

0
Ψ

T (t)KΨ(x)ΨT (x)Y ∗ dx

= Ψ(t)T F +Ψ
T (t)K

(∫ 1

0
Ψ(x)Ψ(x)dx

)
Y ∗

= Ψ(t)T (F +KY ∗),

then the required non-linear system of algebraic equation become

Y −KY ∗ = F. (5.4)

Secondly, we consider the following Volterra Hammerstein type integral equation

y(t) = f (t)+
∫ t

0
K(t,x)[y(x)]p dx, (5.5)

In the light of (4.1),(5.2) and (5.3) we have:

∫ t

0
K(t,x)[y(x)]p dx∼=

∫ t

0
Ψ(t)T KΨ(x)TY ∗ dx

= Ψ
T (t)K

∫ t

0
Ψ(x)ΨT (x)Y ∗dx

= Ψ
T (t)K

∫ t

0
Ỹ ∗T Ψ(x)dx

= Ψ
T (t)KỸ ∗T PΨ(t).
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Then

Ψ
T (xi)Y = f (t)+Ψ

T (t)KỸ ∗T PΨ(t). (5.6)

By evaluating this equation in 2k−1 M points {ti}2k−1M
i=1 in the interval [0,1] we have a system of

nonlinear equations:

Ψ
T (xi)Y = F(ti)+Ψ

T (ti)KỸ ∗T PΨ(ti), i = 1,2, . . . ,2k−1M. (5.7)

The nonlinear system of algebraic equations (5.4) and (5.7) can be solve by Newton’s methods

using mathematical software MATLAB.

6. Numerical experiments and discussion

In this section, we implement the proposed method for solving Hammerstein integral equation

to achieve the effectiveness, the validity, the accuracy and support our theoretical discussion in

the above sections. we consider four examples of Hammerstein integral equation of Fredohlm

and Volterra type. All computations have been done with the software package MATLAB

2013a. The numerical results achieved by the proposed method are shown in Table 6.1-6.4 and

graphically shown in Figure 6.1-6.4.

Example 6.1 Consider the Fredholm Hammerstein integral of second kind as [5]

y(t) = f (t)+
∫ 1

0
K(t,x)[y(x)]2dx, 0≤ t ≤ 1, (6.1)

where

f (t) = 1+3sin2(t) and K(t,x) =


−3sin(t− x), for x ∈ [0,1]

0, for x ∈ [t,1].

The computational results obtained by the proposed method at k = 2,M = 3 and k = 2,M = 4

together with the exact solution y(t) = cos(t) of Example 6.1 are tabulated in Table 6.1 and

graphically shown in Figure 6.1. Also we compare the obtained result with the result obtained

by semi-orthogonal spline wavelets [15].
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Table 6.1: Comparison of the approximate solution of Example 6.1 with exact and the

Ref.[15] at different scales.

t OurResult OurResult Re f .[15] Exact

(k = 2, M = 3) (k = 2, M = 4) (M = 4)

0.0 1.000000 1.000000 1.000000 1.000000

0.1 0.995204 0.995008 0.995012 0.995004

0.2 0.983211 0.983086 0.983077 0.983095

0.3 0.955495 0.955329 0.955324 0.955336

0.4 0.921190 0.921064 0.921066 0.921061

0.5 0.877698 0.877579 0.877575 0.877583

0.6 0.825426 0.825339 0.825343 0.825336

0.7 0.765012 0.764855 0.764859 0.764842

0.8 0.696884 0.696701 0.696694 0.696707

0.9 0.621803 0.621611 0.621603 0.621619

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

t

y
(t

)

 

 

Our

SOPW

Exact

Fig.6.1 Comparison of Exact Solution with Approximate Solution and Ref.[15] for Example

6.1 at k = 2,M = 4.

Example 6.2 Consider the Fredholm Hammerstein integral of second kind [19]
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y(t) = f (t)+
∫ 1

0
K(t,x)[y(x)]3dx, 0≤ t ≤ 1, (6.2)

where

f (t) = et− (1+2e3)t
9

and K(t,x) = tx,

with exact solution y(t) = et . Table 6.2 and Figure 6.2 show the numerical results for Example

6.2 in comparison with wavelet Glaerkin methods [19].

Table 6.2: Comparison of the approximate solution of Example 6.2 with exact and the

Ref.[19] at different scales.

t OurResult OurResult Re f .[19] Exact

(k = 2, M = 3) (k = 2, M = 4) (k = 2, M = 4)

0.0 0.999943 0.999999 0.999956 1.000000

0.1 1.105225 1.105176 ———– 1.105171

0.2 1.221326 1.221409 1.221391 1.221403

0.3 1.349941 1.349865 ———– 1.349859

0.4 1.491965 1.491831 1.491845 1.491825

0.5 1.648849 1.648729 ———– 1.648721

0.6 1.822245 1.822126 1.822157 1.822119

0.7 2.013867 2.013759 ———– 2.013753

0.8 2.225639 2.225547 2.225517 2.225541

0.9 2.459698 2.459609 ———– 2.459603

Example 6.3 Consider the Volterra Hammerstein integral of second kind [19]

y(t) = f (t)+
∫ t

0
K(t,x)[y(x)]2dx, 0≤ t ≤ 1, (6.3)

where

f (t) =
(

1− 11
9

t +
2
3

t2− 1
3

t3− 2
9

t4
)

In(t +1)− 1
3
(t + t3)(In(t +1))2− 11

9
t2 +

5
18

t3− 2
27

t4,
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

t

y
(t

)

 

 

Our

Exact

Fig.6.2 Approximate solution for Example 6.2 at k = 2,M = 4 with exact solution.

and K(t,x) = tx2 with exact solution y(t) = In(t +1). The numerical results of Example 6.3 are

presented in Table 6.3 at different scale and graphically shown in Figure 6.3 at k = 2, M = 4.

Table 6.3 Comparison of the approximate solution of Example 6.3 with exact and the Ref.[19]

at different scales.

t OurResult OurResult Re f .[19] Exact

(k = 2, M = 3,) (k = 2, M = 4) (k = 2, M = 4)

0.0 0.000000 0.000000 0.000000 0.000000

0.1 0.095419 0.095321 ———– 0.095310

0.2 0.182427 0.182332 0.182363 0.182322

0.3 0.262456 0.262377 ———– 0.262364

0.4 0.336564 0.336485 0.336442 0.336472

0.5 0.405532 0.405474 ———– 0.405465

0.6 0.470125 0.470014 0.469990 0.470004

0.7 0.530731 0.530641 ———– 0.530628

0.8 0.587861 0.587799 0.587803 0.587787

0.9 0.641944 0.641863 ———– 0.641854

Example 6.4 Consider the Volterra Hammerstein integral of second kind [19]
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Fig.6.3 Approximate solution for Example 6.3 at k = 2,M = 4 with exact solution.

y(t) = f (t)+
∫ t

0
K(t,x)[y(x)]3dx, 0≤ t ≤ 1, (6.4)

where

f (t) =
116
3

e2t−
(

116
3

+39t +18t2 +9t3
)

et +3t−1

and

K(t,x) =−1
3

e2t−x

with exact solution y(t) = 3t−1.

The numerical results in Table 6.4, establishes the facts given in Example 6.4. Figure 6.4 shows

the comparison of numerical results and exact solutions of Example 6.4 at k = 2,M = 4.
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t OurResult OurResult Re f .[19] Exact

(k = 2, M = 3) (k = 2, M = 4) (k = 2, M = 4)

0.0 −0.998839 −0.999929 −0.998839 −1.000000

0.1 −0.672545 −0.695323 ———– −0.700000

0.2 −0.380013 −0.399801 −0.399243 −0.400000

0.3 −0.097211 −0.099399 ———– −0.100000

0.4 0.188097 0.199711 0.199299 0.200000

0.5 0.482341 0.493662 ———– 0.500000

0.6 0.778990 0.799803 0.800185 0.800000

0.7 1.129910 1.116001 ———– 1.100000

0.8 1.377521 1.399926 1.399874 1.400000

0.9 1.689989 1.700143 ———– 1.700000

Table 6.4 Comparison of the approximate solution of Example 6.4 with exact and the Ref.[19]

at different scales.
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Fig.6.4 Approximate solution for Example 6.4 at k = 2,M = 4 with exact solution.
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7. Conclusion

In this paper, we have proposed an efficient and accurate method based on Chebyshev wavelets

to solve both Fredholm and Volterra Hammerstein integral equations arising in different field

of sciences, engineering and technology. Comparisons between our approximate solutions of

the problems with its exact solutions and with the approximate solutions achieved by other

methods were introduced to confirm the validity and accuracy of our scheme. The numerical

experiments confirm that the Chebyshev wavelet method is superior to other existing ones and is

highly accurate and can be applicable to Hammerstein integral equation. The main advantage of

this Chebyshev wavelet method is that it transfers the whole scheme into a system of algebraic

equations for which the computation is easy and simple. In addition, other pretty features of

this scheme are its simplicity, applicability and less computational effort.
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