Available online at http://scik.org J. Math. Comput. Sci. 2 (2012), No. 6, 1839-1843 ISSN: 1927-5307

A CHARACTERIZATION OF ONE-SIDED BEST SIMULTANEOUS L_1 -APPROXIMATION

S. MUNYIRA, J. P. MAZORODZE, AND G. NHAWU*

Department of Mathematics, University of Zimbabwe, Zimbabwe

Abstract. In this paper, we give a simplified proof of the characterization theorem of a one-sided L_1 -approximation in [2] and the continuity of the function $F \to C_{M(F)}(F)$ in [3].

Keywords: compact set, parametric approximation, one-sided best approximation.

2000 AMS Subject Classification: 46H05, 43A75

1. Introduction

Let X be a compact Hausdorff space, C(X) be the space of real-valued continuous functions on X. For each $f \in C(X)$, define $||f||_1 = \int_X |f| d\mu$, where μ is an admissible measure defined on X, that is, $\mu(O) > 0$ for every non-empty open set $O \subset X$. Let $C_1(X)$ be the space C(X) equipped with the norm $|| \cdot ||_1$.

Let F be a compact subset of $C_1(X)$ and M be a finite-dimensional linear subspace of $C_1(X)$. Define

$$M(F) = \{g \in M \mid g \le f \text{ for all } f \in F\} = \bigcap_{f \in F} \{g \in M \mid g \le f\},\$$

^{*}Corresponding author

Received March 26, 2012

where $g \leq f$ if and only if $g(x) \leq f(x)$ almost everywhere in X. Denote by d(F, M(F)) := $\inf_{g \in M(F)} \max_{f \in F} ||f - g||_1$ and $C_{M(F)} = \{g \in M(F) \mid \max_{f \in F} ||f - g||_1 = d(F, M(F))\}$. The elements of $C_{M(F)}(F)$ are called one-sided simultaneous best L_1 -approximants of F in M. The set M(F) is a closed convex subset of the finite dimensional subspace M of X. In order to ensure that the set M(F) is non-empty, it is enough to assume that M contains a strictly positive function. In fact, $M(F) \neq \emptyset$ if and only if M contains a positive function. Every bounded set has a one-sided best simultaneous approximation in the closed convex set M(F) of M and the set function $F \to C_{M(F)}(F)$ is continuous on $B[C_1(X)]$ with a condition that the sets $M(\cdot)$ are equal, where $B[C_1(X)]$ is the space of non-empty bounded subsets in the space $C_1(X)$ and $C[C_1(X)]$ the family of non-empty compact subsets in the space $C_1(X)$.

Definition. The Hausdorff metric on $B[C_1(X)]$ is defined by

$$H(A,B) = \max\{\sup_{a \in A} \inf_{b \in B} d(a,b), \sup_{b \in B} \inf_{a \in A} d(a,b)\}.$$

The motivation is the one-sided best approximation of an element, studied by [1] and the parametric approximation in [4].

2. Main results

Theorem 1. Let M and M(F) be as defined above and $g^* \in M(F)$. Then $g^* \in C_{M(F)}(F)$ if and only if $\sup_{g \in M(F)} \int_X g d\mu = \int_X g^* d\mu$. Proof. Assume that $g^* \in C_{M(F)}(F)$. Then, for each $g \in M(F)$, $\max_{f \in F} ||f - g^*||_1 \leq \max_{f \in F} ||f - g||_1$. Hence $\max_{f \in F} \int_X ||f - g^*|| d\mu \leq \max_{f \in F} \int_X ||f - g|| d\mu$. $\Leftrightarrow \max_{f \in F} \int_X f d\mu = \max_{f \in F} \int_X (f - g) d\mu$ $\Leftrightarrow \max_{f \in F} \int_X f d\mu = \int_X g^* d\mu \leq \max_{f \in F} \int_X f d\mu = \int_X g d\mu$. $\Leftrightarrow \int_X g d\mu \leq \int_X g^* d\mu$. Thus $\sup_{g \in M(F)} \int_X g d\mu = \int_X g^* d\mu$. Then, for all $g \in M(F)$, $\max_{f \in F} ||f - g||_1 = \max_{f \in F} \int_X ||f - g|| d\mu = \max_{f \in F} \int_X (f - g) d\mu$

$$= \max_{f \in F} \int_{X} f d\mu - \int_{X} g d\mu \ge \max_{f \in F} \int_{X} f d\mu - \int_{X} g^{*} d\mu = \max_{f \in F} \int_{X} (f - g^{*}) d\mu$$
$$= \max_{f \in F} \int_{X} |f - g^{*}| d\mu = \max_{f \in F} ||f - g^{*}||_{1}. \text{ Hence } g^{*} \in C_{M(F)}(F).$$

Denote

$$Z(f-g):=\{x\in X|f(x)=g(x)\}$$

Theorem 2. Let M be a finite-dimensional subspace of $C_1(X)$. Suppose $\int_X gd\mu \neq 0$ for some $g \in M$ and that there is a $g_0 \in M$ such that $g_0 < f$ on X for all $f \in F$. Let $g^* \in M(F)$. Then $g^* \in C_{M(F)}(F)$ if and only if, for all $g \in M$ with $g \leq 0$ on $\bigcup_{f \in F} Z(f-g^*)$, we have $\int_X gd\mu \leq 0$.

Proof. Let $g^* \in C_{M(F)}(F)$. Then, there is an $h \in M$ such that $\int_X h d\mu > 0$. If $\bigcup_{f \in F} Z(f - g^*) = \emptyset$, then, there is an $\epsilon > 0$ such that $g^* + \epsilon h \leq f$ for each $f \in F$. Hence, $g^* + \epsilon h \in M(F)$ and

$$\int_X (g^* + \epsilon h) d\mu = \int_X g^* d\mu + \epsilon \int_X h d\mu > \int_X g^* d\mu.$$

This contradicts the fact that $g^* \in C_{M(F)}(F)$. Therefore $\bigcup_{f \in F} Z(f - g^*) \neq \emptyset$.

Assume that there is a $g \in M$ with $g \leq 0$ on $\bigcup_{f \in F} Z(f - g^*)$ and $\int_X gd\mu > 0$. Now by hypothesis, there is a $g_0 \in M$ such that $g_0 < f$ on X for each $f \in F$. Then, $\widehat{g} = g^* - g_0 > 0$ on $\bigcup_{f \in F} Z(f - g^*)$. Hence, there is a $\delta > 0$ such that $g - \delta \widehat{g} < 0$ on $\bigcup_{f \in F} Z(f - g^*)$ and $\int_X (g - \delta \widehat{g})d\mu = \int_X gd\mu - \delta \int_X \widehat{g}d\mu > 0$. For each $f \in C_1(X)$, let $J(f) := \{x \in X \mid f(x) < 0\}$. Then $\bigcup_{f \in F} (f - g^*) \subset J(g - \delta \widehat{g})$. The set $X \setminus J(g - \delta \widehat{g})$ is compact. Hence there is a constant m > 0 such that $m \leq f - g^*$ on $X \setminus J(g - \delta \widehat{g})$ and there is a constant M such that $g - \delta \widehat{g} \leq M$ on X. Let $\epsilon = \frac{m}{M}$ and $\widehat{h} = g - \delta \widehat{g}$. Then $g^* + \epsilon \widehat{h} \in M(F)$. Taking integral, we obtain $\int_X g^* d\mu < \int_X \widehat{h} d\mu$, which contradicts $g^* \in C_{m(F)}(F)$.

Conversely, let $g \in M(F)$. Now for all $x \in \bigcup_{f \in F} Z(f - g^*)$, there is an $f \in F$ such that $f(x) = g^*(x)$. Hence $g(x) \leq g^*(x)$. Therefore $g - g^* \leq 0$ on $\bigcup_{f \in F} Z(f - g^*)$. By assumption

 $\int_X (g-g^*)d\mu \leq 0 \text{ which implies that } \int_X gd\mu \leq \int_X g^*d\mu. \text{ Thus, } \sup_{g \in M(F)} \int_X gd\mu = \int_X g^*d\mu \text{ and hence } g^* \in C_{M(F)}(F).$

Lemma 3. [2] Let M be an n-dimensional subspace of C(X) and assume that $\int_X gd\mu \neq 0$ for some $g \in M$. Let K be a closed subset of X with the property that, if $g \in M$ satisfies $g(x) \leq 0$ for all $x \in K$, then $\int_X gd\mu < 0$. Then there exist points $x_1, x_2, \ldots, x_k \in$ K, $1 \leq k \leq n$ and positive numbers $\lambda_1, \lambda_2, \ldots, \lambda_k$ such that $\int_X gd\mu = \sum_{i=1}^k \lambda_i g(x_i)$ for each $g \in M$.

Theorem 4. Let M be an n-dimensional linear subspace of $C_1(X)$ such that $\int_X gd\mu \neq 0$ for some $g \in M$. Assume that there is a $g_0 \in M$ such that $g_0 < f$ for each $f \in F$. Then $g^* \in C_{M(F)}(F)$ if and only if, there are $1 \leq k \leq n$ distinct points $x_1, x_2, \ldots, x_k \in \bigcup_{f \in F} Z(f - g^*)$ and k positive numbers $\lambda_1, \lambda_2, \ldots, \lambda_k$ such that $\int_X gd\mu = \sum_{i=1}^k \lambda_i g(x_i)$ for each $g \in M$.

Proof. Assume $g^* \in C_{M(F)}(F)$. Then, by the above theorem, for each $g \in M$ with $g \leq 0$ on $\bigcup_{f \in F} Z(f - g^*)$, we have $\int_X g d\mu \leq 0$. Let $K = \bigcup_{f \in F} Z(f - g^*)$, then by the lemma, there are points $x_1, x_2, \ldots, x_k \in K$ and positive numbers $\lambda_1, \lambda_2, \ldots, \lambda_k$ such that $\int_X g d\mu = \sum_{i=1}^k \lambda_i g(x_i)$ for each $g \in M$. Conversely, assume there are k distinct points $x_1, x_2, \ldots, x_k \in \bigcup_{f \in F} Z(f - g^*)$ and k positive numbers $\lambda_1, \lambda_2, \ldots, \lambda_k$ such that $\int_X g d\mu = \sum_{i=1}^k \lambda_i g(x_i)$ for each $g \in M$. Then for each $g \in M(F)$, $\int_X g d\mu = \sum_{i=1}^k \lambda_i g(x_i)$ $\leq \sum_{i=1}^k \lambda_i f(x_i)$ for all $f \in F = \sum_{i=1}^k \lambda_i g^*(x_i) = \int_X g^* d\mu$. That is $\int_X g d\mu = \int_X g^* d\mu$ for each $g \in M(F)$. Hence $\sup_{g \in M(F)} \int_X g d\mu = \int_X g^* d\mu$. Therefore $g^* \in C_{M(F)}(F)$. **Theorem 5.** Let M be a finite-dimensional subspace of $C_1(X)$. For any $F, G \in B[C_1(X)]$ with M(F) = M(G) and any $\epsilon > 0$, there exists $\delta > 0$ such that $H(F,G) < \delta$ implies $H(C_{M(F)}(F), C_{M(G)}(G)) < 2\epsilon$.

Proof. For any $\epsilon > 0$, let $0 < \delta < \frac{\epsilon}{2} < \min(d(F, M(F)), d(G, M(G)))$ where $F, G \in B[C_1(X)]$ with M(F) = M(G). Assume $H(F, G) < \delta$. Then, for any $x \in C_1(X), |d(x, F) - d(x, G)| \le \delta$. In fact, for any $u \in F$, there exists $v \in G$ such that $||u - v|| < \delta$. Then $||u - v|| - ||x - v|| \le ||u - v|| < \delta$. Then $||u - x|| \le ||x - v|| + \delta$. Thus $d(x, F) \le d(x, G) + \delta$. Similarly, $d(x, G) \le d(x, F) + \delta$. For any $x \in C_{M(G)}(G), d(x, F) \le d(x, G) + \delta$. Thus $d(M(F), F) \le d(M(G), G) + \delta$. Hence $|d(M(F), F) - d(M(G), G)| \le \delta$. For any $z \in C_{M(F)(F)}$, $d(z, G) \le d(z, F) + \delta = d(M(F), F) + \delta$ $\le d(M(G), G)(1 + \epsilon)$. There exists $w \in C_{M(G)}(G)$ with $||z - w|| \le 2\epsilon$,

so
$$\sup_{z \in C_{M(F)}(F)} \inf_{w \in C_{M(G)}(G)} ||z - w|| \le 2\epsilon$$
. Hence $H(C_{M(F)}(F), C_{M(G)}(G)) \le 2\epsilon$.

References

- [1] A.M Pinkus, On L_1 -Approximation, Cambridge University Press, 1988.
- [2] Sung Ho Park and Hyang Joo Rhee, One-Sided Best Simultaneous L₁-Approximation For a Compact Set, Bull. Korean. Math Soc, 35 (1998) No. 1 pp.127-129.
- [3] Mun Bae Lee, Sung Ho Park and Hyang Joo Rhee, Continuity of One-Sided Best Simultaneous Approximations, Bull. Korean Math. Soc 37 (2000) No.4 pp.743-753.
- [4] S. C Mabizela, Parametric Approximation, Doctoral Dissertation, The Pennsylvania State University, University Park, 1991.