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Abstract. In this paper we prove an existence as well as approximation result for a certain nonlinear generalized

quadratic functional integral equation with maxima. An algorithm for the solutions is developed and it is shown

that the sequence of successive approximations starting with a lower or an upper solution converges monotonically

to the solution of the related quadratic functional integral equation with maxima under some suitable mixed hybrid

conditions. We base our main results on the Dhage iteration principle embodied in a recent hybrid fixed point

theorem of Dhage (2014) in a partially ordered normed linear space.An example illustrating the existence result is

also presented.
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The quadratic integral equations have been a topic of interest since long time because of their

occurrence in the problems of some natural and physical processes of the universe. See Argyros

[2], Deimling [6], Chandrasekher [4] and the references therein. The study gained momentum

after the formulation of fixed point principles in Banach algebras due to Dhage [10],[12]. The

existence results for such equations are generally proved under the mixed Lipschitz and com-

pactness type conditions together with a certain growth condition on the nonlinearities of the

quadratic integral equations. See Dhage [10],[12] and the references therein. The Lipschitz and

compactness hypotheses are considered to be very strong conditions in the theory of nonlinear

differential and integral equations which do not yield any algorithm to determine the numerical

solutions. Therefore, it is of interest to relax or weaken these conditions in the existence and ap-

proximation theory of quadratic integral equations.However, the literature on existence results

for a special class of functional differential equations, namely nonlinear quadratic differential

equations with maxima under weaker partial Lipschitz and partial compactness type conditions

via Dhage iteration method. is not enriched yet, recently, the first authors in [12] ,[13],[14] have

studied the existence results of functional differential equations with maxima. Therefore, it is

admirable to extend this method to nonlinear quadratic integral equations with maxima. This is

the main motivation of the present paper.

In this paper we prove the existence as well as approximations of the positive solutions of a

certain generalized quadratic integral equation with maxima via an algorithm based on succes-

sive approximations under partially Lipschitz and compactness conditions

Given a closed and bounded interval J = [0,T ] of the real line R for some T > 0, we consider

the quadratic functional integral equation (in short GQFIE) with maxima

x(t) = k(t,x(t),X(t))+ [ f (t,x(t),X(t))]
(

a(t)+
∫ t

0
v(t,s)g(s,x(s),X(s))ds

)
(1)

for all t ∈ J, v : J×R→ R and f ,g : J×R×R→ R, are continuous functions, and X(t) =

max0≤η≤t x(η).

By a solution of the GQFIE (1) with maxima we mean a function x ∈ C(J,R) that satisfies

the equation (1) on J, where C(J,R) is the space of continuous real-valued functions defined on

J.
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The GQFIE (1) with maxima is new to the literature . In particular, If f (t,x,y) = 0 for all

t ∈ J and x,y ∈ R the GQFIE (1) with maxima reduces to the nonlinear functional equation with

maxima

x(t) = k(t,x(t),X(t))), t ∈ J, (2)

and if k(t,x,y) = 0 and f (t,x,y) = 1 for all t ∈ J and x,y ∈ R, it is reduced to nonlinear usual

Volterra integral equation with maxima

x(t) = a(t)+
∫ t

0
v(t,s)g(s,x(s),X(s)))ds, t ∈ J. (3)

Therefore, the QFIE (1) is general and the results of this paper include the existence and ap-

proximations results for above nonlinear functional and Volterra integral equations with maxima

as special cases.

The paper is organized as follows. In the following section we give the preliminaries and

auxiliary results needed in the subsequent part of the paper.

2. Preliminary Notes / Materials and Methods

Unless otherwise mentioned, throughout this paper that follows, let E denote a partially or-

dered real normed linear space with an order relation � and the norm ‖ ·‖ in which the addition

and the scalar multiplication by positive real numbers are preserved by � . A few details of a

partially ordered normed linear space appear in Dhage [8], Heikkilä and Lakshmikantham [15]

and the references therein.

We need the following notion and results.

Definition 2.1 : A mapping T : E → E is called isotone or monotone nondecreasing if it

preserves the order relation �, that is, if x � y implies T x � T y for all x,y ∈ E. Similarly,

T is called monotone nonincreasing if x � y implies T x � T y for all x,y ∈ E. Finally, T

is called monotonic or simply monotone if it is either monotone nondecreasing or monotone

nonincreasing on E.

Definition 2.2 : A mapping T : E→E is called partially continuous at a point a∈E if for ε > 0

there exists a δ > 0 such that ‖T x−T a‖< ε whenever x is comparable to a and ‖x−a‖< δ .
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T called partially continuous on E if it is partially continuous at every point of it. It is clear

that if T is partially continuous on E, then it is continuous on every chain C contained in E.

Definition 2.3 : A non-empty subset S of the partially ordered Banach space E is called partially

bounded if every chain C in S is bounded. An operator T on a partially normed linear space E

into itself is called partially bounded if T (E) is a partially bounded subset of E. T is called

uniformly partially bounded if all chains C in T (E) are bounded by a unique constant.

Definition 2.4 : A non-empty subset S of the partially ordered Banach space E is called partially

compact if every chain C in S is a relatively compact subset of E. A mapping T : E→E is called

partially compact if T (E) is a partially relatively compact subset of E. T is called uniformly

partially compact if T is a uniformly partially bounded and partially compact operator on E. T

is called partially totally bounded if for any bounded subset S of E, T (S) is a partially relatively

compact subset of E. If T is partially continuous and partially totally bounded, then it is called

partially completely continuous on E.

Remark 2.1: Suppose that T is a nondecreasing operator on E into itself. Then T is a partially

bounded or partially compact if T (C) is a bounded or relatively compact subset of E for each

chain C in E.

Definition 2.5 : The order relation � and the metric d on a non-empty set E are said to be

compatible if {xn}n∈N is a monotone, that is, monotone nondecreasing or monotone nonincreas-

ing sequence in E and if a subsequence {xnk}n∈N of {xn}n∈N converges to x∗ implies that the

original sequence {xn}n∈N converges to x∗. Similarly, given a partially ordered normed linear

space (E,�,‖ ·‖), the order relation � and the norm ‖ ·‖ are said to be compatible if � and the

metric d defined through the norm ‖ · ‖ are compatible.

Clearly, the set R of real numbers with usual order relation ≤ and the norm defined by the

absolute value function | · | has this property. Similarly, the finite dimensional Euclidean space

Rn with usual componentwise order relation and the standard norm possesses the compatibility

property.

Definition 2.6 : A upper semi-continuous and monotone nondecreasing function ψ : R+→ R+

is called a D-function provided ψ(r) = 0 iff r = 0. Let (E,�,‖ · ‖) be a partially ordered

normed linear space. A mapping T : E → E is called partially nonlinear D-Lipschitz if there
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exists a D-function ψ : R+→ R+ such that

‖T x−T y‖ ≤ ψ(‖x− y‖) (4)

for all comparable elements x,y ∈ E. If ψ(r) = k r, k > 0, then T is called a partially Lipschitz

with a Lipschitz constant k.

Let (E,�,‖ · ‖) be a partially ordered normed linear algebra. Denote

E+ =
{

x ∈ E | x� θ , where θ is the zero element of E
}

and

K = {E+ ⊂ E | uv ∈ E+ for all u,v ∈ E+}. (5)

The elements of K are called the positive vectors of the normed linear algebra E. The

following lemma follows immediately from the definition of the set K and which is often

times used in the applications of hybrid fixed point theory in Banach algebras.

Lemma 2.1 [Dhage [8]]: If u1,u2,v1,v2 ∈K are such that u1 � v1 and u2 � v2, then u1u2 �

v1v2.

Definition 2.7 : An operator T : E→ E is said to be positive if the range R(T ) of T is such

that R(T )⊆K .

Theorem 2.1 [Dhage [8]]: Let
(
E,�,‖ · ‖

)
be a regular partially ordered complete normed

linear algebra such that the order relation � and the norm ‖ · ‖ in E are compatible in every

compact chain of E. Let A ,B : E→K and C : E→ E be three nondecreasing operators such

that

(a) A and C is partially bounded and partially nonlinear D-Lipschitz with D-functions

ψA and ψC respectively,

(b) B is partially continuous and uniformly partially compact, and

(c) MψA (r) + ψC ,< r, r > 0, where M = sup{‖B(C)‖ : C is a chain in E}, and

(d) there exists an element x0 ∈ X such that x0 �A x0 Bx0+C x0 or x0 �A x0 Bx0+C x0.

Then the operator equation

A xBx+C x = x (6)
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has a solution x∗ in E and the sequence {xn} of successive iterations defined by xn+1 =A xn Bxn+

C xn, n = 0,1, . . . , converges monotonically to x∗.

Remark 2.2: The compatibility of the order relation � and the norm ‖ · ‖ in every compact

chain of E holds if every partially compact subset of E possesses the compatibility property

with respect to � and ‖ · ‖. This simple fact has been utilized to prove the main results of this

paper.

3. Results and Discussion

The QFIE (1) is considered in the function space C(J,R) of continuous real-valued functions

defined on J. We define a norm ‖ · ‖ and the order relation ≤ in C(J,R) by

‖x‖= sup
t∈J
|x(t)| (7)

and

x≤ y ⇐⇒ x(t)≤ y(t) ∀ t ∈ J, (8)

respectively.

Clearly, C(J,R) is a Banach algebra with respect to above supremum norm and is also par-

tially ordered w.r.t. the above partially order relation ≤. It is known that the partially ordered

Banach algebra C(J,R) has some nice properties concerning the compatibility property with re-

spect to the norm ‖ · ‖ and the order relation ≤ in certain subsets of of it. The following lemma

in this connection follows by an application of Arzelá-Ascoli theorem.

Lemma 3.1 : Let
(
C(J,R),≤,‖ · ‖

)
be a partially ordered Banach space with the norm ‖ · ‖ and

the order relation ≤ defined by (7) and (8) respectively. Then ‖ · ‖ and ≤ are compatible in

every compact chain C in S.

Proof. Let S be a partially compact subset of C(J,R) and let {xn}n∈N be a monotone nonde-

creasing sequence of points in S. Then we have

x1(t)≤ x2(t)≤ ·· · ≤ xn(t)≤ ·· · , (9)

for each t ∈ J.
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Suppose that a subsequence {xnk}k∈N of {xn}n∈N is convergent and converges to a point x in

S. Then the subsequence {xnk(t)}k∈N of the monotone real sequence {xn(t)}n∈N is convergent.

By monotone characterization, the whole sequence {xn(t)}n∈N is convergent and converges to

a point x(t) in R for each t ∈ J. This shows that the sequence {xn}n∈N converges to x point-wise

on J. To show the convergence is uniform, it is enough to show that the sequence {xn(t)}n∈N

is equicontinuous. Since S is partially compact, every chain or totally ordered set and conse-

quently {xn}n∈N is an equicontinuous sequence by Arzelá-Ascoli theorem. Hence {xn}n∈N is

convergent and converges uniformly to x. As a result ‖ · ‖ and ≤ are compatible in S. This

completes the proof.

We need the following definition in what follows.

Definition 3.1 : A function p ∈ C(J,R) is said to be a lower solution of the GQFIE (1) if it

satisfies

p(t) = k(t, p(t),P(t))+ [ f (t, p(t),P(t))]
(

a(t)+
∫ t

0
v(t,s)g(s, p(s),P(s))ds

)

for all t ∈ J. Similarly, a function q ∈C(J,R) is said to be an upper solution of the GQFIE (1)

with maxima if it satisfies the above inequalities with reverse sign.

We consider the following set of assumptions in what follows:

(H1) f defines a nonnegative function f : J×R×R→ R

(H2) There exists a constant M f > 0 such that 0≤ f (t,x,y)≤M f for all t ∈ J and x,y ∈ R.

(H3) There exists a D-function ψ f such that

0≤ f (t,x1,x2)− f (t,y1,y2)≤ ψ f (max{x1− y1,x1− y1})

for all t ∈ J and x1,x2,y1,y2 ∈ R, x1 ≥ y1, x2 ≥ y2.

(H4) a defines a continuous function a : J→ R+

(H5) v defines a continuous and nonnegative function on J× J

(H6) g(t,x,y) is nondecreasing in x and y for all t ∈ J.

(H7) There exists a constant Mg > 0 such that g(t,x,y)≤Mg for all t ∈ J and x,y ∈ R.

(H8) There exists a constant Mk > 0 such that k(t,x,y)≤Mk for all t ∈ J and x,y ∈ R.
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(H9) There exists a D-function ψk such that

0≤ k(t,x1,x2)− k(t,y1,y2)≤ ψk(max{x1− y1,x1− y1})

for all t ∈ J and x1,x2,y1,y2 ∈ R, x1 ≥ y1, x2 ≥ y2.

(H10) The GQFIE (1) with maxima has a lower solution p ∈C(J,R).

Theorem 3.1 : Assume that hypotheses (H1)-(H10) hold. Furthermore, assume that

(‖a‖+V T Mg)ψ f (r)+ψk(r)< r, r > 0, (10)

then the GQFIE (1) with maxima has a solution x∗ defined on J and the sequence {xn}n∈N of

successive approximations defined by

xn+1(t) = k(t,xn(t),Xn(t))+ [ f (t,xn(t),Xn(t))]
(

a(t)+
∫ t

0
v(t,s)g(s,xn(s),Xn(s))

)
ds, t ∈ J.

(11)

for all t ∈ J, where x0 = p and Xn(t) = max0≤η≤t xn(η), converges monotonically to x∗.

Proof. Set E = C(J,R). Then, from Lemma 3.1, it follows that every compact chain in E

possesses the compatibility property with respect to the norm ‖ · ‖ and the order relation ≤ in

E.

Define two operators A and B on E by

A x(t) = f (t,x(t),X(t)), t ∈ J, (12)

and

Bx(t) = a(t)+
∫ t

t0
v(t,s)g(s,x(s),X(s))ds, t ∈ J, (13)

and

C x(t) = k(t,x(t),X(t)), t ∈ J, (14)

From the continuity of the integral and the hypotheses (H1)-(H10), it follows that A ,B and C

define the maps A ,B : E →K and C : E → E. Now by definitions of the operators A , B,

and C the GQFIE (1) is equivalent to the operator equation

A x(t)Bx(t)+C x(t) = x(t), t ∈ J. (15)
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We shall show that the operators A , B and C satisfy all the conditions of Theorem 2.1. This is

achieved in the series of following steps.

Step I: A , B and C are nondecreasing on E.

Let x,y ∈ E be such that x ≥ y. Then x(t)≥ y(t) for all t ∈ J. Since y is continuous on [a, t],

there exists a η∗ ∈ [a, t] such that y(η∗) = max
a≤η≤t

y(η). By definition of ≤, one has x(η∗) ≥

y(η∗). Consequently, we obtain

X(t) = max
a≤η≤t

x(η) = x(η∗)≥ y(η∗) = max
a≤η≤t

y(η) = Y (t)

for each t ∈ J. Then by hypothesis (H2), we obtain

A x(t) = f (t,x(t),X(t))≥ f (t,y(t),Y (t))) = A y(t),

and

C x(t) = k(t,x(t),X(t))≥ k(t,y(t),Y (t))) = C y(t),

for all t ∈ J. This shows that A and C are nondecreasing operators on E into E. Similarly,

using hypothesis (H5),

Bx(t) = a(t)+
∫ t

t0
v(t,s)g(s,x(s),X(s)) ds

≥ a(t)+
∫ t

t0
v(t,s)g(s,y(s),Y (s)) ds

= By(t)

for all t ∈ J. Hence, it is follows that the operator B is also a nondecreasing operator on E into

itself. Thus, A , B and C are nondecreasing positive operators on E into itself.

Step II: A and C are partially bounded and partially D-Lipschitz on E.

Let x ∈ E be arbitrary. Then by (H2),

|A x(t)| ≤
∣∣ f (t,x(t),X(t))

∣∣≤M f ,

for all t ∈ J. Taking supremum over t, we obtain ‖A x‖ ≤ M f and so, A is bounded . This

further implies that A is partially bounded on E.
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Next, let x,y ∈ E be such that x≥ y. Then, we have

|x(t)− y(t)| ≤ |X(t)−Y (t)|

and that

|X(t)−Y (t)| = X(t)−Y (t)

= max
t0≤η≤t

x(η)− max
t0≤η≤t

y(η)

≤ max
t0≤η≤t

[x(η)− y(η)]

= max
t0≤η≤t

|x(η)− y(η)|

≤ ‖x− y‖

for each t ∈ J. As a result, by hypothesis (A3),

|A x(t)−A y(t)| =
∣∣ f (t,x(t),X(t))− f (t,y(t),Y (t))

∣∣
≤ ψ f (max{|x(t)− y(t)| |X(t)−Y (t)|})

≤ ψ f (‖x− y‖),

for all t ∈ J. Taking supremum over t, we obtain

‖A x−A y‖ ≤ ψ f (‖x− y‖)

for all x,y ∈ E with x≥ y. Similarly, by hypothesis (A3)

‖C x−C y‖ ≤ ψk(‖x− y‖)

for all x,y ∈ E with x≥ y. Hence A and C are partially nonlinear D-Lipschitz operators on E

which further implies that A and C are partially continuous on E .

Step III: B is a partially continuous operator on E.

Let {xn}n∈N be a sequence in a chain C of E such that xn → x for all n ∈ N. Then, by

dominated convergence theorem, we have
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lim
n→∞

Bxn(t) = a(t)+
∫ t

t0
v(t,s)g(s,xn(s),Xn(s)) ds

≥ a(t)+
∫ t

t0
[ lim
n→∞

v(t,s)g(s,xn(s),Xn(s))] ds

= a(t)+
∫ t

t0
v(t,s)g(s,x(s),X(s)) ds

= Bx(t),

for all t ∈ J. This shows that Bxn converges monotonically to Bx pointwise on J.

Next, we will show that {Bxn}n∈N is an equicontinuous sequence of functions in E. Let

t1, t2 ∈ J be arbitrary with t1 < t2. Then

∣∣∣Bxn(t2)−Bxn(t1)
∣∣∣ ≤ |a(t1)−a(t2)|

+
∣∣∣∫ t2

0
v(t1,s)g(s,xn(s),Xn(s))ds−

∫ t1

0
v(t1,s)g(s,xn(s),Xn(s))ds

∣∣∣
≤ |a(t1)−a(t2)|+

∣∣∣∫ t2

0
v(t2,s)g(s,xn(s),Xn(s))ds

−
∫ t1

0
v(t2,s)g(s,xn(s),Xn(s))ds

∣∣∣
+

∣∣∣∫ t2

0
v(t1,s)g(s,xn(s),Xn(s))ds−

∫ t1

0
v(t1,s)g(s,xn(s),Xn(s))ds

∣∣∣
≤ |a(t1)−a(t2)|+

∣∣∣∫ t2

0
|v(t2,s)− v(t1,s)||g(s,xn(s),Xn(s))|ds

∣∣∣
+

∣∣∣∫ t2

t1
|v(t1,s)||g(s,xn(s),Xn(s))|ds

∣∣∣
≤

∣∣∣∣a(t1)−a(t2)|+
∣∣∣∫ T

0
|v(t2,s)− v(t1,s)|Mgds

∣∣∣
+ V Mg|t2− t1| (16)

uniformly for all n ∈ N. This shows that the convergence Bxn→Bx is uniform and hence B

is partially continuous on E.
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Step IV: B is uniformly partially compact operator on E.

Let C be an arbitrary chain in E. We show that B(C) is a uniformly bounded and equicon-

tinuous set in E. First we show that B(C) is uniformly bounded. Let y ∈B(C) be any element.

Then there is an element x ∈C be such that y = Bx. Now, by hypothesis (A5),

|y(t)| ≤ a(t)+
∫ t

0
v(t,s)|g(s,x(s),X(s))|ds

≤ ‖a‖+V MgT

≤ r

for all t ∈ J. Taking the supremum over t, we obtain ‖y‖ ≤ ‖Bx‖ ≤ r for all y ∈B(C). Hence,

B(C) is a uniformly bounded subset of E. Moreover, ‖B(C)‖ ≤ r for all chains C in E.

Hence, B is a uniformly partially bounded operator on E. Next, we will show that B(C) is an

equicontinuous set in E. Let t1, t2 ∈ J be arbitrary with t1 < t2.Then, for any y ∈B(C), one has,

∣∣y(t2)− y(t1)
∣∣ =

∣∣∣Bx(t2)−Bx(t1)
∣∣∣

≤ |a(t1)−a(t2)|+
∣∣∣∫ t2

0
v(t1,s)g(s,x(s),X(s))ds−

∫ t1

0
v(t1,s)g(s,x(s),X(s))ds

∣∣∣
≤ |a(t1)−a(t2)|+

∣∣∣∫ t2

0
v(t2,s)g(s,x(s),X(s))ds−

∫ t2

0
v(t1,s)g(s,x(s),X(s))ds

∣∣∣
+

∣∣∣∫ t2

0
v(t1,s)g(s,x(s),X(s))ds−

∫ t1

0
v(t1,s)g(s,x(s),X(s))ds

∣∣∣
≤ |a(t1)−a(t2)|+

∣∣∣∫ t2

0
|v(t2,s)− v(t1,s)||g(s,x(s),X(s))|ds

∣∣∣
+

∣∣∣∫ t2

t1
|v(t1,s)||g(s,x(s),X(s))|ds

∣∣∣
≤ |a(t1)−a(t2)|+

∣∣∣∫ t2

t1
|g(s,x(s),X(s))|ds

∣∣∣
≤

∣∣∣∣a(t1)−a(t2)|+
∣∣∣∫ T

0
|v(t2,s)− v(t1,s)|Mgds

∣∣∣
+ V Mg|t2− t1|

→ 0 as t2− t1→ 0
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uniformly for all y ∈B(C).Hence B(C) is an equicontinuous subset of E. Now, B(C) is a

uniformly bounded and equicontinuous set of functions in E, so it is compact. Consequently,

B is a uniformly partially compact operator on E into itself.

Step V: p satisfies the operator inequality p≤A pBp+C p.

By hypothesis (H10), the GQFIE (1) has a lower solution p defined on J. Then, we have

p(t) = k(t, p(t),P(t))+ [ f (t, p(t),P(t))]
(

a(t)+
∫ t

0
v(t,s)g(s, p(s),P(s))ds

)
(17)

for all t ∈ J. From the definitions of the operators A , B and C it follows that p(t)≤A p(t)Bp(t)+

C p(t) for all t ∈ J. Hence p≤A pBp+C p.

Step VI: The D-functions ψA and ψC satisfy the growth condition MψA (r)+ψC < r, for

r > 0.

Finally, the D-function ψA of the operator A satisfy the inequality given in hypothesis (d)

of Theorem 2.1, viz.,

MψA (r)+ψC ≤ (‖a‖+V MgT )ψ f (r)+ψk(r)< r

for all r > 0.

Thus A , B and C satisfy all the conditions of Theorem 2.1 and we conclude that the oper-

ator equation A xBx+C x = x has a solution. Consequently the GQFIE(1) has a solution x∗

defined on J. Furthermore, the sequence {xn}n∈N of successive approximations defined by (11)

converges monotonically to x∗. This completes the proof.

Example
Given a closed and bounded interval J = [0,1], consider the GQFIE,

x(t) =
1
4
[
4+ tan−1 x(t)+ tan−1 X(t)

]( 1
t +1

+
∫ t

0

1
t2 +1

· [1+ tanhx(s)]
4

ds
)

+
1
4
[tan−1 x(t)+ tan−1 X(t)] (18)

for t ∈ J, where X(t) = max0≤η≤t x(η).
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Here, q(t) = t
t+1 and v(t,s) = 1

t2+1 which are continuous and ‖q(t)‖= 1
2 and V=1. Similarly,

the functions k , f and g are defined by k(t,x,y) = 1
4 [tan−1 x(t)+ tan−1 y(t)]

f (t,x,y) =
1
4
[
4+ tan−1 x(t)+ tan−1 y(t)

]
and

g(t,x,y) = g(t,x) =
1+ tanhx

4
.

The function f satisfies the hypothesis (H3) with ψ f (r) = 1
2

r
1+η2 for each 0 < η < r. To see

this, we have

0≤ f (t,x1,x2)− f (t,y1,y2)

≤ 1
4
· 1

1+η2 · (x1− y1)+
1
4
· 1

1+η2 · (x2− y2)

≤ 1
2
· 1

1+η2 ·max{x1− y1 , x2− y2}

for all x1,y1,x2,y2 ∈ R, x1 ≥ y1 and x2 > η > y2. Moreover, the function f is nonnegative and

bounded on J×R×R with bound M f = 2 and so the hypothesis (H2) is satisfied.

Similarly,the function k satisfies the hypothesis (H9) ψk(r) = 1
2

r
1+η2 for each 0 < η < r. To

see this, we have

0≤ k(t,x1,x2)− k(t,y1,y2)

≤ 1
4 ·

1
1+η2 · (x1− y1)+

1
4 ·

1
1+η2 · (x2− y2)

≤ 1
2 ·

1
1+η2 ·max{x1− y1 , x2− y2}

for all x1,y1,x2,y2 ∈ R, x1 ≥ y1 and x2 > η > y2. Moreover, the function k is bounded on

J×R×R with bound Mk =
π

4 and so the hypothesis (H9) is satisfied. Also we have

(‖a‖+V T Mg)ψ f (r)+ψk(r)< r, r > 0,

Again, since g is nonnegative and bounded on J×R×R with bound Mg =
1
2 , the hypothesis

(H5) holds. Furthermore, g(t,x,y) = g(t,x) is nondecreasing in x and y for all t ∈ J, and thus

hypothesis (H6) is satisfied.
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Thus, condition (10) of Theorem 3.1 is held. Finally, the GQFIE (1) has a lower solution

p(t) = 0 on J. Thus all the hypotheses of Theorem 3.1 are satisfied. Hence we apply Theorem

2.1 and conclude that the GQFIE (1) has a solution x∗ defined on J and the sequence {xn}n∈N

defined by

xn+1(t) =
1
4
[
4+ tan−1 xn(t)+ tan−1 Xn(t)

]( 1
t +1

+
∫ t

0

1
t2 +1

[1+ tanhx(s)]
4

ds
)

+
1
4
[tan−1 xn(t)+ tan−1 Xn(t)] (19)

for all t ∈ J, where x0 = 0, converges monotonically to x∗.
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