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Abstract. In this article we introduce the sequence space Vσ (M, p,r,4u
v), where u ∈ N, M is an Orlicz function,

p = (pm) is any sequence of strictly positive real numbers, v = (vk) is any fixed sequence of non zero complex

numbers and r ≥ 0. We study some of the properties and inclusion relations that arise on the said space.
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1. Introduction

Let N, R and C be the sets of all natural, real and complex numbers respectively.

We write

ω = {x = (xk) : xk ∈ R or C },

the space of all real or complex sequences.
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Let `∞, c and c0 denote the Banach spaces of bounded, convergent and null sequences respec-

tively.

The following subspaces of ω were first introduced and discussed by Maddox [15-16].

`(p) = {x ∈ ω : ∑
k
|xk|pk < ∞},

`∞(p) = {x ∈ ω : sup
k
|xk|pk < ∞},

c(p) = {x ∈ ω : lim
k
|xk− l|pk = 0, for some l ∈C },

c0(p) = {x ∈ ω : lim
k
|xk|pk = 0},

where p = (pk) is a sequence of striclty positive real numbers.

The concept of paranorm is closely related to linear metric spaces.It is a generalization of that

of absolute value. (see [16])

Let X be a linear space. A function g : X −→ R is called paranorm, if for all x,y,z ∈ X ,

(PI) g(x) = 0 i f x = θ ,

(P2) g(−x) = g(x),

(P3) g(x+ y)≤ g(x)+g(y),

(P4) If (λn) is a sequence of scalars with λn→ λ (n→ ∞) and xn,a ∈ X with xn→ a (n→ ∞) ,

in the sense that g(xn−a)→ 0 (n→ ∞) , in the sense that g(λnxn−λa)→ 0 (n→ ∞).

An Orlicz function is a function M : [0,∞)→ [0,∞), which is continuous, non-decreasing and

convex with M(0) = 0, M(x)> 0 for x > 0 and M(x)→ ∞ as x→ ∞.

Lindenstrauss and Tzafriri[13] used the idea of Orlicz functions to construct the sequence space

`M = {x ∈ ω :
∞

∑
k=1

M(
|xk|
ρ

)< ∞, for some ρ > 0}

The space `M is a Banach space with the norm

||x||= inf{ρ > 0 :
∞

∑
k=1

M(
|xk|
ρ

)≤ 1}

The space `M is closely related to the space `p which is an Orlicz sequence space with M(x)= xp

for 1≤ p < ∞.
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An Orlicz function M is said to satisfy42 condition for all values of x if there exists a constant

K > 0 such that M(Lx)≤ KLM(x) for all values of L > 1.

A sequence space E is said to be solid or normal if (xk) ∈ E implies (αkxk) ∈ E for all sequence

of scalars (αk) with |αk|< 1 for all k ∈ N.

For Orlicz function and related results see ([2-4], [6], [22]).

Let σ be an injection on the set of positive integers N into itself having no finite orbits and T be

the operator defined on `∞ by T (xk) = (xσ(k)).

A positive linear functional Φ, with ||Φ||= 1, is called a σ -mean or an invariant mean if Φ(x) =

Φ(T x) for all x ∈ `∞.

A sequence x is said to be σ -convergent, denoted by x∈Vσ , if Φ(x) takes the same value, called

σ − limx, for all σ -means Φ. We have

Vσ = {x = (xk) :
∞

∑
m=1

tm,n(x) = L uniformly in n, L = σ − limx},

where for m≥ 0,n > 0.

tm,n(x) =
xk + xσ(k)+ .....+ xσm(k)

m+1
,and t−1,n = 0.

where σm(k) denotes the mth iterate of σ at n. In particular, if σ is the translation, a σ -mean is

often called a Banach limit and Vσ reduces to f, the set of almost convergent sequences.

Subsequently the spaces of invariant mean have been studied by various authors. See ([1], [14],

[20-21], [23], [24]).

The idea of Difference sequence sets

X4 = {x = (xk) ∈ ω :4x = (xk− xk+1) ∈ X},
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where X = `∞, c or c0 was introduced by Kizmaz [12].

Kizmaz [12] defined the sequence spaces,

`∞(4) = {x = (xk) ∈ ω : (4xk) ∈ `∞},

c(4) = {x = (xk) ∈ ω : (4xk) ∈ c},

c0(4) = {x = (xk) ∈ ω : (4xk) ∈ c0},

where4x = (xk− xk+1). These are Banach spaces with the norm

||x||4 = |x1|+ ||4x||∞.

After then Mikael [17] defined the sequence spaces :

`∞(42) = {x = (xk) ∈ ω : (42xk) ∈ `∞},

c(42) = {x = (xk) ∈ ω : (42xk) ∈ c},

c0(42) = {x = (xk) ∈ ω : (42xk) ∈ c0},

and showed that these are Banach spaces with norm

||x||4 = |x1|+ |x2|+ ||42x||∞.

After then Mikael and R. Colak [18] defined the sequence spaces

`∞(4m) = {x = (xk) ∈ ω : (4mxk) ∈ `∞},

c(4m) = {x = (xk) ∈ ω : (4mxk) ∈ c},

c0(4m) = {x = (xk) ∈ ω : (4mxk) ∈ c0},

where m ∈ N,

40x = (xk),

4x = (xk− xk+1),

4mx = (4m−1xk−4m−1xk+1),

and so that

4mxk =
m

∑
i=0

(−1)i

m

i

 xk+i.
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and showed that these are Banach spaces with the norm

||x||4 =
m

∑
i=1
|xi|+ ||4mx||∞.

Esi and Isik [10] defined the sequence spaces

`∞(4m
v ,s, p) = {x = (xk) ∈ ω : sup lim

k
k−s|4m

v xk|pk < ∞,s≥ 0},

c(4m
v ,s, p) = {x = (xk) ∈ ω : k−s|4m

v xk−L|pk → 0(k→ ∞),s≥ 0, for some L},

c0(4m
v ,s, p) = {x = (xk) ∈ ω : k−s|4m

v xk|pk → 0(k→ ∞),s≥ 0},

where p = (pk) is a sequence of striclty positive real numbers, v = (vk) is any fixed sequence of

non zero complex numbers, m ∈ N is a fixed number,

40
vxk = (vkxk), 4vxk = (vkxk− vk+1xk+1)

and

4m
v xk = (4m−1

v xk−4m−1
v xk+1)

and so that

4m
v xk =

m

∑
i=0

(−1)i

m

i

 vk+ixk+i.

When s=0, m=1, v=(1,1,1,.......) and pk = 1 for all k ∈ N, they are just `∞(4),c(4) and c0(4)

defined by Kizmaz[12].

When s=0 and pk = 1 for all k ∈ N, they are the following sequence spaces defined by Mikael

and Esi [19]

`∞(4m
v ) = {x = (xk) ∈ ω : (4m

v xk) ∈ `∞},

c(4m
v ) = {x = (xk) ∈ ω : (4m

v xk) ∈ c},

c0(4m
v ) = {x = (xk) ∈ ω : (4m

v xk) ∈ c0}.

For difference sequences see([3-12], [17], [18], [19]).

Recently Ebadullah[6] introduced and studied the sequence space

Vσ (M, p,r) = {x = (xk) :
∞

∑
m=1

1
mr [M(

|tm,n(x)|
ρ

)]pm < ∞ uniformly in n, ρ > 0}.
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Where M is an Orlicz function, p = (pm) is any sequence of strictly positive real numbers and

r ≥ 0 .

Later on Ebadullah[9] introduced and studied the difference sequence space

Vσ (M, p,r,4u) = {x = (xk) :
∞

∑
m=1

1
mr [M(

|tm,n(4ux)|
ρ

)]pm < ∞ uniformly in n, ρ > 0}.

Where M is an Orlicz function, u∈N, p= (pm) is any sequence of strictly positive real numbers

and r ≥ 0 .

When u=1 we have the following sequence space defined in [7]

Vσ (M, p,r,4) = {x = (xk) :
∞

∑
m=1

1
mr [M(

|tm,n(4x)|
ρ

)]pm < ∞ uniformly in n, ρ > 0}.

When u=2 we have the following sequence space defined in[8]

Vσ (M, p,r,42) = {x = (xk) :
∞

∑
m=1

1
mr [M(

|tm,n(42x)|
ρ

)]pm < ∞ uniformly in n, ρ > 0}.

2. Main results

In this article we introduce the sequence space

Vσ (M, p,r,4u
v) = {x = (xk) :

∞

∑
m=1

1
mr [M(

|tm,n(4u
vx)|

ρ
)]pm < ∞ uniformly in n, ρ > 0}.

Where M is an Orlicz function, u ∈ N, p = (pm) is any sequence of strictly positive real num-

bers, v = (vk) is any fixed sequence of non zero complex numbers and r ≥ 0 .

Now we define the sequence spaces as follows;

For M(x) = x we get

Vσ (p,r,4u
v) = {x = (xk) :

∞

∑
m=1

1
mr |tm,n(4u

vx)|pm < ∞ uniformly in n}
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For pm = 1, for all m, we get

Vσ (M,r,4u
v) = {x = (xk) :

∞

∑
m=1

1
mr [M(

|tm,n(4u
vx)|

ρ
)]< ∞ uniformly in n, ρ > 0}

For r = 0 we get

Vσ (M, p,4u
v) = {x = (xk) :

∞

∑
m=1

[M(
|tm,n(4u

vx)|
ρ

)]pm < ∞ uniformly in n, ρ > 0}

For M(x) = x and r=0 we get

Vσ (p,4u
v) = {x = (xk) :

∞

∑
m=1
|tm,n(4u

vx)|pm < ∞ uniformly in n, ρ > 0}

For pk = 1, for all m and r=0, we get

Vσ (M,4u
v) = {x = (xk) :

∞

∑
m=1

[M(
|tm,n(4u

vx)|
ρ

)]< ∞ uniformly in n, ρ > 0}

For M(x) = x, pm = 1, for all m and r=0, we get

Vσ (4u
vx) = {x = (xk) :

∞

∑
m=1
|tm,n(4u

vx)|< ∞ uniformly in n}.

Theorem 2.1. The sequence space Vσ (M, p,r,4u
v) is a linear space over the field C of complex

numbers.

Proof. Let x,y∈Vσ (M, p,r,4u
v) and α,β ∈C then there exists positive numbers ρ1 and ρ2 such

that

∞

∑
m=1

1
mr [M(

|tm,n(4u
vx)|

ρ1
)]pm < ∞,

and
∞

∑
m=1

1
mr [M(

|tm,n(4u
vy)|

ρ2
)]pm < ∞

uniformly in n.

Define ρ3 = max(2|α|ρ1, 2|β |ρ2).
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Since M is non decreasing and convex we have

∞

∑
m=1

1
mr [M(

|αtm,n(4u
vx)+β tm,n(4u

vy)|
ρ3

)]pm

≤
∞

∑
m=1

1
mr [M(

|αtm,n(4u
vx)|

ρ3
+
|β tm,n(4u

vy)|
ρ3

)]pm

≤
∞

∑
m=1

1
mr

1
2
[M(

tm,n(4u
vx)

ρ1
)+M(

tm,n(4u
vy)

ρ2
)]< ∞

uniformly in n.

This proves that Vσ (M, p,r,4u
v) is a linear space over the field C of complex numbers.

Theorem 2.2. For any Orlicz function M and a bounded sequence p = (pm) of strictly positive

real numbers, Vσ (M, p,r,4u
v) is a paranormed space with

g(x) = inf
n≥1
{ρ

pn
H : (

∞

∑
m=1

1
mr [M(

|tm,n(4u
vx)|

ρ
)]pm)

1
H ≤ 1, uniformly in n}

where H = max(1, suppm).

Proof. It is clear that g(4u
vx) = g(−4u

vx).

Since M(0) = 0, we get

inf{ρ
pm
H } = 0, for x = 0

Now for α=β=1, we get

g(4u
vx+4u

vy)≤ g(4u
vx)+g(4u

vy).

For the continuity of scalar multiplication let l 6= 0 be any complex number. Then by the defi-

nition we have

g(l4u
vx) = inf

n≥1
{ρ

pn
H : (

∞

∑
m=1

1
mr [M(

|tm,n(l4u
vx)|

ρ
)]pm)

1
H ≤ 1, uniformly in n}

g(l4u
vx) = inf

n≥1
{(|l|s)

pn
H : (

∞

∑
m=1

1
mr [M(

|tm,n(l4u
vx)|

(|l|s)
)]pm)

1
H ≤ 1, uniformly in n}
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where s = ρ

|l| .

Since |l|pm ≤ max(1,|l|H), we have

g(l4u
vx)≤ max(1, |l|H) inf

n≥1
{s

pn
H : (

∞

∑
m=1

1
mr [M(

|tm,n(4u
vx)|

(|l|s)
)]pm)

1
H ≤ 1, uniformly in n}

g(4u
v lx)≤ max(1, |l|H)g(4u

vx)

Therefore g(4u
vx) converges to zero when g(4u

vx) converges to zero in Vσ (M, p,r,4u
v).

Now let x be fixed element in Vσ (M, p,r,4u
v). There exists ρ > 0 such that

g(4u
vx) = inf

n≥1
{ρ

pn
H : (

∞

∑
m=1

1
mr [M(

|tm,n(4u
vx)|

ρ
)]pm)

1
H ≤ 1, uniformly in n}.

Now

g(l4u
vx) = inf

n≥1
{ρ

pn
H : (

∞

∑
m=1

1
mr [M(

|tm,n(l4u
vx)|

ρ
)]pm)

1
H ≤ 1, uniformly in n}→ 0 as l→ 0.

This completes the proof.

Theorem 2.3. Suppose that 0 < pm < tm < ∞ for each m ∈ N and r > 0. Then

(a) Vσ (M, p,4u
v)⊆Vσ (M, t,4u

v).

(b) Vσ (M,4u
v)⊆Vσ (M,r,4u

v)

Proof.(a) Suppose that x ∈Vσ (M, p,4u
v).

This implies that [M(
|ti,n(4u

vx)|
ρ

)]pm)≤ 1

for sufficiently large value of i, say i≥ m0 for some fixed m0 ∈ N.

Since M is non decreasing, we have

∞

∑
m=m0

[M(
|ti,n(4u

vx)|
ρ

)]tm ≤
∞

∑
m=m0

[M(
|ti,n(4u

vx)|
ρ

)]pm < ∞.
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Hence x ∈Vσ (M, t,4u
v).

(b) The proof is trivial.

Corollary 2.4. 0 < pm ≤ 1 for each m, then Vσ (M, p,4u
v)⊆Vσ (M,4u

v)

If pm ≥ 1 for all m , then Vσ (M,4u
v)⊆Vσ (M, p,4u

v).

Theorem 2.5. The sequence space Vσ (M, p,r,4u
v) is solid.

Proof. Let x ∈Vσ (M, p,r,4u
v). This implies that

∞

∑
m=1

1
mr [M(

|tm,n(4u
vx)|

ρ
)]pm < ∞.

Let αm be a sequence of scalars such that |αm| ≤ 1 for all m ∈ N. Then the result follows from

the following inequality.

∞

∑
m=1

1
mr [M(

|αmti,n(4u
vx)|

ρ
)]pm ≤

∞

∑
m=1

1
mr [M(

|ti,n(4u
vx)|

ρ
)]pm < ∞.

Hence αx ∈Vσ (M, p,r,4u
v) for all sequence of scalars (αm) with |αm| ≤ 1 for all m ∈ N when-

ever x ∈Vσ (M, p,r,4u
v).

Corollary 2.6. The sequence space Vσ (M, p,r,4u
v) is monotone.

Theorem 2.7. Let M1,M2 be Orlicz function satisfying42 condition and

r,r1,r2 ≥ 0. Then we have

(a) If r > 1 then Vσ (M1, p,r,4u
v)⊆Vσ (M0M1, p,r,4u

v),

(b) Vσ (M1, p,r,4u
v)∩Vσ (M2, p,r,4u

v)⊆Vσ (M1 +M2, p,r,4u
v),

(c) If r1 ≤ r2 then Vσ (M, p,r1,4u
v)⊆Vσ (M, p,r2,4u

v).

Proof. (a) Since M is continuous at 0 from right, for ε > 0 there exists 0 < δ < 1 such that

0≤ c≤ δ implies M(c)< ε .
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If we define

I1 = {m ∈ N : M1(
|tm,n(4u

vx)|
ρ

)≤ δ for some ρ > 0},

I2 = {m ∈ N : M1(
|tm,n(4u

vx)|
ρ

)> δ for some ρ > 0},

when

M1(
|tm,n(4u

vx)|
ρ

)> δ

we get

M(M1(
|tm,n(4u

vx)|
ρ

))≤ {2M(1)
δ
}M1(

|tm,n(4u
vx)|

ρ
)

Hence for x ∈Vσ (M1, p,r,4u
v) and r > 1

∞

∑
m=1

1
mr [M0M1(

|tm,n(4u
vx)|

ρ
)]pm = ∑

m∈I1

1
mr [M0M1(

|tm,n(4u
vx)|

ρ
)]pm + ∑

m∈I2

1
mr [M0M1(

|tm,n(4u
vx)|

ρ
)]pm .

∞

∑
m=1

1
mr [M0M1(

|tm,n(4u
vx)|

ρ
)]pm ≤ max(εh,εH)

∞

∑
m=1

1
mr +max({2M1

δ
}h,{2M1

δ
}H)

where 0 < h = inf pm ≤ pm ≤ H = sup
m

pm < ∞

(b)The proof follows from the following inequality

1
mr [(M1 +M2)(

|tm,n(4u
vx)|

ρ
)]pm ≤C

1
mr [M1(

|tm,n(4u
vx)|

ρ
)]pm +C

1
mr [M2(

|tm,n(4u
vx)|

ρ
)]pm

(c)The proof is straightforward.

Corollary 2.8. Let M be an Orlicz function satisfying42 condition. Then we have

(a) If r > 1 then Vσ (p,r,4u
v)⊆Vσ (M, p,r,4u

v),

(b) Vσ (M, p,4u
v)⊆Vσ (M, p,r,4u

v),

(c) Vσ (p,4u
v)⊆Vσ (p,r,4u

v),
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(d) Vσ (M,4u
v)⊆Vσ (M,r,4u

v).

Proof. The proof is straightforward.
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