ON (L,M)-FUZZY SOFT TOPOLOGICAL SPACES

O. R. SAYED1, E. ELSANOUSY2, Y. H. RAGHP2, YONG CHAN KIM3,*

1Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt
2Department of Mathematics, Faculty of Science, Sohag University, Sohag, 82524, Egypt
3Department of Mathematics, Gangneung-Wonju National University, Gangneung, 25457, Korea

Copyright © 2017 Sayed, Elsanousy, Raghp and Kim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, the concepts of (L,M)-fuzzy soft topological spaces, (L,M)-fuzzy soft base and (L,M)-fuzzy soft filter spaces were introduced and their properties were studied, where L be a completely distributive lattice with 0 and 1 elements and M be a strictly two-sided, commutative quantale lattice. Also, the relationships between these concepts were investigated.

Keywords: (L,M)-fuzzy soft topological spaces; (L,M)-fuzzy soft base; (L,M)-fuzzy soft filter spaces.

2010 AMS Subject Classification: 54A40, 03E72, 03G10, 06A15.

1. Introduction

In 1999, D. Molodtsov [29] initiated the theory of soft sets as a new mathematical tool for dealing with uncertainties. Also, he applied this theory to several directions (see, for example, [30],[31],[32]). The soft set theory has been applied to many different fields (see, for example, [1],[2],[6],[7],[10],[11], [21],[27],[33],[44],[39],[45]). Later, some researchers (see, for
example, [3], [8], [19], [20], [28], [34], [40], [46]) introduced and studied the notion of soft
topological spaces.

Šostak introduced a new definition of fuzzy topology in 1985 [41], which we will call”fuzzy
topology on Šostak sense.” According to Šostak [41], these definitions, a fuzzy topology is a
crisp subfamily of family of fuzzy sets and fuzziness in the concept of openness of a fuzzy set
has not been considered, which seems to be a drawback in the process of fuzzification of the
concept of topological spaces.

In this paper, we introduce the concepts of \((L,M)\)-fuzzy soft topological spaces and \((L,M)\)-
fuzzy soft filter spaces in Šostak sense. We study their properties and discuss the relationships
between these concepts.

2. Preliminaries

Definition 2.1 [13]. Let \((L,\leq)\) be a poset.

1. L is called a lattice, if \(a \lor b \in L, a \land b \in L\) for any \(a, b \in L\).
2. L is called a complete lattice, if \(\lor S \in L, \land S \in L\) for any \(S \subseteq L\).
3. L is called distributive, if \(a \lor (b \land c) = (a \lor b) \land (a \lor c), a \land (b \lor c) = (a \land b) \lor (a \land c)\) for
any \(a, b, c \in L\).
4. L is called a complete distributive lattice (resp. a distributive lattice), if L is a complete
lattice (resp. a lattice) and distributive.

Definition 2.2 [13]. Let L be a lattice with top element \(1_L\) and bottom element \(0_L\) and let
\(a, b \in L\). Then b is called a complement element of a, if \(a \lor b = 1_L, a \land b = 0_L\). If \(a \in L\) has a
complement element, then it is unique. We denote the complement element of a by \(a'\).

Definition 2.3 [13]. Let \((L,\leq)\) be a poset. Then

1. L is called a Boolean lattice, if (i) L is a distributive lattice; (ii) L has 0\(_L\) and 1\(_L\); (iii) each
 \(a \in L\) has the complement \(a' \in L\).
2. L is called a complete Boolean lattice, if (i) L is a complete distributive lattice; (ii) L has
 0\(_L\) and 1\(_L\); (iii) each \(a \in L\) has the complement \(a' \in L\).
Definition 2.4 [14],[15],[35],[42]. A triple \((L, \leq, \odot)\) is called a strictly two-sided commutative quantale (stsc-quantale, for short) if and only if it satisfies the following conditions:

1. \((L, \leq, \lor, \land, 1, 0)\) is a completely distributive lattice where 1 is the universal upper bound and 0 is the universal lower bound.
2. \((L, \odot)\) is a commutative semigroup.
3. \(x = x \odot 1\) for each \(x \in L\).
4. \(\odot\) is distributive over arbitrary joins, i.e. \((\bigvee_{i \in \Gamma} a_i) \odot b = \bigvee_{i \in \Gamma} (a_i \odot b)\).

Let \((L, \leq, \odot)\) be a stsc-quantale. Then for each \(x, y \in L\) we define \((x \odot y) \leq z \Longleftrightarrow x \leq (y \rightarrow z)\). The it satisfies Galois correspondence. i.e. \((x \odot y) \leq z\) if and only if \(x \leq (y \rightarrow z)\).

Definition 2.5 [37]. Let \(E\) be a set of parameters, \(X\) be an initial universe. A pair \((f, E)\) is called a fuzzy soft set over \(X\), if \(f\) is a mapping given by \(f : E \rightarrow I^X\). We also denote \((f, E)\) by \(f_E\). The set of all fuzzy soft set is denoted by \(FS(X, E)\).

Definition 2.6 [26]. A fuzzy soft set \(f_E\) on \(X\) is called a null fuzzy soft set and denoted by \(\tilde{0}\) if \(f_e = \overline{0}\), for each \(e \in E\).

Definition 2.7 [4]. A fuzzy soft set \(f_E\) on \(X\) is called an absolute fuzzy soft set and denoted by \(\tilde{1}\) if \(f_e = \overline{1}\), for each \(e \in E\).

Definition 2.8 [25]. Let \(E\) be a set of parameters, \(X\) be an initial universe, \(L\) be a complete Boolean lattice and \(A \subseteq E\). An \(L\)-fuzzy soft set \(f_A\) over \((X, E)\) is a mapping \(f_A : E \rightarrow L^X\) such that \(f_A(e) = \overline{0}\) for all \(e \not\in A\). The set of all \(L\)-fuzzy soft set over \((X, E)\) is denoted by \(L-FS(X, E)\).

In other words, an \(L\)-fuzzy soft set \(f_E\) over \(X\) is a parameterized family of \(L\)-fuzzy sets in the universe \(X\). If \(L = [0, 1]\), then every \(L\)-fuzzy soft set is a fuzzy soft set.

Definition 2.9 [25]. Let \(f_A, g_B \in L-FS(X, E)\). Then
(1) \(f_A \) is said to be fuzzy soft subset of \(g_B \), denoted by \(f_A \subseteq g_B \) if \(f_A(e) \subseteq g_B(e) \) for all \(e \in E \), that is \(f_A(e)(x) \leq g_B(e)(x) \) for all \(e \in E \), and for all \(x \in X \).

Two \(L \)-fuzzy soft sets \(f_A \) and \(g_B \) over \((X,E)\) are said to be equal, denoted by \(f_A \cong g_B \) if \(f_A \subseteq g_B \) and \(g_B \subseteq f_A \).

(2) The union of \(f_A \) and \(g_B \) is also \(L \)-fuzzy soft set \(h_C \), defined by \(h_C(e)(x) = f_A(e)(x) \lor g_B(e)(x) \) for all \(e \in E \), where \(C = A \cup B \). Here we write \(h_C = f_A \cup g_B \).

(3) The intersection of \(f_A \) and \(g_B \) is also \(L \)-fuzzy soft set \(h_C \), defined by \(h_C(e)(x) = f_A(e)(x) \land g_B(e)(x) \) for all \(e \in E \), where \(C = A \cap B \). Here we write \(h_C = f_A \cap g_B \).

Definition 2.10 [38]. The fuzzy soft set \(f_A \in FS(X,E) \) is called fuzzy soft point if \(A = \{e\} \subseteq E \) and \(f_A(e) \) is a fuzzy point in \(X \) i.e. there exists \(x \in X \) such that \(f_A(e)(x) = t \) \((0 < t \leq 1)\) and \(f_A(e)(y) = 0 \) for all \(y \in X \setminus \{x\} \). We denote this fuzzy soft point \(f_A = e_x^t = \{(e,x)\} \) and the set of all fuzzy soft point by \(SP^f_r(X,E) \).

Definition 2.11 [38]. Let \(e_x^t,f_A \in FS(X,E) \). we say that \(e_x^t \in f_A \) read as \(e_x^t \) belongs to the fuzzy soft set \(f_A \) if for the element \(e \in A, t \leq f_A(e)(x) \).

Definition 2.12 [5]. Let \((X,E)\) and \((Y,E^*)\) be classes of fuzzy soft sets over \(X \) and \(Y \) with attributes from \(E \) and \(E^* \) respectively. Let \(\rho : X \rightarrow Y \) and \(\psi : E \rightarrow E^* \) be mapping. Then a fuzzy soft mapping \(f = (\rho, \psi) : (X,E) \rightarrow (Y,E^*) \) would be defined as follows

For a fuzzy soft set \(F_A \) in \((X,E)\), \(f(F_A) \) is a fuzzy soft set in \((Y,E^*)\) obtained as follows: for \(\beta \in \psi(E) \subseteq E^* \) and \(y \in Y \),

\[
f(F_A)(\beta)(y) = \begin{cases} \lor_{x \in \rho^{-1}(y)} \lor_{\alpha \in \psi^{-1}(\beta)} F_A(\alpha)(x), & \text{if } \rho^{-1}(y) \neq \emptyset, \ \psi^{-1}(\beta) \neq \emptyset, \\ 0, & \text{otherwise.} \end{cases}
\]

\(f(F_A) \) is called fuzzy soft image of the fuzzy soft set \(F_A \).

Definition 2.13 [5]. Let \((X,E)\) and \((Y,E^*)\) be classes of fuzzy soft sets over \(X \) and \(Y \) with attributes from \(E \) and \(E^* \) respectively. Let \(\rho : X \rightarrow Y, \psi : E \rightarrow E^* \) be mappings and \(f = (\rho, \psi) : (X,E) \rightarrow (Y,E^*) \) be fuzzy soft mapping. Let \(A \subseteq E \) be a fuzzy soft set over \(X \) and \(B \subseteq E^* \) be fuzzy soft set over \(Y \), then \(f(F_A) \) is called \(f \)-fuzzy soft image of \(A \) in \(B \), denoted by \(f(F_A)(B) \).
\((X, E) \to (Y, E^*) \) a fuzzy soft mapping. Then for a fuzzy soft set \(g_B \) in \((Y, E^*)\) \(f^{-1}(g_B) \) is a fuzzy soft set in \((X, E)\) obtained as follows: for \(\alpha \in \psi^{-1}(E^*) \subseteq E \) and \(x \in E \),

\[
f^{-1}(g_B)(\alpha)(x) = g_B(\psi(\alpha))(\rho(x)).
\]

\(f^{-1}(g_B) \) is called a fuzzy soft inverse image of the fuzzy soft set \(g_B \).

3. \((L, M)\)-fuzzy soft topological spaces

Let \(L \) be a completely distributive lattice with 0 and 1 elements and \(M \) be a strictly two-sided, commutative quantale lattice.

Definition 3.1. A map \(\mathcal{T} : L\text{-}FS(X, E) \to M \) is called an \((L, M)\)-fuzzy soft topology on \((X, E)\) if it satisfies the following conditions:

- (LSO1) \(\mathcal{T}(\emptyset) = \mathcal{T}(\overline{1}) = 1 \).
- (LSO2) \(\mathcal{T}(f_{A_1} \cap f_{A_2}) \geq \mathcal{T}(f_{A_1}) \odot \mathcal{T}(f_{A_2}), \) for all \(f_{A_1}, f_{A_2} \in L\text{-}FS(X, E) \).
- (LSO3) \(\mathcal{T}(\bigcup_{i \in A} f_{A_i} \geq \bigwedge_{i \in A} \mathcal{T}(f_{A_i})), \) for all \(f_{A_i} \in L\text{-}FS(X, E) \).

The triple \((X, E, \mathcal{T})\) is called \((L, M)\)-fuzzy soft topological space.

Let \(\mathcal{T}_1 \) and \(\mathcal{T}_2 \) be \((L, M)\)-fuzzy soft topologies on \((X, E)\). We say that \(\mathcal{T}_1 \) is finer than \(\mathcal{T}_2 \) (\(\mathcal{T}_2 \) is coarser than \(\mathcal{T}_1 \)), denoted by \(\mathcal{T}_2 \subseteq \mathcal{T}_1 \), if \(\mathcal{T}_2(f_A) \leq \mathcal{T}_1(f_A) \), for all \(f_A \in L\text{-}FS(X, E) \).

Let \((X, E, \mathcal{T}_1)\) and \((Y, E^*, \mathcal{T}_2)\) be \((L, M)\)-fuzzy soft topological spaces. A soft map \(\phi : (X, E, \mathcal{T}_1) \to (Y, E^*, \mathcal{T}_2) \) is called LFS-continuous if and only if \(\mathcal{T}_2(f_A) \leq \mathcal{T}_1(\phi^*(f_A)) \), for all \(f_A \in L\text{-}FS(Y, E^*) \).

Remark 3.2. (1) If \((L = [0, 1], \wedge)\) and \(M = \{0, 1\} \), \((L, M)\)-fuzzy soft topological space is fuzzy soft topological space [37].

(2) If \((L = M = [0, 1], \odot = \wedge)\) then \((L, M)\)-fuzzy soft topological space is fuzzy soft topological space [4].
Definition 3.3. A map $\mathcal{F} : L\text{-}FS(X,E) \longrightarrow M$ is called an (L,M)-fuzzy soft filter on (X,E) if it satisfies the following conditions:

(LSF1) $\mathcal{F}(\tilde{0}) = 0$ and $\mathcal{F}(\tilde{1}) = 1$.

(LSF2) $\mathcal{F}(f_{A_1} \cap f_{A_2}) \geq \mathcal{F}(f_{A_1}) \odot \mathcal{F}(f_{A_2})$, for all $f_{A_1}, f_{A_2} \in L\text{-}FS(X,E)$.

(LSF3) If $f_{A_1} \subseteq f_{A_2}$ we have $\mathcal{F}(f_{A_1}) \leq \mathcal{F}(f_{A_2})$.

The triple (X,E,\mathcal{F}) is called an (L,M)-fuzzy soft filter space.

Theorem 3.4. Let (X,E,\mathcal{F}) be an (L,M)-fuzzy soft filter space. We define a mapping $\mathcal{T}_{\mathcal{F}} : L\text{-}FS(X,E) \rightarrow M$ as follows:

$$\mathcal{T}_{\mathcal{F}}(f_A) = \begin{cases} \mathcal{F}(f_A), & \text{if } f_A \not\sim \tilde{0}, \\ 1, & \text{if } f_A \sim \tilde{0}. \end{cases}$$

Then $(X,E,\mathcal{T}_{\mathcal{F}})$ is an (L,M)-fuzzy soft topological space.

Proof. We show the condition (LSO3). For $f_{A_i} \in L\text{-}FS(X,E)$, since $f_{A_i} \subseteq \bigcup_{i \in \Gamma} f_{A_i}$ for all $i \in \Gamma$, we have $\mathcal{F}(f_{A_i}) \leq \mathcal{F}(\bigcup_{i \in \Gamma} f_{A_i})$, so

$$\bigwedge_{i \in \Gamma} \mathcal{T}_{\mathcal{F}}(f_{A_i}) \leq \mathcal{T}_{\mathcal{F}}(\bigcup_{i \in \Gamma} f_{A_i}).$$

Definition 3.5. A map $\mathcal{B} : L\text{-}FS(X,E) \rightarrow M$ is called an (L,M)-fuzzy soft base on (X,E) if it satisfies the following conditions:

(LSB1) $\mathcal{B}(\tilde{0}) = \mathcal{B}(\tilde{1}) = 1$.

(LSB2) $\mathcal{B}(f_{A_1} \cap f_{A_2}) \geq \mathcal{B}(f_{A_1}) \odot \mathcal{B}(f_{A_2})$, for all $f_{A_1}, f_{A_2} \in L\text{-}FS(X,E)$.

Theorem 3.6. Let \mathcal{B} be an (L,M)-fuzzy soft base on (X,E). Define a map $\mathcal{T}_{\mathcal{B}} : L\text{-}FS(X,E) \rightarrow M$ as follows:

$$\mathcal{T}_{\mathcal{B}}(f_A) = \bigvee \{ \bigwedge_{i \in \Gamma} \mathcal{B}(f_{A_i}) : f_A = \bigcup_{i \in \Gamma} f_{A_i} \}.$$

Then $\mathcal{T}_{\mathcal{B}}$ is the coarsest (L,M)-fuzzy soft topology on (X,E) such that $\mathcal{T}_{\mathcal{B}}(f_A) \geq \mathcal{B}(f_A)$ for all $f_A \in L\text{-}FS(X,E)$.
Proof. (1) It is trivial from the definition of \mathcal{T}_B.

(2) For all families $\{f_A : f_A = \bigsqcup_{i \in \Delta} f_{A_i}\}$ and $\{g_B : g_B = \bigsqcup_{j \in \Gamma} g_{B_j}\}$ there exists a family $\{f_{A_i} \cap g_{B_j}\}$ such that:

$$f_A \cap g_B = \left(\bigsqcup_{i \in \Delta} f_{A_i} \right) \cap \left(\bigsqcup_{j \in \Gamma} g_{B_j} \right) = \bigsqcup_{i \in \Delta, j \in \Gamma} (f_{A_i} \cap g_{B_j}).$$

It implies

$$\mathcal{T}_B(f_A \cap g_B) \geq \bigwedge_{i \in \Delta, j \in \Gamma} \mathcal{B}(f_{A_i} \cap g_{B_j})$$

$$\geq \bigwedge_{i \in \Delta, j \in \Gamma} (\mathcal{B}(f_{A_i}) \circ \mathcal{B}(g_{B_j})) \quad \text{(by Definition 3.5 (LSB2))}$$

$$\geq (\bigwedge_{i \in \Delta} \mathcal{B}(f_{A_i})) \circ (\bigwedge_{j \in \Gamma} \mathcal{B}(g_{B_j})).$$

By definition 2.4 (L4) we have $\mathcal{T}_B(f_A \cap g_B) \geq \mathcal{T}_B(f_A) \circ \mathcal{T}_B(g_B)$.

(3) Let \mathcal{J}_i be the collection of all index sets K_i such that $\{f_{A_{i_k}} : f_{A_{i_k}} = \bigsqcup_{k \in K_i} f_{A_{i_k}}\}$ with $f_A = \bigsqcup_{i \in \Gamma} f_{A_i} = \bigsqcup_{i \in \Gamma} \bigsqcup_{k \in K_i} f_{A_{i_k}}$. For each $i \in \Gamma$ and each $\psi \in \Pi_{i \in \Gamma} \mathcal{J}_i$ with $\psi(i) = K_i$ we have

(1) $$\mathcal{T}_B(f_A) \geq \bigwedge_{i \in \Gamma} (\bigwedge_{k \in K_i} \mathcal{B}(f_{A_{i_k}})).$$

Put $a_{i, \psi(i)} = \bigwedge_{k \in K_i} \mathcal{B}(f_{A_{i_k}})$. From (3.1) we have

$$\mathcal{T}_B(f_A) \geq \bigvee_{\psi \in \Pi_{i \in \Gamma}} (\bigwedge_{i \in \Gamma} a_{i, \psi(i)}).$$

(Since L is a completely distributive lattice,)

$$= \bigwedge_{i \in \Gamma} (\bigvee_{M_i \in \mathcal{J}_i} a_{i, M_i}) = \bigwedge_{i \in \Gamma} \bigwedge_{M_i \in \mathcal{J}_i, m \in M_i} \mathcal{B}(f_{A_{i_m}}))$$

$$= \bigwedge_{i \in \Gamma} \mathcal{T}_B(f_{A_i}).$$

Thus \mathcal{T}_B is a (L, M)-fuzzy soft topology on X.

If $T \geq B$ for every $f_A = \bigsqcup_{i \in \Delta} f_{A_i}$ we have

$$T(f_A) \geq \bigwedge_{i \in \Delta} T(f_{A_i}) \geq \bigwedge_{i \in \Delta} B(f_{A_i}).$$

Thus $T \supseteq T_B$.

From Theorem 3.6, we can easily prove the following lemma.

Lemma 3.7. Let T be an (L,M)-fuzzy soft topology on (X,E) and B be an (L,M)-fuzzy soft base on (Y,E^*). Then a map $\phi : (X,E,T) \to (Y,E^*,T_B)$ is LFS-continuous if and only if $T(\phi^{-}(f_A)) \geq B(f_A)$ for each $f_A \in L$-FS(Y,E^*).

Theorem 3.8. Let $\{(X_i, E_i, T_i) : i \in \Gamma\}$ be a family of (L,M)-fuzzy soft topological spaces, X be a set, E be a set of parameters and for each $i \in \Gamma$, $\phi_i : (X,E) \to (X_i, E_i)$ a fuzzy soft map. Define a map $B : LFS(X,E) \to M$ on (X,E) by:

$$B(f_A) = \bigvee \{ \cap_{j=1}^{n} T_{k_j}(g_{B_{k_j}}) : f_A = \cap_{j=1}^{n} \phi_{k_j}^{-}(g_{B_{k_j}}) \}$$

where \bigvee is taken over all finite subsets $K = \{k_1, ..., k_n\} \subset \Gamma$.

Then: (1) B is an (L,M)-fuzzy soft base on (X,E).

(2) The (L,M)-fuzzy soft topology T_B generated by B is the coarsest (L,M)-fuzzy soft topology on (X,E) for which all $\phi_i, i \in \Gamma$ are LFS-continuous maps.

Proof. (1)(LSB1) Since $f_A = \phi_i^{-}(f_{A_i})$ for each $f_A \in \{0,1\}$ we have $B(0) = B(1) = 1$.

(LSB2) For all finite subsets $K = \{k_1, ..., k_p\}$ and $J = \{j_1, ..., j_q\}$ of Γ such that

$$f_A = \cap_{i=1}^{p} \phi_{k_i}^{-}(f_{A_{k_i}}), \quad g_B = \cap_{j=1}^{q} \phi_{j_i}^{-}(g_{B_{j_i}}),$$

we have

$$f_A \cap g_B = (\cap_{i=1}^{p} \phi_{k_i}^{-}(f_{A_{k_i}})) \cap (\cap_{j=1}^{q} \phi_{j_i}^{-}(g_{B_{j_i}})).$$

Furthermore, we have for each $k \in K \cap J$,

$$\phi_{k}^{-}(f_{A_{k}}) \cap \phi_{k}^{-}(g_{B_{k}}) = \phi_{k}^{-}(f_{A_{k}} \cap g_{B_{k}}).$$
Put \(f_A \cap g_B = \cap_{m_i \in K \cup J} \phi_{m_i}^{-1}(h_{C_{m_i}}) \) where

\[
h_{C_{m_i}} = \begin{cases}
 f_{A_{m_i}}, & \text{if } m_i \in K - (K \cap J), \\
 g_{B_{m_i}}, & \text{if } m_i \in J - (K \cap J), \\
 f_{A_{m_i}} \cap g_{B_{m_i}}, & \text{if } m_i \in K \cap J.
\end{cases}
\]

We have

\[
\mathcal{B}(f_A \cap g_B) \geq \bigcirc_{j \in K \cup J} \mathcal{T}_j(h_{C_j}) \\
\geq (\bigcap_{m_i \in K - K \cap J} \mathcal{F}_m(f_{A_{m_i}})) \bigcirc (\bigcap_{i=1}^{q} \mathcal{I}_{m_i}(g_{B_{m_i}})) \\
\geq (\bigcap_{i=1}^{p} \mathcal{T}_{l_i}(f_{A_{m_i}})) \bigcirc (\bigcap_{i=1}^{q} \mathcal{I}_{l_i}(g_{B_{l_i}})).
\]

By Definition 2.4 (L4) we have \(\mathcal{B}(f_A \cap g_B) \geq \mathcal{B}(f_A) \circ \mathcal{B}(g_B) \).

(2) For each \(f_{A_i} \in LFS(X_i, E_i) \), one family \(\{\phi_i^{-1}(f_{A_i})\} \) and \(i \in \Gamma \) we have

\[
\mathcal{T}_\mathcal{B}(\phi_i^{-1}(f_{A_i})) \geq \mathcal{B}(\phi_i^{-1}(f_{A_i})) \geq \mathcal{I}_i(f_{A_i}).
\]

Thus, for each \(i \in \Gamma, \phi_i : (X, E, \mathcal{T}_\mathcal{B}) \rightarrow (X_i, E_i, \mathcal{R}_i) \) is LFS-continuous. Let \(\phi_i : (X, E, \mathcal{T}_0) \rightarrow (X_i, E_i, \mathcal{R}_i) \) is LFS-continuous, that is for each \(i \in \Gamma \) and \(f_{A_i} \in LFS(X_i, E_i) \), \(\mathcal{T}_0(\phi_i^{-1}(f_{A_i})) \geq \mathcal{R}_i(f_{A_i}) \). For all finite subsets \(K = \{k_1, ..., k_p\} \) of \(\Gamma \) such that \(f_A = \bigcirc_{i=1}^{p} \phi_{k_i}^{-1}(f_{A_{k_i}}) \) we have

\[
\mathcal{T}_0(f_A) \geq \bigcirc_{i=1}^{p} \mathcal{T}_0(\phi_{k_i}^{-1}(f_{A_{k_i}})) \geq \bigcirc_{i=1}^{p} \mathcal{R}_{k_i}(f_{A_{k_i}}).
\]

It implies \(\mathcal{T}_0(f_A) \geq \mathcal{B}(f_A) \) for each \(f_A \in LFS(X, E) \). By Theorem 3.6 \(\mathcal{T}_0 \geq \mathcal{T}_\mathcal{B} \).

Example 3.9. Let \(X = \{x, y\} \) be a set, \(E = \{e_1, e_2, e_3\} \) be a set of parameters and \(L = M = [0, 1] \) a completely distributive lattice. Define a binary operation \(\bigcirc \) on \(M = [0, 1] \) by \(x \bigcirc y = \max\{0, x + y - 1\} \). Then \(([0, 1], \leq, \bigcirc) \) is a stsc-quantale. Let \(g_B, h_C \in LFS(X, E) \) be defined as follows:

\[
g_B = \{g(e_1) = \{(x, 0.6), (y, 0.3)\}, g(e_2) = \overline{0}, g(e_2) = \overline{0}\}
\]

\[
h_C = \{h(e_1) = \{(x, 0.5), (y, 0.7)\}, h(e_2) = \overline{0}, h(e_2) = \overline{0}\}.
\]
Then we have

\[g_B \cap h_C = \{(g_B \cap h_C)(e_1) = \{(x, 0.5), (y, 0.3)\}, \]

\[(g_B \cap h_C)(e_2) = \emptyset, (g_B \cap h_C)(e_2) = \emptyset \}\]

\[g_B \cup h_C = \{(g_B \cup h_C)(e_1) = \{(x, 0.6), (y, 0.7)\}, \]

\[(g_B \cup h_C)(e_2) = \emptyset, (g_B \cup h_C)(e_2) = \emptyset \}\].

We define an \((L, M)\)-fuzzy soft topology \(\mathcal{F}: L-FS(X, E) \to [0, 1]\) as follows:

\[
\mathcal{F}(f_A) = \begin{cases}
1, & \text{if } f_A \cong \tilde{0} \text{ or } \tilde{1}, \\
0.8, & \text{if } f_A \cong g_B, \\
0.4, & \text{if } f_A \cong h_C, \\
0.6, & \text{if } f_A \cong g_B \cup h_C, \\
0.2, & \text{if } f_A \cong g_B \cap h_C, \\
0, & \text{otherwise.}
\end{cases}
\]

Conflict of Interests

The authors declare that there is no conflict of interests.

References

