

Available online at http://scik.org
J. Math. Comput. Sci. 2 (2012), No. 6, 1573-1587

ISSN: 1927-5307

A RELATED FIXED POINT THEOREM IN THREE INTUITIONISTIC FUZZY METRIC SPACES

FAYCEL MERGHADI ${ }^{1}$, ABDELKRIM ALIOUCHE ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, University of Tebessa, 12000, Algeria
${ }^{2}$ Department of Mathematics, University of Larbi Ben M' Hidi, Oum-El-Bouaghi, 04000, Algeria

Abstract

We prove a related fixed point theorem in three complete intuitionistic fuzzy metric spaces using an implicit relation which generalizes results of Aliouche and Fisher [2] and Rao et al. [20].

Keywords: Fuzzy metric space; implicit relation; Intuitionistic fuzzy metric space; related fixed point.

2000 AMS Subject Classification: 47H10, 54H25

1. Introduction and Preliminaries

The theory of fuzzy sets was introduced by Zadeh [24] in 1965. Since then, to use this concept in topology and analysis, many authors have expansively developed the theory of fuzzy sets and applications. for example, Deng [5], Ereeg [11], George and Veeramani [12], Kramosil and Michalek [14] have introduced the concept of fuzzy metric spaces in different ways. One of the most important problems in fuzzy topology is to obtain an appropriate concept of intuitionistic fuzzy metric space. This notion has been introduced and studied by Park [18]. Alaca et al. [1] have redefined the concept of intuitionistic fuzzy metric spaces, according to concept of fuzzy metric spaces and proved Intuitionistic

[^0]Received March 30, 2012
fuzzy Banach and Intuitionistic fuzzy Edelstein contraction theorems, with the different definition of Cauchy sequences and completeness.

Recently, Merghadi and Aliouche [17] Aliouche and Fisher [2], Aliouche et.al [3] and Rao et.al [20] proved some related fixed point theorems in compact metric spaces and sequentially compact fuzzy metric spaces. Inspired by a work due to Popa [19], we have remarked that proving common fixed point theorems using an implicit relation covers several contractive conditions.

In this paper, we prove a related fixed point theorem for three mappings in three complete intuitionistic fuzzy metric spaces using an implicit relation which generalizes results of Aliouche and Fisher [2] and Rao et al. [20].

Definition 1.1 [22]. A binary operation $*:[0,1] \times[0,1] \longrightarrow[0,1]$ is a continuous t-norm if it satisfies the following conditions:
(1) $*$ is associative and commutative,
(2) $*$ is continuous,
(3) $a * 1=a$ for all $a \in[0,1]$,
(4) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$, for each $a, b, c, d \in[0,1]$.

Two typical examples of a continuous t-norm are $a * b=a b$ and $a * b=\min \{a, b\}$.
Definition $1.2[22]$. A binary operation $\diamond:[0,1] \times[0,1] \longrightarrow[0,1]$ is a continuous t-conorm if it satisfies the following conditions
$(1) \diamond$ is associative and commutative,
$(2) \diamond$ is continuous,
(3) $a \diamond 0=a$ for all $a \in[0,1]$,
(4) $a \diamond b \leq c \diamond d$ whenever $a \leq c$ and $b \leq d$, for each $a, b, c, d \in[0,1]$.

Examples of a continuous t-conorm are $a \diamond b=\max \{a, b\}$ and $a \diamond b=\min \{1, a+b\}$.
The concept of intuitionistic fuzzy metric space is defined by Park [18].
Definition 1.3. A 5 -tuple $(X, M, \mathcal{N}, *, \diamond)$ is called an intuitionistic fuzzy metric space if X is an arbitrary (non-empty) set, $*$ is a continuous t-norm, \diamond a continuous t-conorm and M, \mathcal{N} are fuzzy sets on $\left.X^{2} \times\right] 0,+\infty[$, satisfying the following conditions for each $x, y, z \in X$ and $t, s>0$
(1) $M(x, y, t)+\mathcal{N}(x, y, t) \leq 1$;
(2) $M(x, y, t)>0$;
(3) $M(x, y, t)=1$ if and only if $x=y$;
(4) $M(x, y, t)=M(y, x, t)$;
(5) $M(x, y, t) * M(y, z, s) \leq M(x, z, t+s)$;
(6) $M(x, y, \cdot):] 0,+\infty[\rightarrow[0,1]$ is continuous;
(7) $\mathcal{N}(x, y, t)=0$ if and only if $x=y$;
(8) $\mathcal{N}(x, y, t)=\mathcal{N}(x, y, t)$;
(9) $\mathcal{N}(x, y, t) \diamond \mathcal{N}(y, z, t) \geq \mathcal{N}(x, z, t+s)$;
(10) $\mathcal{N}(x, y, t):] 0,+\infty[\rightarrow[0,1]$ is continuous.

Then (M, \mathcal{N}) is called an intuitionistic fuzzy metric on X. The functions $M(x, y, t)$, $\mathcal{N}(x, y, t)$ denote the degree of nearness and the degree of non-nearness between x and y with respect to t, respectively.

Every fuzzy metric space $(X, M, *)$ is an intuitionistic fuzzy metric space of the form $(X, M, 1-M, *, \diamond\})$ such that t-norm $*$ and t-conorm \diamond are associated [16], i.e., $x \diamond y=$ $1-((1-x) *(1-y))$ for any $x, y \in X$.

Lemma 1.4 [18]. In intuitionistic fuzzy metric space $X, M(x, y, \cdot)$ is non-decreasing and $\mathcal{N}(x, y, \cdot)$ is non-increasing for all $x, y \in X$.

Example 1.5 [18]. Let (X, d) be a metric space. Denote $a * b=a b$ and $a \diamond b=$ $\min \{1, a+b\}$ for all $a, b \in[0,1]$ and let M_{d} and \mathcal{N}_{d} be fuzzy sets on $\left.X^{2} \times\right] 0,+\infty[$ defined as follows:

$$
M_{d}(x, y, t)=\frac{t}{t+d(x, y)}, \quad \mathcal{N}_{d}(x, y, t)=\frac{d(x, y)}{t+d(x, y)}
$$

Then $\left(X, M_{d}, \mathcal{N}_{d}, *, \diamond\right)$ is an intuitionistic fuzzy metric space. We call this intuitionistic fuzzy metric induced by a metric d the standard intuitionistic fuzzy metric.

Note that the above example holds even with the t-norm $a * b=\min \{a, b\}$ and the t-conorm $a \diamond b=\max \{a, b\}$ and hence $\left(X, M_{d}, \mathcal{N}_{d}, *, \diamond\right)$ is an intuitionistic fuzzy metric with respect to any continuous t-norm and continuous t-conorm.

Let $(X, M, \mathcal{N}, *, \diamond)$ be an intuitionistic fuzzy metric space. For $t>0$, the open ball $B(x, r, t)$ with center $x \in X$ and radius $0<r<1$ is defined by

$$
B(x, r, t)=\{y \in X: M(x, y, t)>1-r \text { and } \mathcal{N}(x, y, t)<r\} .
$$

A subset $A \subset X$ is called open if for each $x \in A$, there exist $t>0$ and $0<r<1$ such that $B(x, r, t) \subset A$. Let $\tau_{(M, \mathcal{N})}$ denote the family of all open subsets of X. Then $\tau_{(M, \mathcal{N})}$ is called the topology on X induced by the intuitionistic fuzzy metric (M, \mathcal{N}). This topology is Hausdorff and first countable. The topology τ_{d} induced by the metric d and the topology $\tau_{(M, \mathcal{N})}$ induced by the intuitionistic fuzzy metric (M, N) are the same [18].

Definition 1.6 [18]. Let $(X, M, \mathcal{N}, *, \diamond)$ be an intuitionistic fuzzy metric space.

1) A sequence $\left\{x_{n}\right\}$ in X converges to x if for any $0<\varepsilon<1$ and $t>0$, there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$,
$M\left(x_{n}, x, t\right)>1-\varepsilon$ and $\mathcal{N}\left(x_{n}, x_{m}, t\right)<\varepsilon$ for each $n \geq n_{0}$, i.e., $M\left(x_{n}, x, t\right) \rightarrow 1$ and $\mathcal{N}\left(x_{n}, x, t\right) \rightarrow 0$ as $n \rightarrow \infty$ for each $t>0$.
2) A sequence $\left\{x_{n}\right\}$ in X is called a Cauchy sequence if for any $0<\varepsilon<1$ and $t>0$, there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$,
$M\left(x_{n}, x_{m}, t\right)>1-\varepsilon$ and $\mathcal{N}\left(x_{n}, x_{m}, t\right)<\varepsilon$ for each $n, m \geq n_{0}$., i.e; $M\left(x_{n}, x_{m}, t\right) \rightarrow 1$ and $\mathcal{N}\left(x_{n}, x_{m}, t\right) \rightarrow 0$ as $n, m \rightarrow \infty$ for each $t>0$.
3) The intuitionistic fuzzy metric space $(X, M, \mathcal{N}, *, \diamond)$ is said to be complete if every Cauchy sequence is convergent.

Implicit relation

We denote by Φ, Ψ respectively, sets of all functions $\varphi, \psi:[0,1]^{6} \longrightarrow[0,1]$ such that
(i) $\phi \in \Phi, \psi \in \Psi$ and ϕ, ψ are upper semi continuous in each coordinate variable,
(ii) ϕ, ψ are non-increasing in the second and the third variable,
(iii) For all $u, v \in(0,1)$, if either $\phi(u, 1, u, v, v, 1)>0$ or $\phi(u, 1, u, v, 1, v)>0$ or $\phi(u, u, 1,1, v, v)>0$ or $\phi(u, u, 1, v, 1, v)>0$ then $u \geq v$.

Furthermore, for all $u, v \in(0,1)$, if either $\psi(u, 0, u, v, v, 0)<0$ or $\psi(u, 0, u, v, 0, v)<0$ or $\psi(u, u, 0,0, v, v)<0$ or $\psi(u, u, 1, v, 1, v)<0$ then
$u \leq v$.

Example1.7. Let $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-\min \left\{t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$. Then $\phi \in \Phi$.
Example1.8. Let $\psi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-\max \left\{t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$. Then $\psi \in \Psi$.
Example1.9.

$$
\begin{aligned}
\phi\left(t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right) & =t_{1}-\eta\left(\min \left\{t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}\right) \\
\psi\left(t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right) & =t_{1}-\varphi\left(\max \left\{t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}\right)
\end{aligned}
$$

where $\eta, \varphi:[0,1] \rightarrow[0,1]$ is a increasing and continuous function respectively, with $\eta(t) \geq t$ and $\varphi(t) \leq t$ for $0 \leq t \leq 1$. For example $\eta(t)=\sqrt{t}$ or $\eta(t)=t^{h}$ for $0<h<1$ and $\phi(t)=\frac{t}{2}$.

We need the following lemma of [15].
Lemma 1.10. Let $\left\{x_{n}\right\}$ be a sequence in intuitionistic fuzzy metric space $(X, M, \mathcal{N}, *, \diamond)$ with $M(x, y, t) \rightarrow 1$ and $\mathcal{N}(x, y, t) \rightarrow 0$ as $t \rightarrow \infty$ for all $x, y \in X$. If there exists a number $k \in] 0,1[$ such that

$$
\begin{aligned}
M\left(x_{n+1}, x_{n}, k t\right) & \geq M\left(x_{n}, x_{n-1}, t\right) \\
\mathcal{N}\left(x_{n+1}, x_{n}, k t\right) & \leq \mathcal{N}\left(x_{n}, x_{n-1}, t\right)
\end{aligned}
$$

Then $\left\{x_{n}\right\}$ is a Cauchy sequence in X.
Lemma 1.11 [15]. Let $(X, M,, \mathcal{N}, *, \diamond)$ be an intuitionistic fuzzy metric space. If there exists $k \in(0,1)$ such that $M(x, y, k t) \geq M(x, y, t)$ and $N(x, y ; k t) \leq N(x, y ; t)$ for $x, y \in X$, then $x=y$.

2. Main results

Theorem 2.1. Let $\left(X_{i}, M_{i}, \mathcal{N}_{i}, \theta_{i}, \gamma_{i}\right)_{1 \leq i \leq 3}$, be three complete intuitionistic fuzzy metric spaces with $M_{i}\left(x, x_{i}, t\right) \longrightarrow 1$ and $\mathcal{N}_{i}\left(x, x_{i}, t\right) \rightarrow 0$ as $t \longrightarrow \infty$ for all $x, x_{i} \in X_{i}$ and let $\left\{A_{i}\right\}_{i=1}^{i=3}$ be 3-mappings such that $A_{i}: X_{i} \rightarrow X_{i+1}$ for all $i=1,2$ and $A_{3}: X_{3} \rightarrow X_{1}$, satisfying the inequalities

$$
\phi_{1}\left(\begin{array}{c}
M_{1}\left(A_{3} A_{2} x_{2}, A_{3} A_{2} A_{1} x_{1}, k t\right), M_{1}\left(x_{1}, A_{3} A_{2} x_{2}, t\right), \tag{M}\\
M_{1}\left(x_{1}, A_{3} A_{2} A_{1} x_{1}, t\right), M_{2}\left(x_{2}, A_{1} x_{1}, t\right), \\
M_{2}\left(x_{2}, A_{1} A_{3} A_{2} x_{2}, t\right), M_{2}\left(A_{1} x_{1}, A_{1} A_{3} A_{2} x_{2}, t\right)
\end{array}\right)>0
$$

(2.1 calN)

$$
\psi_{1}\left(\begin{array}{c}
\mathcal{N}_{1}\left(A_{3} A_{2} x_{2}, A_{3} A_{2} A_{1} x_{1}, k t\right), \mathcal{N}_{1}\left(x_{1}, A_{3} A_{2} x_{2}, t\right), \\
\mathcal{N}_{1}\left(x_{1}, A_{3} A_{2} A_{1} x_{1}, t\right), \mathcal{N}_{2}\left(x_{2}, A_{1} x_{1}, t\right), \\
\mathcal{N}_{2}\left(x_{2}, A_{1} A_{3} A_{2} x_{2}, t\right), \mathcal{N}_{2}\left(A_{1} x_{1}, A_{1} A_{3} A_{2} x_{2}, t\right)
\end{array}\right)<0
$$

for all $x_{1} \in X_{1}, x_{2} \in X_{2}$ and $t>0$, where $\phi_{1} \in \Phi, \psi_{1} \in \Psi$ and $0<k<1$.

$$
\phi_{2}\left(\begin{array}{c}
M_{2}\left(A_{1} A_{3} x_{3}, A_{1} A_{3} A_{2} x_{2}, k t\right), M_{2}\left(x_{2}, A_{1} A_{3} x_{3}, t\right), \tag{M}\\
M_{2}\left(x_{2}, A_{1} A_{3} A_{2} x_{2}, t\right), M_{3}\left(x_{3}, A_{2} x_{2}, t\right), \\
M_{3}\left(x_{3}, A_{2} A_{1} A_{3} x_{3}, t\right), M_{3}\left(A_{2} x_{2}, A_{2} A_{1} A_{3} x_{3}, t\right)
\end{array}\right)>0
$$

$$
\psi_{2}\left(\begin{array}{c}
\mathcal{N}_{2}\left(A_{1} A_{3} x_{3}, A_{1} A_{3} A_{2} x_{2}, k t\right), \mathcal{N}_{2}\left(x_{2}, A_{1} A_{3} x_{3}, t\right), \tag{calN}\\
\mathcal{N}_{2}\left(x_{2}, A_{1} A_{3} A_{2} x_{2}, t\right), \mathcal{N}_{3}\left(x_{3}, A_{2} x_{2}, t\right), \\
\mathcal{N}_{3}\left(x_{3}, A_{2} A_{1} A_{3} x_{3}, t\right), \mathcal{N}_{3}\left(A_{2} x_{2}, A_{2} A_{1} A_{3} x_{3}, t\right)
\end{array}\right)<0
$$

for all $x_{2} \in X_{2}, x_{3} \in X_{3}, t>0$, where $\phi_{2} \in \Phi, \psi_{2} \in \Psi$ and $0<k<1$.

$$
\phi_{3}\left(\begin{array}{c}
M_{3}\left(A_{2} A_{1} x_{1}, A_{3} A_{1} A_{3} x_{3}, k t\right), M_{3}\left(x_{3}, A_{2} A_{1} x_{1}, t\right), \tag{M}\\
M_{3}\left(x_{3}, A_{2} A_{1} A_{3} x_{3}, t\right), M_{1}\left(x_{1}, A_{3} x_{3}, t\right), \\
M_{1}\left(x_{1}, A_{3} A_{2} A_{1} x_{1}, t\right), M_{1}\left(A_{3} x_{3}, A_{3} A_{2} A_{1} x_{1}, t\right)
\end{array}\right)>0
$$

$$
\psi_{3}\left(\begin{array}{c}
\mathcal{N}_{3}\left(A_{2} A_{1} x_{1}, A_{3} A_{1} A_{3} x_{3}, k t\right), \mathcal{N}_{3}\left(x_{3}, A_{2} A_{1} x_{1}, t\right), \tag{calN}\\
\mathcal{N}_{3}\left(x_{3}, A_{2} A_{1} A_{3} x_{3}, t\right), \mathcal{N}_{1}\left(x_{1}, A_{3} x_{3}, t\right), \\
\mathcal{N}_{1}\left(x_{1}, A_{3} A_{2} A_{1} x_{1}, t\right), \mathcal{N}_{1}\left(A_{3} x_{3}, A_{3} A_{2} A_{1} x_{1}, t\right)
\end{array}\right)<0
$$

for all $x_{1} \in X_{1}, x_{3} \in X_{3}$ and $t>0$, where $\phi_{3} \in \Phi, \psi_{3} \in \Psi$ and $0<k<1$. Further, suppose that one of A_{1}, A_{2} and A_{3} is continuous on X_{i}. Then

$$
\begin{aligned}
& A_{3} A_{2} A_{1} \text { has a unique fixed point } p_{1} \in X_{1} \\
& A_{1} A_{3} A_{2} \text { has a unique fixed point } p_{2} \in X_{2} \\
& A_{2} A_{1} A_{3} \text { has a unique fixed point } p_{3} \in X_{3} .
\end{aligned}
$$

Further, $A_{i} p_{i}=p_{i+1}$ for $i=1,2$ and $A_{3} p_{3}=p_{1}$.

Proof. Let $\left\{x_{r}^{(1)}\right\},\left\{x_{r}^{(2)}\right\}$ and $\left\{x_{r}^{(3)}\right\}$ be sequences in X_{1}, X_{2}, X_{3} respectively and $x_{0}^{(1)}$ be an arbitrary point in X_{1} We define the sequences $\left\{x_{r}^{(i)}\right\}$ for $i=1,2,3$ and $r \in \mathbb{N}$ by

$$
\begin{aligned}
x_{r}^{(1)} & =\left(A_{3} A_{2} A_{1}\right)^{r} x_{0}^{(1)}=\left(A_{3} A_{2} A_{1}\right) x_{r-1}^{(1)} \\
x_{r}^{(2)} & =A_{1}\left(A_{3} A_{2} A_{1}\right)^{r} x_{0}^{(1)}=A_{1} x_{r-1}^{(1)} \\
x_{r}^{(3)} & =A_{2} A_{1}\left(A_{3} A_{2} A_{1}\right)^{r} x_{0}^{(1)}=A_{2} x_{r}^{(2)}
\end{aligned}
$$

We assume that $x_{r}^{(1)} \neq x_{r+1}^{(1)}$. Applying the inequalities $\left(2 \cdot 1_{M}\right)$ and $\left(2.1_{\mathcal{N}}\right)$ for $x_{2}=x_{r-1}^{(2)}=$ $A_{1} x_{r-1}^{(1)}=A_{1}\left(A_{3} A_{2} A_{1}\right)^{r-1} x_{0}^{(1)}$ and $x_{1}=x_{r}^{(1)}=\left(A_{3} A_{2} A_{1}\right)^{r} x_{0}^{(1)}$ we get

$$
\begin{gathered}
\phi_{1}\binom{M_{1}\left(x_{r}^{(1)}, x_{r+1}^{(1)}, k t\right), 1, M_{1}\left(x_{r}^{(1)}, x_{r+1}^{(1)}, t\right),}{M_{2}\left(x_{r-1}^{(2)}, x_{r}^{(2)}, t\right), M_{2}\left(x_{r-1}^{(2)}, x_{r}^{(2)}, t\right), 1}>0 \\
\psi_{1}\binom{\mathcal{N}_{1}\left(x_{r}^{(1)}, x_{r+1}^{(1)}, k t\right), 0, \mathcal{N}_{1}\left(x_{r}^{(1)}, x_{r+1}^{(1)}, t\right),}{\mathcal{N}_{2}\left(x_{r-1}^{(2)}, x_{r}^{(2)}, t\right), \mathcal{N}_{2}\left(x_{r-1}^{(2)}, x_{r}^{(2)}, t\right), 0}<0
\end{gathered}
$$

Using (ii) and (iii) of the implicit relation we have

$$
\begin{align*}
& M_{1}\left(x_{r}^{(1)}, x_{r+1}^{(1)}, k t\right) \geq M_{2}\left(x_{r-1}^{(2)}, x_{r}^{(2)}, t\right), \tag{M}\\
& \mathcal{N}_{1}\left(x_{r}^{(1)}, x_{r+1}^{(1)}, k t\right) \leq \mathcal{N}_{2}\left(x_{r-1}^{(2)}, x_{r}^{(2)}, t\right) . \tag{calN}
\end{align*}
$$

Applying the inequalities $\left(2.2_{M}\right)$ and $\left(2.2_{\mathcal{N}}\right)$ for $x_{3}=x_{r-1}^{(3)}$ and $x_{2}=x_{r}^{(2)}$, we obtain

$$
\begin{aligned}
& \phi_{2}\binom{M_{2}\left(x_{r}^{(2)}, x_{r+1}^{(2)}, k t\right), 1, M_{2}\left(x_{r}^{(2)}, x_{r+1}^{(2)}, t\right)}{, M_{3}\left(x_{r-1}^{(3)}, x_{r}^{(3)}, t\right), M_{3}\left(x_{r-1}^{(3)}, x_{r}^{(3)}, t\right), 1}>0 \\
& \psi_{2}\binom{\mathcal{N}_{2}\left(x_{r}^{(2)}, x_{r+1}^{(2)}, k t\right), 0, \mathcal{N}_{2}\left(x_{r}^{(2)}, x_{r+1}^{(2)}, t\right)}{, \mathcal{N}_{3}\left(x_{r-1}^{(3)}, x_{r}^{(3)}, t\right), \mathcal{N}_{3}\left(x_{r-1}^{(3)}, x_{r}^{(3)}, t\right), 0}<0
\end{aligned}
$$

From (ii) and (iii) of the implicit relation we get

$$
\begin{align*}
& M_{2}\left(x_{r}^{(2)}, x_{r+1}^{(2)}, k t\right) \geq M_{3}\left(x_{r-1}^{(3)}, x_{r}^{(3)}, t\right) \tag{M}\\
& \mathcal{N}_{2}\left(x_{r}^{(2)}, x_{r+1}^{(2)}, k t\right) \leq \mathcal{N}_{3}\left(x_{r-1}^{(3)}, x_{r}^{(3)}, t\right) . \tag{calN}
\end{align*}
$$

Applying the inequalities $\left(2.3_{M}\right)$ and $\left(2.3_{\mathcal{N}}\right)$ for $x_{3}=x_{r}^{(3)}$ and $x_{1}=x_{r-1}^{(1)}$ we have

$$
\begin{gathered}
\phi_{3}\binom{M_{3}\left(x_{r}^{(3)}, x_{r+1}^{(3)}, k t\right), 1, M_{3}\left(x_{r}^{(3)}, x_{r+1}^{(3)}, t\right),}{M_{1}\left(x_{r}^{(1)}, x_{r-1}^{(1)}, t\right), M_{1}\left(x_{r}^{(1)}, x_{r-1}^{(1)}, t\right), 1}>0 \\
\psi_{3}\binom{\mathcal{N}_{3}\left(x_{r}^{(3)}, x_{r+1}^{(3)}, k t\right), 0, \mathcal{N}_{3}\left(x_{r}^{(3)}, x_{r+1}^{(3)}, t\right),}{\mathcal{N}_{1}\left(x_{r}^{(1)}, x_{r-1}^{(1)}, t\right), \mathcal{N}_{1}\left(x_{r}^{(1)}, x_{r-1}^{(1)}, t\right), 0}<0
\end{gathered}
$$

and so by (ii) and (iii) of the implicit relation we get

$$
\begin{equation*}
M_{3}\left(x_{r}^{(3)}, x_{r+1}^{(3)}, k t\right) \geq M_{1}\left(x_{r}^{(1)}, x_{r-1}^{(1)}, t\right) \tag{M}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{N}_{3}\left(x_{r}^{(3)}, x_{r+1}^{(3)}, k t\right) \leq \mathcal{N}_{1}\left(x_{r}^{(1)}, x_{r-1}^{(1)}, t\right) \tag{calN}
\end{equation*}
$$

It follows from $\left(3.1_{M}\right),\left(3.2_{M}\right)$ and $\left(3,3_{M}\right)$ that for n large enough and for all $i=1,2,3$

$$
\left.\begin{array}{rl}
M_{1}\left(x_{r}^{(1)}, x_{r+1}^{(1)}, k t\right) \geq \\
M_{i}\left(x_{r}^{(i)}, x_{r+1}^{(i)}, t\right) \geq & M_{2}\left(x_{r-1}^{(2)}, x_{r}^{(2)}, t\right) \\
\geq & \left.x_{r-1}^{(i+1)}, x_{r}^{(i+1)}, \frac{t}{k}\right) \\
\geq & M_{n}\left(x_{r+i-n}^{(n)}, x_{r+i-n+1}^{(n)}, \frac{t}{k^{n-i}}\right) \\
\geq & M_{1}\left(x_{r+i-n-1}^{(1)}, x_{r+i-n}^{(1)}, \frac{t}{k^{n-i+1}}\right) \\
\geq & \ldots \ldots \\
\geq & M_{1}\left(x_{r+i-2 n-1}^{(1)}, x_{r+i-2 n}^{(1)}, \frac{t}{k^{2 n-i+1}}\right) \\
\geq & M_{1}\left(x_{r+i-m n-1}^{(1)}, x_{r+i-m n}^{(1)}, \frac{t}{k^{m n-i+1}}\right) \\
\geq & \min \left\{\begin{array}{l}
M_{1}\left(x_{1}^{(1)}, x_{2}^{(1)}, \frac{t}{k^{m n}}\right), M_{1}\left(x_{1}^{(2)}, x_{2}^{(2)}, \frac{t}{k^{m n}}\right)
\end{array}\right\}
\end{array}\right\}
$$

It follows from $\left(3.1_{\mathcal{N}}\right),\left(3.2_{\mathcal{N}}\right)$ and $\left(3,3_{\mathcal{N}}\right)$ that for large enough n and for all $i=1,2,3$.

$$
\begin{aligned}
\mathcal{N}_{i}\left(x_{r}^{(i)}, x_{r+1}^{(i)}, t\right) & \leq \mathcal{N}_{i+1}\left(x_{r-1}^{(i+1)}, x_{r}^{(i+1)}, \frac{t}{k}\right) \\
& \leq \ldots \leq \mathcal{N}_{1}\left(x_{r+i-2 n-1}^{(1)}, x_{r+i-2 n}^{(1)}, \frac{t}{k^{2 n-i+1}}\right) \\
& \leq \ldots \leq \mathcal{N}_{1}\left(x_{r+i-m n-1}^{(1)}, x_{r+i-m n}^{(1)}, \frac{t}{k^{m n-i+1}}\right) \\
& \leq \max \left\{\begin{array}{c}
\mathcal{N}_{1}\left(x_{1}^{(1)}, x_{2}^{(1)}, \frac{t}{k^{m n}}\right), \mathcal{N}_{2}\left(x_{1}^{(2)}, x_{2}^{(2)}, \frac{t}{k^{m n}}\right) \\
, \mathcal{N}_{3}\left(x_{1}^{(3)}, x_{2}^{(3)}, \frac{t}{k^{m n}}\right)
\end{array}\right\}
\end{aligned}
$$

Since $0<k<1$, it follows from Lemma 1.10 that $\left\{x_{r}^{(i)}\right\}$ is a Cauchy sequence in X_{i} for $i=1,2,3$ with limits

$$
\begin{aligned}
& p_{1}=\lim _{r \rightarrow \infty} x_{r}^{(1)}=\lim _{r \rightarrow \infty}\left(A_{3} A_{2} A_{1}\right)^{r} x_{0}^{(1)} \\
& p_{2}=\lim _{r \rightarrow \infty} x_{r}^{(2)}=\lim _{r \rightarrow \infty} A_{1} x_{r}^{(1)} \\
& p_{3}=\lim _{r \rightarrow \infty} x_{r}^{(3)}=\lim _{r \rightarrow \infty} A_{2} A_{1} x_{r}^{(1)}=\lim _{r \rightarrow \infty} A_{2} x_{r}^{(2)}
\end{aligned}
$$

Using the inequality $\left(2.1_{M}\right)$ for $x_{1}=p_{1}$ and $x_{2}=x_{r-1}^{(2)}$ we have

$$
\phi_{1}\left(\begin{array}{c}
M_{1}\left(x_{r}^{(1)}, A_{3} A_{2} A_{1} p_{1}, k t\right), M_{1}\left(p_{1}, x_{r}^{(1)}, t\right), \tag{M}\\
M_{1}\left(p_{1}, A_{3} A_{2} A_{1} p_{1}, t\right), M_{2}\left(x_{r-1}^{(2)}, A_{1} p_{1}, t\right), \\
M_{2}\left(x_{r-1}^{(2)}, x_{r}^{(2)}, t\right), M_{2}\left(A_{1} p_{1}, x_{r}^{(2)}, t\right)
\end{array}\right)>0
$$

From $\left(2.2_{M}\right)$ and for $x_{2}=p_{2}$ and $x_{3}=x_{r-1}^{(3)}=A_{2} A_{1}\left(A_{3} A_{2} A_{1}\right)^{r-1} x_{0}^{(1)}$ we get
$\left(4.2_{M}\right) \quad \phi_{2}\left(\begin{array}{c}M_{2}\left(x_{r}^{(2)}, A_{1} A_{3} A_{2} p_{2}, k t\right), M_{2}\left(p_{2}, x_{r}^{(2)}, t\right), \\ M_{2}\left(p_{2}, A_{1} A_{3} A_{2} p_{2}, t\right), M_{3}\left(x_{r-1}^{(3)}, A_{2} p_{2}, t\right), \\ M_{3}\left(x_{r-1}^{(3)}, x_{r}^{(3)}, t\right), M_{3}\left(A_{2} p_{2}, x_{r}^{(3)}, t\right)\end{array}\right)>0$
Finally, using the inequality $\left(2.3_{M}\right)$ for $x_{3}=p_{3}$ and $x_{1}=\left(A_{3} A_{2} A_{1}\right)^{r} x_{0}^{(1)}=x_{r}^{(1)}$ we obtain

$$
\phi_{3}\left(\begin{array}{c}
M_{3}\left(x_{r}^{(3)}, A_{3} A_{1} A_{3} p_{3}, k t\right), M_{3}\left(p_{3}, x_{r}^{(3)}, t\right), \tag{M}\\
M_{3}\left(p_{3}, A_{2} A_{1} A_{3} p_{3}, t\right), M_{1}\left(x_{r}^{(1)}, A_{3} p_{3}, t\right), \\
M_{1}\left(x_{r}^{(1)}, x_{r+1}^{(1)}, t\right), M_{1}\left(A_{3} p_{3}, x_{r+1}^{(1)}, t\right)
\end{array}\right)>0
$$

Letting $r \rightarrow \infty$ in $\left(4.1_{M}\right),\left(4.2_{M}\right)$ and (4.3 ${ }_{M}$) and using (i) we have

$$
\begin{aligned}
& \phi_{1}\left(\begin{array}{c}
M_{1}\left(p_{1}, A_{3} A_{2} A_{1} p_{1}, k t\right), 1, \\
M_{1}\left(p_{1}, A_{3} A_{2} A_{1} p_{1}, t\right), M_{2}\left(p_{2}, A_{1} p_{1}, t\right), \\
1, M_{2}\left(p_{2}, A_{1} p_{1}, t\right)
\end{array}\right)>0 \\
& \phi_{2}\left(\begin{array}{c}
M_{2}\left(p_{2}, A_{1} A_{3} A_{2} p_{2}, k t\right), 1, \\
M_{2}\left(p_{2}, A_{1} A_{3} A_{2} p_{2}, t\right), M_{3}\left(p_{3}, A_{2} p_{2}, t\right), \\
1, M_{3}\left(p_{3}, A_{2} p_{2}, t\right)
\end{array}\right)>0 \\
& \phi_{3}\left(\begin{array}{c}
M_{3}\left(p_{3}, A_{2} A_{1} A_{3} p_{3}, k t\right), 1, \\
M_{3}\left(p_{3}, A_{2} A_{1} A_{3} p_{3}, t\right), M_{1}\left(p_{1}, A_{3} p_{3}, t\right), \\
1, M_{1}\left(p_{1}, A_{3} p_{3}, t\right)
\end{array}\right)>0
\end{aligned}
$$

It follows from (ii) and (iii) that

$$
M_{1}\left(p_{1}, A_{3} A_{2} A_{1} p_{1}, k t\right) \geq M_{2}\left(p_{2}, A_{1} p_{1}, t\right)\left(5.1_{M}\right)
$$

$\mathrm{M}_{2}\left(p_{2}, A_{1} A_{3} A_{2} p_{2}, k t\right) \geq M_{3}\left(p_{3}, A_{2} p_{2}, t\right)$
$\mathrm{M}_{3}\left(p_{3}, A_{2} A_{1} A_{3} p_{3}, k t\right) \geq M_{1}\left(p_{1}, A_{3} p_{3}, t\right)$ Similarly

$$
\mathcal{N}_{1}\left(p_{1}, A_{3} A_{2} A_{1} p_{1}, k t\right) \leq \mathcal{N}_{2}\left(p_{2}, A_{1} p_{1}, t\right)\left(5.1_{\text {calN }}\right)
$$

$\mathrm{N}_{2}\left(p_{2}, A_{1} A_{3} A_{2} p_{2}, k t\right) \leq \mathcal{N}_{3}\left(p_{3}, A_{2} p_{2}, t\right)$
$\mathrm{N}_{3}\left(p_{3}, A_{2} A_{1} A_{3} p_{3}, k t\right) \leq \mathcal{N}_{1}\left(p_{1}, A_{3} p_{3}, t\right)$.Suppose that A_{2} is continuous. Then

$$
\begin{equation*}
p_{3}=A_{2} p_{2} \tag{6.1}
\end{equation*}
$$

Using the inequality $\left(2.1_{M}\right)$ for $x_{1}=x_{r}^{(1)}$ and $x_{2}=p_{2}$ we have
$\left(6.1_{M}\right) \quad \phi_{1}\left(\begin{array}{c}M_{1}\left(A_{3} A_{2} p_{2}, x_{r+1}^{(1)}, k t\right), M_{1}\left(x_{r}^{(1)}, A_{3} A_{2} p_{2}, t\right), \\ M_{1}\left(x_{r}^{(1)}, x_{r+1}^{(1)}, t\right), M_{2}\left(p_{2}, A_{1} x_{r}^{(1)}, t\right), \\ M_{2}\left(p_{2}, A_{1} A_{3} A_{2} p_{2}, t\right), M_{2}\left(A_{1} x_{r}^{(1)}, A_{1} A_{3} A_{2} p_{2}, t\right)\end{array}\right)>0$

Applying $\left(2.2_{M}\right)$ for $x_{2}=x_{r}^{(2)}$ and $x_{3}=p_{3}$ we get

$$
\phi_{2}\left(\begin{array}{c}
M_{2}\left(A_{1} A_{3} p_{3}, . A_{1} A_{3} A_{2} x_{r}^{(2)}, k t\right), M_{2}\left(x_{r}^{(2)}, A_{1} A_{3} p_{3}, t\right), \tag{M}\\
M_{2}\left(x_{r}^{(2)}, x_{r+1}^{(2)}, t\right), M_{3}\left(p_{3}, A_{2} x_{r}^{(2)}, t\right), \\
M_{3}\left(p_{3}, A_{2} A_{1} A_{3} p_{3}, t\right), M_{3}\left(A_{2} x_{r}^{(2)}, A_{2} A_{1} A_{3} p_{3}, t\right)
\end{array}\right)>0
$$

Finally, using the inequality $\left(2.3_{M}\right)$ for $x_{3}=p_{3}$ and $x_{1}=x_{r}^{(1)}$ we obtain

$$
\phi_{3}\left(\begin{array}{c}
M_{3}\left(x_{r}^{(3)}, A_{2} A_{1} A_{3} p_{3}, k t\right), M_{3}\left(p_{3}, x_{r}^{(3)}, t\right), \tag{M}\\
M_{3}\left(p_{3}, A_{2} A_{1} A_{3} p_{3}, t\right), M_{1}\left(x_{r-1}^{(1)}, A_{3} p_{3}, t\right), \\
M_{1}\left(x_{r-1}^{(1)}, x_{r}^{(1)}, t\right), M_{1}\left(A_{3} p_{3}, x_{r}^{(1)}, t\right)
\end{array}\right)>0
$$

Letting $r \rightarrow \infty$ in $\left(6.1_{M}\right),\left(6.2_{M}\right)$ and $\left(6.3_{M}\right)$ and using (i) and (ii) we have

$$
\begin{gathered}
\phi_{1}\binom{M_{1}\left(A_{3} p_{3}, p_{1}, k t\right), M_{1}\left(p_{1}, A_{3} p_{3}, k t\right), 1,1,}{M_{2}\left(p_{2}, A_{1} A_{3} p_{3}, t\right), M_{2}\left(p_{2}, A_{1} A_{3} A_{2} p_{2}, t\right)}>0 \\
\phi_{2}\binom{M_{2}\left(A_{1} A_{3} p_{3}, p_{2}, k t\right), M_{2}\left(p_{2}, A_{1} A_{3} p_{3}, k t\right), 1,1,}{M_{3}\left(p_{3}, A_{2} A_{1} A_{3} p_{3}, t\right), M_{3}\left(p_{3}, A_{2} A_{1} A_{3} p_{3}, t\right)}>0 \\
\phi_{3}\left(\begin{array}{c}
M_{3}\left(p_{3}, A_{2} A_{1} A_{3} p_{3}, k t\right), 1, \\
M_{3}\left(p_{3}, A_{2} A_{1} A_{3} p_{3}, k t\right), M_{1}\left(p_{1}, A_{3} p_{3}, t\right), \\
1, M_{1}\left(p_{1}, A_{3} p_{3}, t\right)
\end{array}\right)>0
\end{gathered}
$$

It follows from (iii) that

$$
\begin{aligned}
M_{1}\left(A_{3} p_{3}, p_{1}, k t\right) & \geq M_{2}\left(p_{2}, A_{1} A_{3} p_{3}, t\right) \\
M_{2}\left(p_{2}, A_{1} A_{3} p_{3}, k t\right) & \geq M_{3}\left(p_{3}, A_{2} A_{1} A_{3} p_{3}, t\right) \\
M_{3}\left(p_{3}, A_{2} A_{1} A_{3} p_{3}, k t\right) & \geq M_{1}\left(A_{3} p_{3}, p_{1}, t\right)
\end{aligned}
$$

In the same manner

$$
\begin{aligned}
\mathcal{N}_{1}\left(A_{3} p_{3}, p_{1}, k t\right) & \leq \mathcal{N}_{2}\left(p_{2}, A_{1} A_{3} p_{3}, t\right) \\
\mathcal{N}_{2}\left(p_{2}, A_{1} A_{3} p_{3}, k t\right) & \leq \mathcal{N}_{3}\left(p_{3}, A_{2} A_{1} A_{3} p_{3}, t\right) \\
\mathcal{N}_{3}\left(p_{3}, A_{2} A_{1} A_{3} p_{3}, k t\right) & \leq \mathcal{N}_{1}\left(A_{3} p_{3}, p_{1}, t\right)
\end{aligned}
$$

Then

$$
M_{1}\left(A_{3} p_{3}, p 1, k t\right) \geq M_{1}\left(A_{3} p_{3}, p_{1}, t\right) \text { and } \mathcal{N}_{1}\left(A_{3} p_{3}, p_{1}, k t\right) \leq \mathcal{N}_{1}\left(A_{3} p_{3}, p_{1}, t\right)
$$

By lemma 1.11 we get

$$
\begin{equation*}
A_{3} p_{3}=p_{1} \tag{6.2}
\end{equation*}
$$

From the inequalities $(6.1),(6.2),\left(5.1_{M}\right)$ and $\left(5.1_{\mathcal{N}}\right)$ we have

$$
\begin{align*}
A_{1} A_{3} A_{2} p_{2} & =p_{2} \\
A_{2} A_{1} A_{3} p_{3} & =p_{3} \\
A_{1} p_{1} & =p_{2} 6.3 \tag{3}
\end{align*}
$$

By (6.3), (5.1 $)_{M}$) and (5.1 ${ }_{\mathcal{N}}$) we obtain

$$
A_{3} A_{2} A_{1} p_{1}=p_{1}
$$

To prove the uniqueness of the fixed point p_{i} in X_{i}, we assume that there exists $z_{i} \in X_{i}$ such that $z_{i} \neq p_{i}, A_{i} z_{i}=z_{i+1}$ for $i=1,2$ and $A_{3} z_{3}=z_{1}$. Using $\left(2.1_{M}\right),\left(2.2_{M}\right)$ and $\left(2.3_{M}\right)$ we have for $i=1,2$

$$
\phi_{i}\binom{M_{i}\left(z_{i}, p_{i}, k t\right), M_{i}\left(p_{i}, z_{i}, t\right), 1,}{M_{i+1}\left(z_{i+1}, p_{i+1}, t\right), 1, M_{i+1}\left(p_{i+1}, z_{i+1}, t\right)}>0
$$

and

$$
\phi_{3}\binom{M_{3}\left(z_{3}, p_{3}, k t\right), M_{3}\left(p_{3}, z_{3}, t\right), 1,}{M_{1}\left(z_{1}, p_{1}, t\right), 1, M_{1}\left(p_{1}, z_{1}, t\right)}>0
$$

which imply

$$
\begin{aligned}
M_{1}\left(p_{1}, z_{1}, k t\right) & \geq M_{2}\left(p_{2}, z_{2}, t\right) \\
M_{2}\left(p_{2}, z_{2}, k t\right) & \geq M_{3}\left(p_{3}, z_{3}, t\right) \\
M_{3}\left(p_{3}, z_{3}, k t\right) & \geq M_{1}\left(p_{1}, z_{1}, t\right) .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& \mathcal{N}_{1}\left(p_{1}, z_{1}, k t\right) \leq \mathcal{N}_{2}\left(p_{2}, z_{2}, t\right) \\
& \mathcal{N}_{2}\left(p_{2}, z_{2}, k t\right) \leq \mathcal{N}_{3}\left(p_{3}, z_{3}, t\right) \\
& \mathcal{N}_{3}\left(p_{3}, z_{3}, k t\right) \leq \mathcal{N}_{1}\left(p_{1}, z_{1}, t\right)
\end{aligned}
$$

Using lemma 1.11 we get $z_{i}=p_{i}, i=1,2,3$. This proves the uniqueness of p_{i} in X_{i} for all $i=1,2,3$. This complete the proof of the theorem.

Example 2.2. Let $\left(M_{i}, X_{i}, \theta_{i}\right), i=1,2,3$, be 3 an intuitionistic fuzzy metric spaces such that $M_{d}(x, y, t)=\frac{t}{t+d(x, y)}, \quad \mathcal{N}_{d}(x, y, t)=\frac{d(x, y)}{t+d(x, y)}, X_{1}=[0,1], X_{2}=[1,2]$ and $X_{3}=[2,3]$. Define $A_{i}: X_{i} \rightarrow X_{i+1}$ for $i=1,2$ and $A_{3}: X_{3} \rightarrow X_{1}$ by

$$
\begin{aligned}
& A_{1} x_{1}=\frac{3}{2} \text { if } x_{1} \in[0,1], A_{2} x_{2}=\left\{\begin{array}{l}
\frac{9}{4} \text { if } x_{2} \in\left[1, \frac{5}{4}\right. \\
\frac{5}{2} \text { if } x_{2} \in\left[\frac{5}{4}, 2\right]
\end{array}\right. \\
& A_{3} x_{3}=\left\{\begin{array}{l}
\frac{3}{4} \text { if } x_{3} \in\left[2, \frac{9}{4}\right. \\
1 \text { if } x_{3} \in\left[\frac{9}{4}, 3\right]
\end{array}\right.
\end{aligned}
$$

Let $\phi_{1}=\phi_{2}=\phi_{3}=\phi$ such that $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-\min \left\{t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$
and let $\psi_{1}=\psi_{2}=\psi_{3}=\psi$ such that $\psi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-\max \left\{t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$.
Note that there exists w_{i} in X_{i} such that $\left(A_{i-1} A_{i-2} \ldots A_{1} A_{n} \ldots A_{i}\right) w_{i}=w_{i}, \forall i=1,2,3$ and $n=3$.
(a) If $i=3$ we get $\left(A_{2} A_{1} A_{3}\right) w_{3}=w_{3}$ if $w_{3}=3-\frac{1}{2}=\frac{5}{2}$ because

$$
\begin{aligned}
& \left(A_{2} A_{1} A_{3}\right)\left(\frac{5}{2}\right) \\
= & A_{2} A_{1}(1)=A_{2}\left(\frac{3}{2}\right) \\
= & \frac{5}{2}
\end{aligned}
$$

(b) If $i=2$ we find $A_{1} A_{3} A_{2} w_{2}=w_{2}$ and if $w_{2}=\frac{3}{2} \in\left[\frac{5}{4}, 2[\right.$;

$$
\begin{aligned}
& \left(A_{1} A_{3} A_{2}\right)\left(\frac{3}{2}\right) \\
= & A_{1} A_{3}\left(\frac{5}{2}\right)=A_{1}\left(\frac{3}{2}\right) \\
= & \frac{3}{2}
\end{aligned}
$$

(c) If $i=1$ we find $A_{3} A_{2} A_{1} w_{1}=w_{1}$ and if $w_{1}=1 \in[0,1]$;

$$
\begin{aligned}
& \left(A_{3} A_{2} A_{1}\right)(1) \\
= & A_{3} A_{2}\left(\frac{3}{2}\right)=A_{3}\left(\frac{5}{2}\right) \\
= & 1
\end{aligned}
$$

Hence, all conditions of Theorem 2.1 are satisfied.
Remark. In the theorem 2.8 of [20], the inequalities (1) and (2) should be $>$ (greater than) in order to obtain a contradiction in example 2.5 of [20].

References

[1] C. Alaca, D. Turkoglu, C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces. Chaos, Solitons \& Fractals 2006;29:1073-8.
[2] A. Aliouche and B. Fisher, Fixed point theorems for mappings satisfying implicit relation on two complete and compact metric spaces, Applied Mathematics and Mechanics., 27 (9) (2006), 1217-1222.
[3] A. Aliouche, F. Merghadi and A. Djoudi, A Related Fixed Point Theorem in two Fuzzy Metric Spaces, J. Nonlinear Sci. Appl., 2 (1) (2009), 19-24.
[4] Y. J. Cho, Fixed points in fuzzy metric spaces, J. Fuzzy. Math., 5 (4) (1997), 949-962.
[5] Deng ZK. Fuzzy psendo-metric spaces. J Math Anal Appl 1982;86:74-95.
[6] El Naschie. M. S, On the uncertainty of Cantorian geometry and two-slit experiment. Chaos, Solitons and Fractals., 9 (1998), 517-29.
[7] El Naschie. M. S, A review of E-infinity theory and the mass spectrum of high energy particle physics. Chaos, Solitons and Fractals., 19 (2004), 209-36.
[8] El Naschie. M. S, On a fuzzy Kahler-like Manifold which is consistent with two-slit experiment. Int. J of Nonlinear Science and Numerical Simulation., 6 (2005), 95-98.
[9] El Naschie. M. S, The idealized quantum two-slit gedanken experiment revisited Criticism and reinterpretation. Chaos, Solitons and Fractals., 27 (2006), 9-13.
[10] El Naschie M. S. On two new fuzzy Kahler manifolds, Klein modular space and 't Hooft holographic principles. Chaos, Solitons \& Fractals., 29 (2006), 876-881.
[11] Ereeg MA. Metric spaces in fuzzy set theory. J Math Anal Appl 1979;69:338-353.
[12] A. George and P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets Syst., 64 (1994), 395-399.
[13] M. Grabiec, Fixed points in fuzzy metric spaces Fuzzy Sets Syst., 27 (1988), 385-389.
[14] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica., 11 (1975), 326-334.
[15] S. Kutukcu, Compatibility and Common Coincidence Points in Intuitionistic Fuzzy Metric Spaces, Southeast Asian Bulletin Math., 32 (2008), 1081-1089.
[16] R. Lowen, Fuzzy set theory. Dordrecht: Kluwer Academic Publishers; 1996.
[17] F. Merghadi and A. Aliouche, A related fixed point theorem in n - fuzzy metric spaces, Iranian Journal of Fuzzy Systems Vol. 7, No. 3, (2010) pp. 73-86.
[18] J. Park, Intuitionistic fuzzy metric spaces. Chaos, Solitons \& Fractals 2004;22:1039-1046.
[19] V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math., 32 (1999),157-163.
[20] K. P. R. Rao, Abdelkrim Aliouche and G. Ravi Babu, Related Fixed Point Theorems in Fuzzy Metric Spaces, J. Nonlinear Sci. Appl., 1 (3) (2008), 194-202.
[21] R. Saadati and J.H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals 27 (2006) 331-344.
[22] B. Schweizer and A. Sklar, Statistical metric spaces. Pacific J. Math., 10 (1960), 313-334.
[23] Tanaka. Y, Mizno Y, Kado T. Chaotic dynamics in Friedmann equation. Chaos, Solitons and Fractals., 24 (2005), 407-422.
[24] L. A. Zadeh, Fuzzy sets, Inform and Control, 8 (1965), 338-353.

[^0]: *Corresponding author

