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Abstract. In this paper, a new homotopy perturbation technique is proposed to solve a class of intial-

boundary value problems of partial di¤erential equations over �nite domains. The advantage of this

technique is to admit both the initial and boundary conditions in the recursive relation so that we can

obtain a good approximate solution for the problems. The e¤ectiveness of the approach is veri�ed by

several examples.
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1. Introduction

In 1998, J. H. He proposed the homotopy perturbation method (HPM) for addressing

linear and nonlinear problems [1] and [2]. This method has been the subject of extensive

studies, and applied to di¤erent linear and nonlinear initial value problems [1]-[4]. The
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HPM has the advantage of dealing directly with the problem without transformations,

linearization, discretization or any unrealistic assumption. The method yields a rapidly

convergent series solution and usually a few iterations lead to accurate approximation of

the exact solution [5].

Yet the classical HPM, among some other series solution methods, build the recurrence

scheme of solution using only one type of the problem conditions: either the initial condi-

tions or the boundary conditions. Recently, Lesnic [6]-[7] and El-Sayed et al [8] suggested

a technique of Adomian decomposition method for solving partial di¤erential equations

(PDEs) over �nite domains for the integer and fractional-order cases, respectively. Our

aim here is to propose a new HPM technique that incorporates both types of conditions

in the scheme to solve initial-boundary value problems (IBVP) over �nite domains.

The article begins by presenting classical HPM in section two. In section three, we

introduce the new HPM technique. In section four some examples are solved to illustrate

the validity of this approach.

2. The Classical HPM

Consider the following equation

A (u (x; t))� f(r) = 0; r 2 
; (2:1)

with boundary conditions

B(u; @u=@n) = 0; r 2 �; (2:2)

where A is a general di¤erential operator, u(x; t) is the unknown function, B is a boundary

operator, g(r) is a known analytic function, and � is the boundary of the domain 
, x and

t denote the spatial and the temporal independent variables, respectively. The operator

A can be generally divided into linear and nonlinear parts, say L and N . Therefore (2:1)

can be written as

L (u) +N(u)� g(r) = 0: (2:3)

In [2], He constructed a homotopy v(r; p) : 
� [0; 1]! R which satis�es

H(v; p) = (1� p) [L(v)� L(u0)] + p [L(v) +N(v)� g(r)] = 0; r 2 
; (2:4)
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or

H(v; p) = L(v)� L(u0) + pL(u0) + p[N(v)� g(r)] = 0; r 2 
; (2:5)

where p 2 [0; 1] is an embedding parameter, u0 is an initial guess of u(x; t) which satis�es

the boundary conditions. Obviously, from (2.4) and (2.5) one has

H(v; 0) = L(v)� L(u0); (2:6)

H(v; 1) = L (u) +N(u)� g(r) = 0: (2:7)

Changing p from zero to unity is just that change of v(r; p) from u0(r) to u (r) : Expanding

v(r; p) in Taylor series with respect to p, one has

v = v0 + pv1 + p
2v2 + � � � .: (2:8)

Setting p = 1 in equation (2.8) yields the approximate solution of (2.1) to be

u = lim
p!1

v = v0 + v1 + v2 + ::: . (2:9)

The basic assumption is that the solution of (2.4) and (2.5) can be written as a power

series in p

u = u0 + pu1 + p
2u2 + :::: (2:10)

Substituting (2.10) into (2.3) and equating the terms with identical powers of p, we obtain

a series of linear equations in u0; u1; u2; :::; which can be solved by symbolic computation

softwares. The solution u(x; t) =
P1

i=0 ui(x; t) is approximated by the truncated series

Un(x; t) =
n�1X
i=1

ui(x; t): (2:11)

3. The HPM technique for �nite domains

In this section, we propose the HPM technique for solving IBVP over �nite domains.

Consider the PDE of the form

Qu+Mu+ f = 0; (3:1)

associated with initial and boundary conditions where Q denotes the highest-order partial

derivative with respect to t; M denotes the highest-order partial derivative with respect
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to x and f is a function of x; t; u; and its temporal and spatial partial derivatives of

order less than the order of Q and M; respectively. Then, to include both the initial and

boundary conditions in the solution, we construct the two homotopies

u = Q�1 (�pMu� pf) ; (3:2)

u =M�1 (�pQu� pf) ; (3:3)

for each homotopy, the corresponding powers of p are compared to obtain two systems of

partial di¤erential equations with the prescribed conditions. We assume the solution of

problem (3.1) in the form

u =
1X
i=0

ui; (3:4)

where ui is given by

ui =
~ui + �ui
2

i = 0; 1; :::; (3:5)

where ~ui and �ui are solutions of the ith equations in the PDE systems obtained from the

homotopies (3.2) and (3.3), respectively.

4. Numerical implementation

In this section, some numerical examples are presented to validate the proposed solution

scheme. The results are calculated using the symbolic software Mathematica.

Example 4.1 Consider the heat problem8>>><>>>:
ut = uxx; 0 < x < 1; t > 0;

u(x; 0) = x2;

u(0; t) = 2t; u(1; t) = 1 + 2t:

(4:1)

According to the homotopies (3.2) and (3.3), the two following systems of PDEs are

obtained

p0 : u0t = 0; u0(x; 0) = x
2;

p1 : u1t = u0xx; u1(x; 0) = 0;

p2 : u2t = u1xx; u2(x; 0) = 0;
...

(4:2)
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p0 : u0xx = 0; u0(0; t) = 2t; u0(1; t) = 1 + 2t;

p1 : u1xx = u0t; u1(0; t) = 0; u1(1; t) = 0;

p2 : u2xx = u1t; u2(0; t) = 0; u2(1; t) = 0;
...

(4:3)

Solving (4.2) and (4.3) for ~u0; �u0; ~u1; �u1; ~u2; �u2; : : : ; the �rst few components of the

homotopy perturbation solution for problem (4.1) are derived as follows

~u0 = x
2; �u0 = 2t+ x; u0 =

1
2
(x2 + 2t+ x) ;

~u1 = t; �u1 =
1
2
(�x+ x2) ; u1 = 1

4
(x2 + 2t� x) ;

~u2 =
t
2
; �u2 =

1
4
(�x+ x2) ; u2 = 1

8
(x2 + 2t� x) ;

...
...

...

un+1 =
1

2n+1
��
x2 + 2t� x

��
; n � 1:

Hence, we have

u(x; t) =
�
x2 + 2t

� 1X
n=0

2�n�1 +
x

2

 
1�

1X
n=1

2�n

!
= x2 + 2t;

which is the exact solution of problem (4.1) given by u (x; t) = x2 + 2t [9].

Example 4.2 Consider the heat conduction problem8>>><>>>:
ut = uxx; 0 < x < 1; t > 0;

u(x; 0) = sin (x) ;

ux(0; t) = e
�t; ux(1; t) = cos (1) e

�t:

(4:4)

According to the homotopies (3.2) and (3.3), the two following systems of PDEs are

obtained

p0 : u0t = 0; u0(x; 0) = sin (x) ;

p1 : u1t = u0xx; u1(x; 0) = 0;

p2 : u2t = u1xx; u2(x; 0) = 0;
...

(4:5)
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p0 : u0xx = 0; u0x(0; t) = e
�t; u0x(1; t) = cos (1) e

�t;

p1 : u1xx = u0t; u1x(0; t) = 0; u1x(1; t) = 0;

p2 : u2xx = u1t; u2x(0; t) = 0; u2x(1; t) = 0;
...

(4:6)

Solving (4.5) and (4.6), the �rst few components of the homotopy perturbation solution

for problem (4.4) are derived as follows

~u0 = sin (x) ;

�u0 = e�tx� 0:2298e�tx2;

u0 =
1

2

�
e�tx� 0:2298e�tx2 + sin (x)

�
;

~u1 = �0:2298 + 0:2298 cosh (t)� 0:5t sin (x)� 0:2298 sinh (t) ;

�u1 = 0:1058e�tx2 � 0:08333e�tx3 + 0:009577e�tx4;

u1 = �0:1149 + 0:05292e�tx2 � 0:04166e�tx3 + 0:0047e�tx4 +

0:11492 cosh (t)� 0:25t sin (x)� 0:11492 sinh (t) ;

~u2 = (0:05 74 2x2 � 0:25x+ 0:105 8)(1� cosh (t) + sinh (t)) + 0:125t2 sin (x) ;

�u2 = �0:25x+
�
�0:0574e�t + 0:05742 + 0:06 155 e�t

�
x2 + 0:25 sin (x)

�0:004e�tx4 + 0:002e�tx5 � 0:0001e�tx6;

u2 = �e�t(0:00007x6 � 0:00103 0x5 + 0:00218x4 + 5:75� 10�6x3 +

0:02 642x2 � 0:123 6x+ 0:05 22) + 0:057x2 � 0:247 95x+ 0:051 79

+
�
0:125 + 0:0625t2

�
sin (x) ;

...

and the solution is thus obtained as

u = u0 + u1 + u2 + :::::

Figure (1) gives the comparison at t = 0:5 between the HPM 3rd-order approximate

solution of problem (4.4) and the exact solution given in [6] by u (x; t) = sin (x) e�t.
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Figure 1. u(x; 0:5) of Example (4.2) for 3rd-order HPM approximation.

Example 4.3 Consider the Klien-Gordon problem8>>><>>>:
utt � uxx = u; 0 < x < �

2
; t > 0;

u(x; 0) = 1 + sin (x) ; ut(x; 0) = 0;

u(0; t) = cosh (t) ; u(�
2
; t) = 1 + cosh (t) ;

(4:7)

According to the homotopies (3.2) and (3.3), the two following systems of PDEs are

obtained

p0 : u0tt = 0; u0(x; 0) = 1 + sin (x) ; u0t(x; 0) = 0;

p1 : u1tt = u0xx + u0; u1(x; 0) = 0; u1t(x; 0) = 0;

p2 : u2tt = u1xx + u1; u2(x; 0) = 0; u2t(x; 0) = 0;
...

(4:8)

p0 : u0xx = 0; u0(0; t) = cosh (t) ; u0(
�
2
; t) = 1 + cosh (t) ;

p1 : u1xx = u0tt � u0; u1(0; t) = 0; u1(
�
2
; t) = 0;

p2 : u2xx = u1tt � u1; u2(0; t) = 0; u2(
�
2
; t) = 0;

...

(4:9)

Solving (4.8) and (4.9), the �rst few components of the homotopy perturbation solution

for problem (4.7) are derived as follows



145 A.M.A. EL-SAYED1, I. L. EL-KALLA2, A. ELSAID2;�, AND D. HAMMAD2

~u0 = 1 + sin (x) ;

�u0 = cosh (t) +
2x

�
;

u0 = 0:318 31x+ 0:5 sin x+ 0:5 cosh t+ 0:5;

~u1 = 0:5 cosh t+ 0:159 15t2x+ 0:25t2 � 0:5;

�u1 = 0:5 sin x� 0:02652x
�
2x2 + 9: 424 8x� 7: 739 2

�
;

u1 = 0:25(sin x+ cosh t� 1)� 0:156 47x+ 0:07957 t2x+

0:125 t2 � 0:01 266x2 � 0:02 652 6x3 � 0:25;

~u2 = �0:00663t2
�
2x
�
x2 + 12

�
� 19:73x+ 9: 4248x2 + 37: 699

�
+

0:25(cosh t� 1) + 0:00331 t4 (2x+ 3:141 6)

�u2 = 0:025 1t2x2 � 0:01 32 t2x3 + 0:25x sin x+ 0:25x2

+0:00941x3 + 0:01 041x4 + 0:001 32x5;

u2 = 0:125 (sin x+ cosh t� t2 + x2 � 1)� 0:311 7x+ 0:05 13t2x� 0:02 652tx3 +

0:0033t4x� 0:062 5t2x2 + 0:005 2t4 + 0:004 7x3 + 0:0052x4 + 0:00066x5;
...

and the solution is thus obtained as

u = u0 + u1 + u2 + ::::

Figure (2) gives the comparison at t = 0:5 between the HPM 3�rd-order approximate

solution of problem (4.7) and the exact solution given in [10] by u (x; t) = sin (x)+cosh (t) :

Example 4.4 Consider the telegraph problem8>>><>>>:
utt + ut = uxx + (1 + x

2 + t2) ; 0 < x < 1; t > 0;

u(x; 0) = x; ut(x; 0) = 1 + x
2;

u(0; t) = t+ t3

3
; u(1; t) = 1 + 2t+ t3

3
:

(4:10)
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Figure 2. u(x; 0:5) of Example (4.3) for 3rd-order HPM approximation.

According to the homotopies (3.2) and (3.3), the two following systems of PDEs are

obtained

p0 : u0tt = 0; u0(x; 0) = x; u0t(x; 0) = 1 + x
2;

p1 : u1tt = u0xx � u0t + (1 + x2 + t2) ; u1(x; 0) = 0; u1t(x; 0) = 0;

p2 : u2tt = u1xx � u1t; u2(x; 0) = 0; u2t(x; 0) = 0;
...

(4:11)

p0 : u0xx = 0; u0(0; t) = t+
t3

3
; u0(1; t) = 1 + 2t+

t3

3
;

p1 : u1xx = u0tt + u0t � (1 + x2 + t2) ; u1(0; t) = 0; u1(1; t) = 0;

p2 : u2xx = u1tt + u1t; u2(0; t) = 0; u2(1; t) = 0;
...

(4:12)

Solving (4.11) and (4.12), the �rst few components of the homotopy perturbation solution

for problem (4.10) are derived as follows
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~u0 = x+ t
�
1 + x2

�
;

�u0 = t+
t3

3
+ x (1 + t) ;

u0 =
1

6

�
t3 + 6x+ 3t

�
2 + x+ x2

��
;

~u1 =
t3

6
+
t4

24
� t

2x

4
+
t2x2

4
;

�u1 = �
�
1

24
+
t

2
� t

2

4

�
x+

tx2

2
� t

2x2

4
+
x3

12
� x

4

24
;

u1 =
1

48

�
4t3 + t4 + 12t(�1 + x)x� x

�
1� 2x2 + x3

��
;

~u2 = � 1

240
t2
�
�20t+ 5t2 + t3 + 60(�1 + x)x

�
;

�u2 =
t3

2880

�
120 + 12t2 + t3 � 15t

�
2� x+ x2

��
;

u2 =
1

480

�
�5t4 � t5 + 60t(�1 + x)x+ 10t3

�
2� x+ x2

�
+ 5

�
x� 2x3 + x4

��
;

...

and the solution is thus obtained as

u = u0 + u1 + u2 + ::::

Figure (3) gives the comparison at t = 0:5 between the HPM 3rd-order approximate

solution of problem (4.10) and the exact solution given in [7] by u (x; t) = x+t (1 + x2)+ t3

3
:

Example 4.5 Consider Schrodinger problem

8>>><>>>:
ut + iuxx = 0; 0 < x < 1; t > 0;

u(x; 0) = 1 + cosh (2x) ;

u(0; t) = 1 + e(�4it); u(1; t) = 1 + cosh (2) e(�4it):

(4:13)
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Figure 3. u(x; 0:5) of Example (4.4) for 3rd-order HPM approximation.

According to the homotopies (3.2) and (3.3), the two following systems of PDEs are

obtained

p0 : u0t = 0; u0(x; 0) = 1 + cosh (2x) ;

p1 : u1t = �iu0xx; u1(x; 0) = 0;

p2 : u2t = �iu1xx; u2(x; 0) = 0;
...

(4:14)

p0 : u0xx = 0; u0(0; t) = 1 + e
(�4it); u0(1; t) = 1 + cosh (2) e

(�4it);

p1 : u1xx = iu0t; u1(0; t) = 0; u1(1; t) = 0;

p2 : u2xx = iu1t; u2(0; t) = 0; u2(1; t) = 0;
...

(4:15)

Solving (4.14) and (4.15), the �rst few components of the homotopy perturbation solution

for problem (4.13) are derived as follows
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~u0 = 1 + cosh (2x) ;

�u0 = e�4it
�
1 + e4it + x(�1 + cosh(2))

�
;

u0 =
1

2
e�4it

�
1 + 2e4it � x+ xcosh(2) + e4itcosh(2x)

�
;

~u1 =
1

4

��
�1 + e�4it

�
(1 + x(�1 + cosh(2)))� 8t2cosh(2x)

�
;

�u1 =
1

90
e�4it

�
x
�
8 + 15x3 � 45e4it

�
�1 + cosh(1)2

��
+ 45e4it sinh(x)2

�
+

1

90
e�4it

�
3x4(�1 + cosh(2)) + 7cosh(2)� 10x2(2 + cosh(2))

�
;

u1 =
1

6
e�4it ((�1 + x)x(2 + x(�1 + cosh(2)) + cosh(2)))�

tcosh(2x);

~u2 =
1

12
e�4it

�
�
�
�1 + e4it

�
(�1 + x)x(2 + x(�1 + cosh(2)) + cosh(2))

�
+

1

12
e�4it

�
2ie4itt

�
�3 + 8t2

�
cosh(2x)

�
;

�u2 =
e�4it

3780

�
x
�
�694 + 945x+ 42x5 + 1890ie4itt(�1 + cosh(2)) + 7x2(�29 + 59cosh(2))

�
�
�
+

e�4it

3780
x
�
6x6(�1 + cosh(2))� 377cosh(2)� 42x4(2 + cosh(2)) + 7x2(�29 + 59cosh(2))

�
�

it sinh(x)2;

u2 =
1

2

�
�x
�
1

2

�
�1 + (cosh(1))2

�
� 1

90
e�4it(8 + 7cosh(2))

��
+

1

2

�
+
1

4

��
�1 + e�4it

�
(1 + x(�1 + cosh(2)))� 8t2cosh(2x)

��
+

1

2

�
1

90
e�4it

�
x3
�
15x+ 3x2(�1 + cosh(2))� 10(2 + cosh(2))

�
+ 45e4it(sinh(x))2

��
;

...

and the solution is thus obtained as

u = u0 + u1 + u2 + ::::

Figure (4) gives the comparison at t = 0:5 between the magintude of the 14th-order HPM
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Figure 4. ju(x; 0:5)j of Example (4.5) for 14th-order HPM approximation.

approximate solution of problem (4.13) and the magnitude of the exact solution given in

[11] by u (x; t) = 1 + cosh (2x) e(�4it):

5. Conclusion

We propose an analytical-numerical technique based on the HPM to solve IBVP over

�nite domains. The advantage of this technique is to include both the initial and boundary

conditions in the recursive relation, so that we can obtain a good approximate solution

for the problems. The results obtained in the numerical examples show good results.
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