RULED SURFACE PAIR GENERATED BY A CURVE AND ITS NATURAL LIFT IN \mathbb{R}^3_1

EVREN ERGÜN1, MUSTAFA ÇALIŞKAN2

1Department of Mathematics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, 55139, Turkey

2Department of Mathematics, Faculty of Sciences, Gazi University, Ankara, 06500, Turkey

Abstract. In this study, firstly, the Frenet vector fields $\tilde{T}, \tilde{N}, \tilde{B}$ of the natural lift $\tilde{\alpha}$ of a curve α are calculated in terms of those of α in \mathbb{R}^3_1. Secondly, we obtained striction lines and distribution parameters of ruled surface pair generated by the curve α and its natural lift $\tilde{\alpha}$. Finally, for α and $\tilde{\alpha}$ those notions are compared with each other.

Keywords: Natural Lift, Ruled Surface, Striction Line, Distribution Parameter.

2000 AMS Subject Classification: 51B20, 53A15, 53A04,

1. Introduction and Preliminaries

Let Minkowski 3-space \mathbb{R}^3_1 be the vector space \mathbb{R}^3 equipped with the Lorentzian inner product g given by

$$g(X, X) = -x_1^2 + x_2^2 + x_3^2$$

where $X = (x_1, x_2, x_3) \in \mathbb{R}^3$. A vector $X = (x_1, x_2, x_3) \in \mathbb{R}^3$ is said to be timelike if $g(X, X) < 0$, spacelike if $g(X, X) > 0$ and lightlike (or null) if $g(X, X) = 0$. Similarly, an arbitrary curve $\alpha = \alpha(t)$ in \mathbb{R}^3_1 where t is a pseudo-arclength parameter, can locally
be timelike, spacelike or null (lightlike), if all of its velocity vectors $\alpha'(t)$ are respectively timelike, spacelike or null (lightlike), for every $t \in I \subset \mathbb{R}$.

A lightlike vector X is said to be positive (resp. negative) if and only if $x_1 > 0$ (resp. $x_1 < 0$) and a timelike vector X is said to be positive (resp. negative) if and only if $x_1 > 0$ (resp. $x_1 < 0$). The norm of a vector X is defined by [4]

$$\|X\|_{IL} = \sqrt{|g(X,X)|}.$$

We denote by $\{T(t), N(t), B(t)\}$ the moving Frenet frame along the curve α. Then T, N and B are the tangent, the principal normal and the binormal vector of the curve α, respectively.

Let α be a unit speed timelike space curve with curvature κ and torsion τ. Let Frenet vector fields of α be $\{T, N, B\}$. In this trihedron, T is timelike vector field, N and B are spacelike vector fields. Then, Frenet formulas are given by [8]

$$T' = \kappa N \quad N' = \kappa T + \tau B \quad B' = -\tau N.$$

Let α be a unit speed spacelike space curve with a spacelike binormal. In this trihedron, we assume that T and B are spacelike vector fields and N is a timelike vector field. Then, Frenet formulas are given by [8]

$$T' = \kappa N \quad N' = \kappa T + \tau B \quad B' = \tau N.$$

Let α be a unit speed spacelike space curve with a timelike binormal. In this trihedron, we assume that T and N are spacelike vector fields and B is a timelike vector field. Then, Frenet formulas are given by [8]

$$T' = \kappa N \quad N' = -\kappa T + \tau B \quad B' = \tau N.$$

Lemma 1.1. Let X and Y be nonzero Lorentz orthogonal vectors in \mathbb{R}^3_1. If X is timelike, then Y is spacelike [10].
Lemma 1.2. Let X and Y be positive (negative) timelike vectors in \mathbb{R}^3_1. Then
\[g(X, Y) \leq \|X\| \|Y\| \]
with equality if and only if X and Y are linearly dependent [10].

Lemma 1.3.

i) Let X and Y be positive (negative) timelike vectors in \mathbb{R}^3_1. By the Lemma 1.2, there is unique nonnegative real number $\varphi(X, Y)$ such that
\[g(X, Y) = \|X\| \|Y\| \cosh \varphi(X, Y) \]
the Lorentzian timelike angle between X and Y is defined to be $\varphi(X, Y)$.

ii) Let X and Y be spacelike vectors in \mathbb{R}^3_1 that span a spacelike vector subspace. Then we have
\[|g(X, Y)| \leq \|X\| \|Y\|. \]
Hence, there is a unique real number $\varphi(X, Y)$ between 0 and π such that
\[g(X, Y) = \|X\| \|Y\| \cos \varphi(X, Y) \]
the Lorentzian spacelike angle between X and Y is defined to be $\varphi(X, Y)$.

iii) Let X and Y be spacelike vectors in \mathbb{R}^3_1 that span a timelike vector subspace. Then we have
\[g(X, Y) > \|X\| \|Y\|. \]
Hence, there is a unique positive real number $\varphi(X, Y)$ between 0 and π such that
\[|g(X, Y)| = \|X\| \|Y\| \cosh \varphi(X, Y) \]
the Lorentzian timelike angle between X and Y is defined to be $\varphi(X, Y)$.

iv) Let X be a spacelike vector and Y be a positive timelike vector in \mathbb{R}^3_1. Then there is a unique nonnegative real number $\varphi(X, Y)$ such that
\[|g(X, Y)| = \|X\| \|Y\| \sinh \varphi(X, Y) \]
the Lorentzian timelike angle between X and Y is defined to be $\varphi(X, Y)$ [10].

Definition 1.1. (Unit Vector C of Direction W for Non-null Curves):
For the curve α with a timelike tangent, θ being a Lorentzian timelike angle between the spacelike binormal unit $-B$ and the Frenet instantaneous rotation vector W,

a) If $|\kappa| > |\tau|$, then W is a spacelike vector. In this situation, from Lemma 1.3 iii) we can write

$$\kappa = ||W|| \cosh \theta, \quad \tau = ||W|| \sinh \theta$$

$$||W||^2 = g(W,W) = \kappa^2 - \tau^2 \quad \text{and} \quad C = \frac{W}{||W||} = \sinh \theta T + \cosh \theta B,$$

where C is unit vector of direction W.

b) If $|\kappa| < |\tau|$, then W is a timelike vector. In this situation, from Lemma 1.3 iv) we can write

$$\kappa = ||W|| \sinh \theta, \quad \tau = ||W|| \cosh \theta$$

$$||W||^2 = -g(W,W) = -(\kappa^2 - \tau^2) \quad \text{and} \quad C = \cosh \theta T + \sinh \theta B.$$

ii) For the curve α with a timelike principal normal, θ being an angle between the B and the W, if B and W spacelike vectors that span a spacelike vector subspace then by the Lemma 1.3 ii) we can write

$$\kappa = ||W|| \cos \theta, \quad \tau = ||W|| \sin \theta$$

$$||W||^2 = g(W,W) = \kappa^2 + \tau^2 \quad \text{and} \quad C = \sin \theta T - \cos \theta B.$$

iii) For the curve α with a timelike binormal, θ being a Lorentzian timelike angle between the $-B$ and the W,

a) If $|\kappa| < |\tau|$, then W is a spacelike vector. In this situation, from Lemma 1.3 iv) we can write

$$\kappa = ||W|| \sinh \theta, \quad \tau = ||W|| \cosh \theta$$

$$||W||^2 = g(W,W) = \tau^2 - \kappa^2 \quad \text{and} \quad C = -\cosh \theta T + \sinh \theta B.$$

b) If $|\kappa| > |\tau|$, then W is a timelike vector. In this situation, from Lemma 1.3 i) we have

$$\kappa = ||W|| \cosh \theta, \quad \tau = ||W|| \sinh \theta$$

$$||W||^2 = -g(W,W) = -(\tau^2 - \kappa^2) \quad \text{and} \quad C = -\sinh \theta T + \cosh \theta B.$$

Corollary 1.1. Let α be a unit speed timelike space curve. Then the natural lift $\overline{\alpha}$ of α is a spacelike space curve [5].
Corollary 1.2. Let α be a unit speed spacelike space curve with a spacelike binormal. Then the natural lift $\overline{\alpha}$ of α is a timelike space curve [5].

Corollary 1.3. Let α be a unit speed spacelike space curve with a timelike binormal. Then the natural lift $\overline{\alpha}$ of α is a spacelike space curve [5].

Corollary 1.4. Let α be a unit speed timelike space curve and $\overline{\alpha}$ be the natural lift of α. Then

$$T(s) = N(s), \quad \overline{N}(s) = -\frac{\kappa(s)}{\|W\|} T(s) - \frac{\tau(s)}{\|W\|} B(s), \quad \overline{B}(s) = -\frac{\tau(s)}{\|W\|} T(s) - \frac{\kappa(s)}{\|W\|} B(s) \quad [7].$$

Corollary 1.5. Let α be a unit speed spacelike space curve with a spacelike binormal and $\overline{\alpha}$ be the natural lift of α. Then

$$\overline{T}(s) = N(s), \quad \overline{N}(s) = \frac{\kappa(s)}{\|W\|} T(s) + \frac{\tau(s)}{\|W\|} B(s), \quad \overline{B}(s) = \frac{\tau(s)}{\|W\|} T(s) - \frac{\kappa(s)}{\|W\|} B(s) \quad [7].$$

Corollary 1.6. Let α be a unit speed spacelike space curve with a timelike binormal and $\overline{\alpha}$ be the natural lift of α. Then

$$\overline{T}(s) = N(s), \quad \overline{N}(s) = -\frac{\kappa(s)}{\|W\|} T(s) - \frac{\tau(s)}{\|W\|} B(s), \quad \overline{B}(s) = \frac{\tau(s)}{\|W\|} T(s) + \frac{\kappa(s)}{\|W\|} B(s) \quad [7].$$

Definition 1.2. Let M be a hypersurface in \mathbb{R}^3 and let $\alpha: I \rightarrow M$ be a parametrized curve. α is called an integral curve of X if

$$\frac{d}{ds}(\alpha(s)) = X(\alpha(s)) \quad (\text{for all } s \in I) \quad [4]$$

where X is a smooth tangent vector field on M. We have

$$TM = \bigcup_{P \in M} T_PM = \chi(M)$$

where T_PM is the tangent space of M at P and $\chi(M)$ is the space of vector fields on M.
Definition 1.3. For any parametrized curve \(\alpha : I \rightarrow M , \overline{\alpha} : I \rightarrow TM \) given by

\[
\overline{\alpha}(s) = \left(\alpha(s), \alpha'(s) \right) = \alpha'(s)|_{\alpha(s)}
\]

is called the natural lift of \(\alpha \) on \(TM \) [5]. Thus, we can write

\[
\frac{d\overline{\alpha}}{ds} = \frac{d}{ds} \left(\alpha'(s)|_{\alpha(s)} \right) = D_{\alpha'(s)}\alpha'(s)
\]

where \(D \) is the Levi-Civita connection on \(\mathbb{R}^3 \).

A ruled surface is generated by a one-parameter family of straight lines and it possesses a parametric representation

\[
X(s,v) = \alpha(s) + ve(s),
\]

where \(\alpha(s) \) represents a space curve which is called the base curve and \(e \) is a unit vector representing the direction of a straight line.

The striction point on a ruled surface \(X \) is the foot of the common normal between two consecutive generators (or ruling). The set of striction points defines the striction curve given as

\[
\beta(s) = \alpha(s) - \frac{g(\alpha', e')}{g(e', e')} e(s) \quad [2].
\]

The distribution parameter of the ruled surface \(X \) is defined by

\[
P_e = \frac{\det(\alpha', e, e')}{\|e'\|^2}[2].
\]

The ruled surface is developable if and only if \(P_e = 0 \).

3. RuledSurface Pair Generated By a Curve and Its Natural Lift in \(\mathbb{R}^3 \)

Let \(\alpha \) be a unit speed timelike space curve. Then the natural lift \(\overline{\alpha} \) of \(\alpha \) is a spacelike space curve.
(i) Let X and \overline{X} be two ruled surfaces which is given by

$$X(s,v) = \alpha(s) + vT(s), \quad \overline{X}(s,v) = \overline{\alpha}(s) + v\overline{T}(s).$$

The striction curves of X and \overline{X} are given by $\beta(s) = \alpha(s) - \lambda T(s)$ and $\overline{\beta}(s) = \overline{\alpha}(s) - \mu \overline{T}(s)$, respectively. Then we obtain

$$\lambda = 0, \quad \mu = 0.$$

The distribution parameters of the ruled surfaces X and \overline{X} are defined by $P_T = \frac{\det(\alpha', T, T', \tau')}{{\|T'\|}^2}$ and $\overline{P}_T = \frac{\det(\overline{\alpha}', T', \tau', \tau')}{{\|T'\|}^2}$. Then we have

$$P_T = 0, \quad \overline{P}_T = 0.$$

Corollary 2.1. Let the striction curves of X and \overline{X} be given by $\beta(s) = \alpha(s) - \lambda T(s)$ and $\overline{\beta}(s) = \overline{\alpha}(s) - \mu \overline{T}(s)$, respectively. Then $\beta(s) = \alpha(s)$ and $\overline{\beta}(s) = \overline{\alpha}(s)$.

Corollary 2.2. If the ruled surface X is developable then the ruled surface \overline{X} are also developable.

(ii) Let X and \overline{X} be two ruled surfaces which is given by

$$X(s,v) = \alpha(s) + vN(s), \quad \overline{X}(s,v) = \overline{\alpha}(s) + v\overline{N}(s).$$

The striction curves of X and \overline{X} are given by $\beta(s) = \alpha(s) - \lambda N(s)$ and $\overline{\beta}(s) = \overline{\alpha}(s) - \mu \overline{N}(s)$, respectively. Then we have

$$\lambda = \frac{\kappa}{\kappa^2 - \tau^2}, \quad \mu = \frac{\kappa (-\kappa^2 + \tau^2) \|W\|}{-\kappa'^2 + \tau'^2 + (-\kappa^2 + \tau^2)^2}.$$
The distribution parameters of the ruled surfaces X and \overline{X} are defined by $P_N = \frac{\det(\alpha',N,N')}{\|N'\|^2}$ and $\overline{P}_N = \frac{\det(\pi',\overline{N},\overline{N}')}{{\|\overline{N}'\|^2}}$. Then we obtain

$$P_N = \frac{\tau}{-\kappa^2 + \tau^2}, \quad \overline{P}_N = \frac{-\kappa^2 \tau' + \kappa \tau \kappa'}{(-\kappa'^2 + \tau'^2) + (-\kappa^2 + \tau^2)^2}.$$

Corollary 2.3. Let the striction curves of X and \overline{X} be given by $\beta(s) = \alpha(s) - \lambda N(s)$ and $\overline{\beta}(s) = \overline{\alpha}(s) - \mu \overline{N}(s)$, respectively.

1. If W is a spacelike vector, then $\mu = \frac{-\kappa(z)^2}{(-\kappa^2 + \tau^2) + (-\frac{z}{\tau})^2}$.
2. If W is a timelike vector, then $\mu = \frac{-\kappa(-\frac{z}{\tau})^2}{(-\kappa^2 + \tau^2) + (-\frac{z}{\tau})^2}$.

Corollary 2.4. Let the distribution parameters of the ruled surfaces X and \overline{X} be P_N and \overline{P}_N, respectively.

1. If W is a spacelike vector, then $\overline{P}_N = \frac{-\kappa^2 \tau' + \kappa \tau \kappa'}{(-\kappa'^2 + \tau'^2) + \tau^2}$.
2. If W is a timelike vector, then $\overline{P}_N = \frac{-\kappa^2 \tau' + \kappa \tau \kappa'}{(-\kappa'^2 + \tau'^2) + \tau^2}$.

Corollary 2.5. If α is a planer curve, then the ruled surface X and \overline{X} are developable.

(iii) Let X and \overline{X} be two ruled surfaces which are given by

$$X(s,v) = \alpha(s) + vB(s), \quad \overline{X}(s,v) = \overline{\alpha}(s) + v\overline{B}(s).$$

The striction curves of X and \overline{X} are given by $\beta(s) = \alpha(s) - \lambda B(s)$ and $\overline{\beta}(s) = \overline{\alpha}(s) - \mu \overline{B}(s)$, respectively. Then we obtain

$$\lambda = 0, \quad \mu = 0.$$

The distribution parameters of the ruled surfaces X and \overline{X} are defined by $P_B = \frac{\det(\alpha',B,B')}{\|B'\|^2}$ and $\overline{P}_B = \frac{\det(\pi',\overline{B},\overline{B}')}{{\|\overline{B}'\|^2}}$. Then we have

$$P_B = \frac{1}{\tau}, \quad \overline{P}_B = \frac{\kappa^2 \tau' - \kappa \tau \kappa'}{\kappa'^2 - \tau'^2}.$$
Corollary 2.6. Let the striction curves of \(X \) and \(\overline{X} \) be given by \(\beta (s) = \alpha (s) - \lambda B (s) \) and \(\overline{\beta} (s) = \overline{\alpha} (s) - \mu \overline{B} (s) \), respectively. Then \(\beta (s) = \alpha (s) \) and \(\overline{\beta} (s) = \overline{\alpha} (s) \).

Corollary 2.7. Let the distribution parameters of the ruled surfaces \(X \) and \(\overline{X} \) be \(P_B \) and \(\overline{P}_{\overline{B}} \), respectively. Then \(\overline{P}_{\overline{B}} = \frac{\kappa^2 r' - \kappa (\frac{1}{r'})(\overline{r'})' \kappa'}{\kappa^2 r'^2 + r'^2} \).

Let \(\alpha \) be a unit speed spacelike space curve with a spacelike binormal. Then the natural lift \(\overline{\alpha} \) of \(\alpha \) is a timelike space curve.

(i) Let \(X \) and \(\overline{X} \) be two ruled surfaces which is given by
\[
X (s, v) = \alpha (s) + vT (s), \quad \overline{X} (s, v) = \overline{\alpha} (s) + v\overline{T} (s).
\]
The striction curves of \(X \) and \(\overline{X} \) are given by \(\beta (s) = \alpha (s) - \lambda T (s) \) and \(\overline{\beta} (s) = \overline{\alpha} (s) - \mu \overline{T} (s) \), respectively. Then we obtain
\[
\lambda = 0, \quad \mu = 0.
\]

The distribution parameters of the ruled surfaces \(X \) and \(\overline{X} \) are defined by \(P_T = \frac{\text{det} (\alpha', T, T')}{\|T'\|^2} \) and \(\overline{P}_{\overline{T}} = \frac{\text{det} (\overline{\alpha}', \overline{T}, \overline{T}')}{\|\overline{T}'\|^2} \). Then we have
\[
P_T = 0, \quad \overline{P}_{\overline{T}} = 0.
\]

Corollary 2.8. Let the striction curves of \(X \) and \(\overline{X} \) be given by \(\beta (s) = \alpha (s) - \lambda T (s) \) and \(\overline{\beta} (s) = \overline{\alpha} (s) - \mu \overline{T} (s) \), respectively. Then \(\beta (s) = \alpha (s) \) and \(\overline{\beta} (s) = \overline{\alpha} (s) \).

Corollary 2.9. If the ruled surface \(X \) is developable then the ruled surface \(\overline{X} \) are also developable.

(ii) Let \(X \) and \(\overline{X} \) be two ruled surfaces which is given by
\[
X (s, v) = \alpha (s) + vN (s), \quad \overline{X} (s, v) = \overline{\alpha} (s) + v\overline{N} (s).
\]
The striction curves of X and \overline{X} are given by $\beta(s) = \alpha(s) - \lambda N(s)$ and $\overline{\beta}(s) = \overline{\alpha}(s) - \mu \overline{N}(s)$, respectively. Then we have

$$\lambda = \frac{\kappa}{\kappa^2 + \tau^2}, \quad \mu = \frac{-\kappa (\kappa^2 + \tau^2) \| W \|}{(\kappa'{}^2 + \tau'{}^2) - (\kappa^2 + \tau^2)^2}.$$

The distribution parameters of the ruled surfaces X and \overline{X} are defined by $P_N = \frac{\det(\alpha', N, N')}{\| N' \|^2}$ and $\overline{P}_N = \frac{\det(\overline{\alpha}', \overline{N}, \overline{N}')}{\| \overline{N} \|^2}$. Then we obtain

$$P_N = \frac{\tau}{\kappa^2 + \tau^2}, \quad \overline{P}_N = \frac{-\kappa^2 \tau' + \kappa \tau' \kappa'}{(\kappa'{}^2 + \tau'{}^2) - (\kappa^2 + \tau^2)^2}.$$

Corollary 2.10. Let the striction curves of X and \overline{X} be given by $\beta(s) = \alpha(s) - \lambda N(s)$ and $\overline{\beta}(s) = \overline{\alpha}(s) - \mu \overline{N}(s)$, respectively. Then $\mu = \frac{-\kappa (\frac{\tau}{\kappa^2 + \tau^2})^2}{(\kappa^2 + \tau^2)^2 - (\frac{\tau}{\kappa^2 + \tau^2})^2}$.

Corollary 2.11. Let the distribution parameters of the ruled surfaces X and \overline{X} be P_N and \overline{P}_N, respectively. Then $\overline{P}_N = \frac{-\kappa^2 \tau' + \kappa \tau' \kappa'}{(\kappa'{}^2 + \tau'{}^2) + (\frac{\tau}{\kappa^2 + \tau^2})^2}$.

Corollary 2.12. If α is a planer curve, then the ruled surfaces X and \overline{X} are developable.

(iii) Let X and \overline{X} be two ruled surfaces which are given by

$$X(s, v) = \alpha(s) + vB(s), \quad \overline{X}(s, v) = \overline{\alpha}(s) + v\overline{B}(s).$$

The striction curves of X and \overline{X} are given by $\beta(s) = \alpha(s) - \lambda B(s)$ and $\overline{\beta}(s) = \overline{\alpha}(s) - \mu \overline{B}(s)$, respectively. Then we obtain

$$\lambda = 0, \quad \mu = 0.$$
The distribution parameters of the ruled surfaces X and \overline{X} are defined by $P_B = \frac{\det(\alpha', B, B')}{\|B'\|^2}$ and $\overline{P}_B = \frac{\det(\pi', \overline{B}, \overline{B}')}{\|\overline{B}\|^2}$. Then we have

$$P_B = \frac{1}{\tau}, \overline{P}_B = \frac{-\kappa^2 \tau' + \kappa \tau' \kappa'}{\kappa^2 + \tau'^2}.$$

Corollary 2.13. Let the striction curves of X and \overline{X} be given by $\beta(s) = \alpha(s) - \lambda B(s)$ and $\overline{\beta}(s) = \overline{\alpha}(s) - \mu B(s)$, respectively. Then $\beta(s) = \alpha(s)$ and $\overline{\beta}(s) = \overline{\alpha}(s)$.

Corollary 2.14. Let the distribution parameters of the ruled surfaces X and \overline{X} be P_B and \overline{P}_B, respectively. Then $\overline{P}_B = \frac{-\kappa^2 \tau' + \kappa \tau' \kappa'}{\kappa^2 + \tau'^2}$.

Let α be a unit speed spacelike space curve with a timelike binormal. Then the natural lift $\overline{\alpha}$ of α is a spacelike space curve.

(i) Let X and \overline{X} be two ruled surfaces which is given by

$$X(s, v) = \alpha(s) + vT(s), \quad \overline{X}(s, v) = \overline{\alpha}(s) + v\overline{T}(s).$$

The striction curves of X and \overline{X} are given by $\beta(s) = \alpha(s) - \lambda T(s)$ and $\overline{\beta}(s) = \overline{\alpha}(s) - \mu \overline{T}(s)$, respectively. Then we obtain

$$\lambda = 0, \quad \mu = 0.$$

The distribution parameters of the ruled surfaces X and \overline{X} are defined by $P_T = \frac{\det(\alpha', T, T')}{\|T'\|^2}$ and $\overline{P}_T = \frac{\det(\pi', \overline{T}, \overline{T}')}{\|\overline{T}'\|^2}$. Then we have

$$P_T = 0, \quad \overline{P}_T = 0.$$

Corollary 2.15. Let the striction curves of X and \overline{X} be given by $\beta(s) = \alpha(s) - \lambda T(s)$ and $\overline{\beta}(s) = \overline{\alpha}(s) - \mu \overline{T}(s)$, respectively. Then $\beta(s) = \alpha(s)$ and $\overline{\beta}(s) = \overline{\alpha}(s)$.

Corollary 2.16. If the ruled surface X is developable then the ruled surface \overline{X} are also developable.
(ii) Let X and \overline{X} be two ruled surfaces which is given by

$$X(s, v) = \alpha(s) + vN(s), \quad \overline{X}(s, v) = \overline{\alpha}(s) + v\overline{N}(s).$$

The striction curves of X and \overline{X} are given by $\beta(s) = \alpha(s) - \lambda N(s)$ and $\overline{\beta}(s) = \overline{\alpha}(s) - \mu \overline{N}(s)$, respectively. Then we have

$$\lambda = \frac{-\kappa}{\kappa^2 - \tau^2}, \quad \mu = \frac{\kappa(\kappa^2 + \tau^2) \|W\|}{(\kappa^2 - \tau^2) + (\kappa^2 + \tau^2)^2}.$$

The distribution parameters of the ruled surfaces X and \overline{X} are defined by $P_N = \frac{\det(\alpha', N, N')}{\|N'\|^2}$ and $\overline{P}_N = \frac{\det(\overline{\alpha}', \overline{N}, \overline{N}')}{\|\overline{N}'\|^2}$. Then we obtain

$$P_N = \frac{\tau}{\kappa^2 - \tau^2}, \quad \overline{P}_N = \frac{-\kappa^2 \tau' + \kappa \tau \kappa'}{(\kappa^2 - \tau^2) + (\kappa^2 + \tau^2)^2}.$$

Corollary 2.17. Let the striction curves of X and \overline{X} be given by $\beta(s) = \alpha(s) - \lambda N(s)$ and $\overline{\beta}(s) = \overline{\alpha}(s) - \mu \overline{N}(s)$, respectively.

1. If W is a spacelike vector, then $\mu = \frac{-\kappa(\kappa^2 + \tau^2)}{(\kappa^2 - \tau^2) + (\kappa^2 + \tau^2)^2}.$
2. If W is a timelike vector, then $\mu = \frac{-\kappa(\kappa^2 + \tau^2)}{(\kappa^2 - \tau^2) + (\kappa^2 + \tau^2)^2}.$

Corollary 2.18. Let the distribution parameters of the ruled surfaces X and \overline{X} be P_N and \overline{P}_N, respectively.

1. If W is a spacelike vector, then $\overline{P}_N = \frac{-\kappa^2 \tau' + \kappa(\overline{P}_N \|W\|^2) \kappa'}{(\kappa^2 - \tau^2) + (\kappa^2 + \tau^2)^2}.$
2. If W is a timelike vector, then $\overline{P}_N = \frac{-\kappa^2 \tau' + \kappa(\overline{P}_N \|W\|^2) \kappa'}{(\kappa^2 - \tau^2) + (\kappa^2 + \tau^2)^2}.$

Corollary 2.19. If α is a planer curve, then the ruled surface X and \overline{X} are developable.

(iii) Let X and \overline{X} be two ruled surfaces which are given by

$$X(s, v) = \alpha(s) + vB(s), \quad \overline{X}(s, v) = \overline{\alpha}(s) + v\overline{B}(s).$$
The striction curves of X and \overline{X} are given by $\beta(s) = \alpha(s) - \lambda B(s)$ and $\overline{\beta}(s) = \overline{\alpha}(s) - \mu \overline{B}(s)$, respectively. Then we obtain

$$\lambda = 0, \mu = \frac{2\kappa^2 \tau ||W||}{(\kappa^2 + \tau^2) + 4\kappa^2 \tau^2}.$$

The distribution parameters of the ruled surfaces X and \overline{X} are defined by $P_B = \frac{\det(\alpha',B,B')}{||B'||^2}$ and $\overline{P}_B = \frac{\det(\overline{\alpha}',\overline{B},\overline{B}')}{||\overline{B}||^2}$. Then we have

$$P_B = -\frac{1}{\tau}, \overline{P}_B = \frac{\kappa^2 \tau' - \kappa \tau \kappa'}{(\kappa^2 + \tau^2) + 4\kappa^2 \tau^2}.$$

Corollary 2.20. Let the striction curves of X and \overline{X} be given by $\beta(s) = \alpha(s) - \lambda B(s)$ and $\overline{\beta}(s) = \overline{\alpha}(s) - \mu \overline{B}(s)$, respectively. Then $\beta(s) = \alpha(s)$ and $\overline{\beta}(s) = \overline{\alpha}(s) - \frac{2\kappa^2 \tau ||W||}{(\kappa^2 + \tau^2) + 4\kappa^2 \tau^2} \overline{B}(s)$.

Corollary 2.21. Let the distribution parameters of the ruled surfaces X and \overline{X} be P_B and \overline{P}_B, respectively. Then $\overline{P}_B = \frac{\kappa^2 \tau' + \kappa (\frac{1}{\tau_B} \kappa')}{(\kappa^2 + \tau^2) + 4\kappa^2 \tau^2}$.

References

