ON UNIVALENT FUNCTIONS DEFINED BY A NEW GENERALIZED
MULTIPLIER DIFFERENTIAL OPERATOR

S R SWAMY*

Department of Computer Science and Engineering, R V College of Engineering, Mysore Road,
Bangalore-560 059, India

Abstract: The object of this paper is to obtain some interesting properties of functions belonging to a new class $SW^m(\alpha, \beta, \gamma, \rho)$, defined by using a new generalised multiplier differential operator.

2000 Mathematics Subject Classification: 30C45.

Key words and phrases: Univalent function, differential operator, differential subordination.

1. Introduction.

Denote by U the open unit disc of the complex plane, $U = \{ z \in \mathbb{C} ; |z| < 1 \}$. Let $H(U)$ be the space of holomorphic functions in U. Let A denote the family of functions in $H(U)$ of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k.$$

By S and K we denote the subclasses of functions in A, which are univalent and convex in U, respectively. Let P be the well-known Caratheodory class of normalized functions with positive real part in U. The convolution or Hadamard product of functions f, given by (1.1) and $g(z) = z + \sum_{k=2}^{\infty} b_k z^k$ is defined as the power series

$$(f \ast g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k, z \in U.$$
We now define a new generalized multiplier differential operator.

Definition 1.1. Let \(m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, \beta \geq 0, \alpha \) and \(\gamma \) are real numbers such that \(\alpha + \beta > 0 \) and \(\gamma + \beta \geq 0 \). Then for \(f \in A \), we define a new generalized multiplier operator \(I_{\alpha,\beta,\gamma}^m \) by

\[
I_{\alpha,\beta,\gamma}^0 f(z) = f(z),
\]

\[
I_{\alpha,\beta,\gamma}^1 f(z) = \frac{\alpha f(z) + \beta zf'(z) + \gamma^2 f''(z)}{\alpha + \beta},
\]

\[
\cdots,
\]

\[
I_{\alpha,\beta,\gamma}^m f(z) = I_{\alpha,\beta,\gamma} (I_{\alpha,\beta,\gamma}^{m-1} f(z)).
\]

Remark 1.2. If \(f(z) \) is given by (1.1), then from the definition 1.1, we obtain

\[
(1.2) \quad I_{\alpha,\beta,\gamma}^m f(z) = z + \sum_{k=2}^{\infty} A_k(\alpha,\beta,\gamma,m) a_k z^k,
\]

where

\[
(1.3) \quad A_k(\alpha,\beta,\gamma,m) = \left(\frac{\alpha + k\beta + k(k-1)\gamma}{\alpha + \beta} \right)^m.
\]

From (1.2) it follows that \(I_{\alpha,\beta,\gamma}^m f(z) \) can be written in terms of convolution as

\[
(1.4) \quad I_{\alpha,\beta,\gamma}^m f(z) = (f \ast g)(z),
\]

where

\[
(1.5) \quad g(z) = z + \sum_{k=2}^{\infty} A_k(\alpha,\beta,\gamma,m) z^k.
\]

It also follows from (1.2) that

\[
(1.6) \quad (\alpha + \beta) I_{\alpha,\beta,\gamma}^{m+1} f(z) = \alpha d_{\alpha,\beta,\gamma}^m f(z) + \beta z[I_{\alpha,\beta,\gamma}^m f(z)]' + \gamma^2 (I_{\alpha,\beta,\gamma}^m f(z))''.
\]

We note that

- \(I_{\alpha,\beta,0}^m f(z) = I_{\alpha,\beta}^m f(z) \) (See [18]).
- \(I_{\alpha-\beta,0}^m f(z) = D_{\beta}^m f(z), \beta \geq 0 \) (See Al-Oboudi [1]).
\[I^{m}_{l+1-\beta,\beta,0}f(z) = I^{m}_{l,\beta}f(z), l > -1, \beta \geq 0 \text{(See Catas [5]).} \]

\[I^{m}_{l,\lambda+\delta,-\delta,\delta}f(z) = D^{m}_{\lambda,\delta}f(z), \lambda \geq (\delta/(\delta + 1)), \delta \geq 0 \text{(See Raducanu et.al [14]).} \]

Remark 1.2.

a) \(I^{m}_{l+\lambda+\delta,-\delta,\delta}f(z) = D^{m}_{\lambda,\delta}f(z) \) was investigated for \(\lambda \geq \delta \geq 0 \) in [11] and [15].

So our results in this paper are improvement of corresponding results proved earlier for \(D^{m}_{\lambda,\delta}f(z) \), from \(\lambda \geq \delta \geq 0 \) to \(\lambda \geq (\delta/(\delta + 1)), \delta \geq 0 \).

b) \(D^{m}_{l}f(z) \) was introduced by Salagean [16] and was considered for \(m \geq 0 \) in [3].

Definition 1.3. Let \(m \in N_0 = N \cup \{0\} \), \(\rho \in [0,1), \beta \geq 0, \alpha \) and \(\gamma \) are real numbers such that \(\alpha + \beta > 0 \) and \(\gamma + \beta \geq 0 \). Then a function \(f \in A \) is said to be in the class \(SW^m(\alpha, \beta, \gamma, \rho) \), if it satisfies the condition

\[\text{Re}[I^{m}_{\alpha,\beta,\gamma}f(z)] > \rho, z \in U. \]

The main object of this paper is to present a systematic investigation of the class \(SW^m(\alpha, \beta, \gamma, \rho) \). In particular; we derive an inclusion result, structural formula, extreme points and other interesting results.

2. Preliminaries

In order to prove our results, we will make use of the following lemmas.

Lemma 2.1 ([13]). Let \(A \geq 0, h \in K \). Suppose that \(B(z) \) and \(D(z) \) are analytic in \(U \), with \(D(0) = 0 \) and

\[\text{Re}(B(z)) \geq A + 4 \frac{|D(z)|}{h(0)}, z \in U. \]

If an analytic function \(p \) with \(p(0) = h(0) \) satisfies

\[Az^2 p(z) + B(z)zp'(z) + p(z) + D(z) < h(z), z \in U, \]

then \(p(z) < h(z), z \in U \).

Lemma 2.2 ([12]). Let \(q \) be a convex function in \(U \) and let \(h(z) = q(z) + \rho q'(z) \), where \(\rho > 0 \). If \(p \in H(U) \) with \(p(z) = q(0) + p_1 z + p_2 z^2 + \ldots \) and \(p(z) + \rho q'(z) < h(z), z \in U \), then

\[p(z) < q(z), z \in U, \]
and this result is sharp.

Lemma 2.3 ([17]). If $p(z)$ is analytic in U, $p(0) = 1$ and $\text{Re}(p(z)) > \frac{1}{2}$, then for any function F analytic in U, the function $F^* p$ takes values in the convex hull of $F(U)$.

Note that the symbol “≺” stands for subordination throughout this paper.

3. Main Results.

Theorem 3.1. If $m \in N_0 = N \cup \{0\}$, $\rho \in [0, 1)$, $\alpha \geq 0$, γ and $\alpha + \beta > 0$ and $\gamma + \beta \geq 0$, then $SW^{m+1}(\alpha, \beta, \gamma, \rho) \subset SW^{m}(\alpha, \beta, \gamma, \rho)$.

Proof. Let $f \in SW^{m+1}(\alpha, \beta, \gamma, \rho)$. By using the properties of the operator $I^{m}_{a, \beta, \gamma}$, we get

$$I_{a, \beta, \gamma}^{m+1} f(z) = \frac{\partial^{m}_{a, \beta, \gamma} f(z) + \beta \gamma (I_{a, \beta, \gamma}^{m} f(z)) + \gamma^{2} (I_{a, \beta, \gamma}^{m} f^{*}(z))^{\gamma}}{\alpha + \beta}. \quad (3.1)$$

Differentiating (3.1) with respect to z and using (1.6), we obtain

$$\left(I_{a, \beta, \gamma}^{m+1} f(z) \right) = \left\{ p(z) + \left(\frac{\beta + 2 \gamma}{\alpha + \beta} \right) z \frac{\partial^{*} p(z)}{\partial z} + \left(\frac{\gamma}{\alpha + \beta} \right) z^{2} \frac{\partial^{2} p(z)}{\partial z^{2}} \right\} \quad (3.2)$$

where

$$p(z) = (I_{a, \beta, \gamma}^{m} f(z)).$$

Since $f \in SW^{m+1}(\alpha, \beta, \gamma, \rho)$, by using Definition 1.3 and (3.2), we have

$$\text{Re}\left\{ p(z) + \left(\frac{\beta + 2 \gamma}{\alpha + \beta} \right) z \frac{\partial^{*} p(z)}{\partial z} + \left(\frac{\gamma}{\alpha + \beta} \right) z^{2} \frac{\partial^{2} p(z)}{\partial z^{2}} \right\} > \rho, z \in U,$$

which is equivalent to

$$\left\{ p(z) + \left(\frac{\beta + 2 \gamma}{\alpha + \beta} \right) z \frac{\partial^{*} p(z)}{\partial z} + \left(\frac{\gamma}{\alpha + \beta} \right) z^{2} \frac{\partial^{2} p(z)}{\partial z^{2}} \right\} < \frac{1 + (2 \rho - 1)z}{1 + z} \equiv h(z).$$

From Lemma 2.1, with $A = \left(\frac{\gamma}{\alpha + \beta} \right)$, $B(z) = \left(\frac{\beta + 2 \gamma}{\alpha + \beta} \right)$, and $D(z) = 0$ we have $p(z) < h(z)$, which implies that $\text{Re}(I_{a, \beta, \gamma}^{m+1} f(z)) > \rho, z \in U$. Hence $f \in SW^{m}(\alpha, \beta, \gamma, \rho)$ and the proof of the theorem is complete.

Clearly $SW^{m}(\alpha, \beta, \gamma, \rho) \subset SW^{m-1}(\alpha, \beta, \gamma, \rho) \subset \ldots \subset SW^{0}(\alpha, \beta, \gamma, \rho) \subset S$ (see [6, 8]) and one can easily show that the set $SW^{m}(\alpha, \beta, \gamma, \rho)$ is convex (see [11]).
Theorem 3.2. Let \(q \) be convex function with \(q(0) = 1 \) and let \(h \) be a function of the form \(h(z) = q(z) + zq'(z), z \in U \). If \(f \in A \) satisfies the differential subordination
\[
(I_{a,b,y}^m f(z))' < h(z), z \in U,
\]
then \((I_{a,b,y}^m f(z))/z < q(z) \) and the result is sharp.

Proof. If we let \(p(z) = (I_{a,b,y}^m f(z))/z, z \in U \), then we obtain
\[
(I_{a,b,y}^m f(z))' = p(z) + zp'(z).
\]
So the subordination \((I_{a,b,y}^m f(z))' < h(z), z \in U \), becomes
\[
p(z) + zp'(z) < q(z) + zq'(z), z \in U,
\]
and hence from Lemma 2.2 we have \((I_{a,b,y}^m f(z))/z < q(z) \). The result is sharp.

We now obtain a structural formula, extreme points and coefficient bounds for functions in \(SW^m(\alpha, \beta, \gamma, \rho) \).

Theorem 3.3. A function \(f \in A \) is in the class \(SW^m(\alpha, \beta, \gamma, \rho) \) if and only if it can be expressed as
\[
f(z) = \left[z + \sum_{k=2}^{\infty} \frac{\lambda_k}{A_k(\alpha, \beta, \gamma, m)} z^k \right] \ast \left[z + 2(1 - \rho) \sum_{k=2}^{\infty} (\zeta_k^2)^{k-1} \right] d\mu(\zeta),
\]
where \(A_k(\alpha, \beta, \gamma, m) \) is given by (1.3) and \(\mu \) is a positive probability measure defined on the unit circle \(E = \{ \zeta \in C : |\zeta| = 1 \} \).

Proof. From Definition 1.3 it follows that \(f \in SW^m(\alpha, \beta, \gamma, \rho) \) if and only if
\[
\frac{[I_{a,b,y}^m f(z)] - \rho}{1 - \rho} \in P.
\]
Using Hergoltz integral representation of functions in Caratheodory class \(P \) (see [7] and [9]), there exists a positive Borel probability measure \(\mu \) such that
\[
\frac{[I_{a,b,y}^m f(z)] - \rho}{1 - \rho} = \int_{|\zeta|=1} \frac{(1 + \zeta^2)}{(1 - \zeta^2)} d\mu(\zeta), z \in U,
\]
which is equivalent to
\[
[I_{a,b,y}^m f(z)] = \int_{|\zeta|=1} \frac{(1 + (1 - 2\rho)\zeta^2)}{1 - \zeta^2} d\mu(\zeta), z \in U.
\]
Integrating we obtain
Equality (3.3) follows now, from (1.4), (1.5) and (3.4). Since the converse of this deductive process is also true, we have proved our theorem.

Corollary 3.4. The extreme points of the class $SW^m(\alpha, \beta, \gamma, \rho)$ are

$$f_\zeta(z) = z + 2(1-\rho)\zeta \sum_{k=1}^\infty \frac{(\zeta^k)}{kA_k(\alpha, \beta, \gamma, \rho)}$$

$z \in U, |\zeta| = 1$.

Proof. Consider the functions $g_\zeta(z) = z + 2(1-\rho)\zeta \sum_{k=1}^\infty \frac{(\zeta^k)}{k}$ and $g_\mu(z) = \int_{|\zeta| = 1} g_\zeta(z) d\mu(\zeta)$.

The assertion now follows from (3.3), (making use of (1.4), (1.5) and (3.4)), since the map $\mu \rightarrow g_\mu$ is one-to-one (see [4]).

Corollary 3.5. If $f \in SW^m(\alpha, \beta, \gamma, \rho)$ is given by (1.1), then

$$|a_k| \leq \frac{2(1-\rho)}{kA_k(\alpha, \beta, \gamma, \rho)}, k \geq 2.$$ The result is sharp.

Proof. The result follows from (3.5), since the coefficient bounds are maximized at an extreme point.

Corollary 3.6. If $f \in SW^m(\alpha, \beta, \gamma, \rho)$, then for $|z| = r < 1$,

$$r - 2(1-\rho)r^2 \sum_{k=2}^\infty \frac{1}{kA_k(\alpha, \beta, \gamma, \rho)} \leq |f(z)| \leq r + 2(1-\rho)r^2 \sum_{k=2}^\infty \frac{1}{kA_k(\alpha, \beta, \gamma, \rho)}$$

and

$$1 - 2(1-\rho)r \sum_{k=2}^\infty \frac{1}{A_k(\alpha, \beta, \gamma, \rho)} \leq |f'(z)| \leq 1 + 2(1-\rho)r \sum_{k=2}^\infty \frac{1}{A_k(\alpha, \beta, \gamma, \rho)}.$$

Next, we prove the analogue of the Polya-Schoenberg conjecture for the class $SW^m(\alpha, \beta, \gamma, \rho)$.

Theorem 3.7. If $f \in SW^m(\alpha, \beta, \gamma, \rho)$ and $g \in K$, then $f^* g \in SW^m(\alpha, \beta, \gamma, \rho)$.
Proof. It is known that if \(g \in \mathbb{K} \), then \(\text{Re} \left(\frac{g(z)}{z} \right) > \frac{1}{2} \) (see [12]). Making use of the convolution properties, we have

\[
\text{Re} [I_{a, \beta, \gamma}^m (f * g)(z)] = \text{Re} \left(\left(I_{a, \beta, \gamma}^m f(z) \right) \ast \frac{g(z)}{z} \right).
\]

The result now follows, by applying Lemma 2.3.

Corollary 3.8. The class \(SW^m (\alpha, \beta, \gamma, \rho) \) is invariant under Bernardi integral operator.

Proof. Let \(f \in SW^m (\alpha, \beta, \gamma, \rho) \). The Bernardi integral operator is defined as (see [2]):

\[
F_c(h)(z) = \frac{c+1}{c^c} \int_0^c t^{-1} h(t) dt, (c > -1; h \in A).
\]

It is easy to check that \(F_c(f)(z) = (f * g)(z) \) where

\[
g(z) = \sum_{k=1}^{\infty} \left(\frac{c+1}{c+k} \right)^k z^k = \frac{c+1}{c^c} \int_0^c \frac{t^c}{1-t} dt, z \in U, c > -1.
\]

Since the function \(\phi(z) = \frac{z}{1-z}, z \in U \) is convex, it follows (see [10]) that the function \(g \) is also convex. From Theorem 3.7 we obtain \(F_c(f) \in SW^m (\alpha, \beta, \gamma, \rho) \). Therefore \(F_c(SW^m (\alpha, \beta, \gamma, \rho)) \subset SW^m (\alpha, \beta, \gamma, \rho) \).

REFERENCES

