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Abstract. Let R be a semiprime ring and L be a semigroup ideal of R. The main object in this paper is to study

the following situations in semiprime rings: When F is a multiplicative (α,1)-(generalized) derivation associated

with a map d, (i) F(xy)±α(x)α(y) = 0 for x,y ∈ L. (ii) F(x)F(y)±α(x)α(y) = 0 for all x,y ∈ L. When F is a

multiplicative (1,α)-(generalized) derivation associated with a map d, (iii) F(xy)± xy = 0 for all x,y ∈ L. (iv)

F(x)F(y)± xy = 0 for all x,y ∈ L.
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1. Introduction

In this paper R denotes an assocative ring. A ring R is called semiprime ring if aRa = (0)

implies that a = 0. A subset L is called a left semigroup ideal of R if ra ∈ L for all a ∈ L and for
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all r ∈ R. Obviously, every left ideal is a left semigroup ideal. An additive mapping d : R→ R

is called a derivation of R if d(xy) = d(x)y+ xd(y) for all x,y ∈ R. In 1991, Daif, M. N. [1]

defined that a map D is called a multiplicative derivation of R if D(xy) = D(x)y+ xD(y) for

all x,y ∈ R. In 1997, this definition of multiplicative derivation was extended to multiplicative

generalized derivation by Daif, M. N. and Tammam El-Sayid, M. S. [2] as follow: a map

F : R→ R is called a multiplicative generalized derivation if there exists a derivation d such

that F(xy) = F(x)y+xd(y) for all x,y ∈ R. In 2013, the definition of multiplicative generalized

derivation was extended to multiplicative (generalized)-derivation by Dahara, B. and Ali, S. [3]

as follow: a map F : R→ R is called a multiplicative (generalized)-derivation if there exists a

map F : R→ R such that F(xy) = F(x)y+ xg(y) for all x,y ∈ R where g is any mapping on R.

We introduce the notion of multiplicative two-sided α-(generalized) derivation of R as fol-

lows.

A map F : R→ R is said to be a multiplicative (α,1)-(generalized) derivation if there exists

maps d,α : R→ R such that

F(xy) = F(x)α(y)+ xd(y) for all x,y ∈ R.

Similarly, if F(xy) = F(x)y+α (x)d(y) for all x,y ∈ R than F is called a multiplicative (1,α)-

(generalized) derivation. A map F : R→ R is called a multiplicative two-sided α-(generalized)

derivation if F is a multiplicative (α,1)-(generalized) derivation as well as multiplicative (1,α)-

(generalized) derivation. It is clear that every multiplicative (generalized)-derivation is multi-

plicative two-sided α-(generalized) derivation on R. But the converse is not true. The following

example justifies the fact:

Example 1. Let S be a ring and R =




0 a b

0 0 c

0 0 0

 |a,b,c ∈ S

. Define the maps d,α,F :

R→ R as follows:

d


0 a b

0 0 c

0 0 0

=


0 0 a2

0 0 0

0 0 0

 , α


0 a b

0 0 c

0 0 0

=


0 0 ab

0 0 c

0 0 0
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and F


0 a b

0 0 c

0 0 0

=


0 0 bc

0 0 0

0 0 0

 .

Then it is easy to verify that F is a multiplicative two-sided α-(generalized) derivation asso-

ciated with a map d but Fis not a multiplicative (generalized)- derivation of R.

In this connection, our aim in the present paper is to generalize the study of Dahara, B. and

Ali, S. [3] in the case of a left semigroup ideal, a multiplicative (α,1)- and (1,α)-(generalized)

derivation and to investigate some properties satisfying certain differential identities.

Throughout this paper, R is a semiprime ring, L is a nonzero left semigroup ideal of R and α

is an epimorphism of R.

The material in this work is a part of first author’s Master’s Thesis which is supervised by

Prof. Dr. Neşet Aydın.

2. Results

Lemma 2.1. Let R is a semiprime ring, L is a nonzero left semigroup ideal of R and 0 6= a ∈ R.

If aL = (0), then La = (0).

Proof. Since L is a semigroup ideal of R, a(RL) = (0). This gives (La)R(La) = (0). Due to

primeness of R, La = (0). �

Theorem 2.1. Let R is a semiprime ring, L is a nonzero left semigroup ideal of R and F is

a multiplicative (α,1)-(generalized) derivation. If F(xy)±α(x)α(y) = 0 for all x,y ∈ L then

Ld(L) = (0), F(xy) = F(x)α(y) for all x,y ∈ L and [F(x),α(x)] = 0 for all x ∈ L.

Proof. By the hypothesis, we have

(1) F(xy)−α(x)α(y) = 0

for all x,y ∈ L. Replacing y by yz, z ∈ L in (1), we get

F(xyz)−α(x)α(yz) = 0 for all x,y,z ∈ L.
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Since F(xy) = F(x)α(y)+ xd(y) for all x,y ∈ R and α is an epimorphism of R, we can rewrite

the above equation

0 = F(xy)α(z)+ xyd(z)−α(x)α(y)α(z)

= (F(xy)−α(x)α(y))α(z)+ xyd(z)

for all x,y ∈ L. By (1) that gives

xyd(z) = 0 for all x,y,z ∈ L.

Taking d(z)rx, r ∈ R instead of y in the last equation, we get

xd(z)rxd(z) = 0 for all x,y,z ∈ L,r ∈ R.

In particular, xd(z)Rxd(z) = (0) for all x,z ∈ L. Since R is a semiprime ring, the last expression

forces that xd(z) = 0 for all x,z ∈ L. That is,

Ld(L) = (0).

Thus F(xy) = F(x)α(y)+ xd(y) = F(x)α(y) for all x,y ∈ L. From the equation (1), we get

0 = F(xy)−α(x)α(y) = F(x)α(y)−α(x)α(y) = (F(x)−α(x))α(y) for all x,y ∈ L. That is,

(F(x)−α(x))α(L) = (0) for all x ∈ L.

Considering L is a left semigroup ideal of R, α is an epimorphism of R and α(L) is a semigroup

ideal of R together with Lemma 2.1, we have α(L)(F(x)−α(x)) = (0) for all x ∈ L. Thus

(F(x)−α(x))α(L) = (0) and α(L)(F(x)−α(x)) = (0) for all x ∈ L, together implies

[F(x)−α(x),α(L)] = (0) for all x ∈ L.

This yields that [F(x),α(x)] = 0 for all x ∈ L.

Similarly, we can prove that the same results for

F(xy)+α(x)α(y) = 0

for all x,y ∈ L. �

Corollary 2.1. Let R is a semiprime ring, L is a nonzero left semigroup ideal of R and F is

a multiplicative (α,1)-(generalized) derivation. If F(xy)±α(x)α(y) = 0 for all x,y ∈ R then

d = 0 and F =±α.
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Proof. By Theorem 2.1, we get d = 0 and F(xy) = F(x)α(y) for all x,y ∈ R. From the hypoth-

esis, 0 = F(x)α(y)±α(x)α(y) = (F(x)±α(x))α(y) for all x,y ∈ R. That is,

(F(x)±α(x))R = (0) for all x ∈ R.

Since R is a semiprime ring, F =±α. �

Theorem 2.2. Let R is a semiprime ring, L is a nonzero left semigroup ideal of R and F is a

multiplicative (α,1)-(generalized) derivation. If F(x)F(y)±α(x)α(y) = 0 for all x,y ∈ L then

Ld(L) = (0), F(xy) = F(x)α(y) for all x,y ∈ L and α(L) [F(x),α(x)] = (0) for all x ∈ L.

Proof. By the assumption, we have

(2) F(x)F(y)−α(x)α(y) = 0

for all x,y ∈ L. Replacing y by yz, z ∈ L in (2), we get

F(x)F(yz)−α(x)α(yz) = 0 for all x,y,z ∈ L.

It holds that 0 = F(x)(F(y)α(z)+ yd(z))−α(x)α(y)α(z)

= F(x)F(y)α(z)+F(x)yd(z)−α(x)α(y)α(z)

= (F(x)F(y)−α(x)α(y))α(z)+F(x)yd(z) for all x,y,z ∈ L.
By (2) it reduces

(3) F(x)yd(z) = 0 for all x,y,z ∈ L

Replacing x with ux, u ∈ L, we obtain F(ux)yd(z) = 0 for all u,x,y,z ∈ L. It follows that

0 = (F(u)α(x)+ud(x))yd(z)

= F(u)α(x)yd(z)+ud(x)yd(z)

Since L is a left semigroup ideal of R and by using (3) it gives

(4) ud(x)yd(z) = 0 for all x,y,z ∈ L

Replacing y by ry, r ∈ R in (4), we get ud(x)ryd(z) = 0 for all u,x,y,z ∈ L and r ∈ R. This im-

plies that ud(x)Ryd(z)= (0) for all u,x,y,z∈L. Taking y = u and z = x, we obtain yd(x)Ryd(x)=

(0) for all x,y ∈ L. Since R is a semiprime ring, we have yd(x) = 0 for all x,y ∈ L. Namely,
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Ld(L) = (0). Thus F(xy) = F(x)α(y)+yd(z) = F(x)α(y) for all x,y ∈ L. Replacing x by xy in

(2), we get

(5) F(x)α(y)F(y)−α(x)α(y)2 = 0

for all x,y ∈ L. Equation(2) multiplied by α(y) from right, we get

(6) F(x)F(y)α(y)−α(x)α(y)2 = 0

for all x,y ∈ L. Substracting (5) from (6), we get

(7) F(x) [F(y),α(y)] = 0

for all x,y ∈ L. Replacing x by xz, z ∈ L in (7), we get

F(x)α(z) [F(y),α(y)] = 0

for all x,y,z ∈ L. This implies

α(L) [F(x),α(x)]Rα(L) [F(x),α(x)] = (0).

Since R is a semiprime ring, it implies that α(L) [F(x),α(x)] = (0) for all x ∈ L.

Similar way, we can prove that same conclusion for F(x)F(y)+α(x)α(y) = 0 for all x,y ∈

L. �

Corollary 2.2. Let R is a semiprime ring, L is a nonzero left semigroup ideal of R and F is a

multiplicative (α,1)-(generalized) derivation. If F(x)F(y)±α(x)α(y) = 0 for all x,y ∈ R then

d = 0 and F(xy) = F(x)α(y) for all x,y ∈ R

Proof. Using Theorem 2.2, we come to a conclusion d = 0 and F(xy) = F(x)α(y) for all x,y ∈

R. �

Theorem 2.3. Let R is a semiprime ring, L is a nonzero left semigroup ideal of R and F is a

multiplicative (1,α)-(generalized) derivation. If F(xy)±xy= 0 for all x,y∈ L then α(L)d(L) =

(0), F(xy) = F(x)y for all x,y ∈ L and F is a commuting map on L.
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Proof. Assume that

(8) F(xy)− xy = 0 for all x,y ∈ L.

Taking yz, z ∈ L instead of y in (8), F(xyz)− xyz = 0 for all x,y,z ∈ L. Since F(xy) = F(x)y+

α(x)d(y) for all x,y ∈ R and α is an epimorphism of R, it follows that

0 = F(xy)z+α(xy)d(z)− xyz = (F(xy)− xy)z+α(x)α(y)d(z)

for all x,y ∈ L. By (8) it holds that

α(x)α(y)d(z) = 0 for all x,y,z ∈ L.

Replacing y with rx, r ∈ R, we get α(x)α(rx)d(z) = 0. Since α is an epimorphism of R, it holds

α(x)Rβ (x)d(z) = (0) for all x,z ∈ L. This implies

α(x)d(z)Rα(x)d(z) = (0) for all x,y,z ∈ L.

Since R is a semiprime ring, α(x)d(z) = 0 for all x,z ∈ L. That is,

α(L)d(L) = (0).

So, we obtain F(xy) = F(x)y + α(y)d(z) = F(x)y for all x,y ∈ L. Using (8) , one obtains

0 = F(xy)− xy = F(x)y− xy = (F(x)− x)y for all x,y ∈ L. In paticular

(F(x)− x)L = (0) for all x ∈ L.

Since L is a left semigroup ideal of R. By Lemma 2.1, we have

L(F(x)− x) = (0) for all x ∈ L.

Thus (F(x)− x)L = (0) and L(F(x)− x) = (0) for all x ∈ L, together implies

[F(x)− x,L] = (0) for all x ∈ L.

This yields that [F(x),x] = 0 for all x ∈ L. Thus, F is a commuting map on L.

In a similarly, we can prove that to achieve the same results for F(xy)+ xy = 0 for all x,y ∈

L. �
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Corollary 2.3. Let R is a semiprime ring, L is a nonzero left semigroup ideal of R and F is

a multiplicative (1,α)-(generalized) derivation. If F(xy)± xy = 0 for all x,y ∈ R then d = 0,

F(x) =±x and F is a commuting map on R.

Proof. By Theorem 2.3 we have d = 0 and F(xy) = F(x)y for all x,y ∈ R. From the hypothesis,

we obtain F(xy)± xy = 0 for all x,y ∈ R.Since F(xy) = F(x)y,it implies that (F(x)± x)y = 0

for all x,y ∈ R. That is,

(F(x)± x)R = (0) for all x ∈ R.

Since R is a semiprime ring, it follows that F(x) =±x.for all x ∈ R �

Theorem 2.4. Let R is a semiprime ring, L is a nonzero left semigroup ideal of R and F

is a multiplicative (1,α)-(generalized) derivation. If F(x)F(y)± xy = 0 for all x,y ∈ L then

α(L)d(L) = (0), F(xy) = F(x)y for all x,y ∈ L and L [F(x),x] = (0) for all x ∈ L.

Proof. First we consider that

(9) F(x)F(y)− xy = 0

for all x,y ∈ L.Substituting yz, z ∈ L for y in (9), we get F(x)F(yz)− xyz = 0 for all x,y,z ∈ L.

Since F(xy) = F(x)y+α(x)d(y) for all x,y ∈ R, it follows that

0 = F(x)(F(y)z+α(y)d(z))− xyz

= F(x)F(y)z+F(x)α(y)d(z)− xyz

= (F(x)F(y)− xy)z+F(x)α(y)d(z)

By (9) it gives

(10) F(x)α(y)d(z) = 0 for all x,y,z ∈ L

Replacing x with ux, u ∈ L, we get F(ux)α(y)d(z) = 0 for all u,x,y,z ∈ L. Since F(xy) =

F(x)y+α(x)d(y) for all x,y∈R, it follows that 0=(F(u)x+α(u)d(x))α(y)d(z)=F(u)xβ (y)d(z)+
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α(u)d(x)α(y)d(z). Since L is a left semigroup ideal of R and α is an epimorphism of R, α(L)

is a left semigroup ideal of R. By using (10) , it gives

(11) α(u)d(x)α(y)d(z) = 0

for all u,x,y,z ∈ L. Replacing y by ry, r ∈ R in (11), we get α(u)d(x)α(ry)d(z) = 0 for all

u,x,y,z∈ L and r ∈R. Since α is an epimorphism of R, it implies that α(u)d(x)Rβ (y)d(z) = (0)

for all u,x,y,z ∈ L. Taking y = u and z = x. We obtain

α(y)d(x)Rβ (y)d(x) = (0) for all x,y ∈ L.

Since R is a semiprime ring, we have α(y)d(x) = 0 for all x,y ∈ L. That is, α(L)d(L) = (0).

Thus F(xy) = F(x)y+α(y)d(z) = F(x)y for all x,y ∈ L. Replacing x by xy in (9), we get

(12) F(x)yG(y)− xy2 = 0

for all x,y ∈ L. (9) multiplied by α(y) from right, we get

(13) F(x)F(y)y− xy2 = 0

for all x,y ∈ L. Substracting (12) from (13), we get

(14) F(x) [F(y),y] = 0

for all x,y ∈ L. Replacing x by xz, z ∈ L in (14), we get

F(x)z [F(y),y] = 0

for all x,y,z ∈ L. This implies L [F(x),x]RL [F(x),x] = (0). Since R is a semiprime ring, it

follows that L [F(x),x] = (0) for all x ∈ L.

In the some way, we can prove the same results for F(x)F(y)+ xy = 0 for all x,y ∈ L. �

Corollary 2.4. Let R is a semiprime ring, L is a nonzero left semigroup ideal of R and F is a

multiplicative (1,α)-(generalized) derivation. If F(x)F(y)± xy = 0 for all x,y ∈ R then d = 0,

F(xy) = F(x)y for all x,y ∈ R and F is a commuting map on R

Proof. By using Theorem 2.4, ,we conclude that d = 0, F(xy) = F(x)y for all x,y ∈ R and F is

a commuting map on R �
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