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Abstract. The modified Laplace Adomian decomposition method (LADM) has been developed to find the ana-

lytic approximation solution of the nonlinear Volterra-Fredholm integro differential equations under the initial or

boundary conditions. We prove the convergence of LADM applied to the Volterra-Fredholm integro differential

equations. In this paper, some examples will be examined to support the proposed analysis.
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1. Introduction

The modified form of Laplace decomposition method has been introduced by Khuri and

Wazwaz [15, 19]. Yusufoglu [22] solved the Duffing equation by this method. This method

generates a solution in the form of a series whose terms are determined by a recursive relation
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using the Adomian polynomials. The nonlinear Volterra-Fredholm integro differential equa-

tions as follows [20]:

(1) y( j)(x) = f (x)+
∫ x

a
K1(x, t)G1(y(t))dt +

∫ b

a
K2(x, t)G2(y(t))dt,

with the initial or boundary conditions

y(r)(a) = αr, r = 0,1, ...,(m−1),

y(r)(b) = βr, r = m,(m+1), ...,( j−1).(2)

where y( j)(x) is the jth derivative of the unknown function y(x) that will be determined, Ki(x, t),

i = 1,2, be the kernels of the integro differential equation, f (x) is an analytic function, G1(y)

and G2(y) are nonlinear functions of y, αr, and βr are real finite constants. The modified Laplace

decomposition method have applied for solving some partial differential equations Khan et. al,

in [7]. Recently, the authors have used different methods for the numerical or the analytical so-

lution of linear and nonlinear Fredholm and Volterra integral and integro differential equations

of the second kind [1, 14, 16, 17]. This type of equations was introduced by Volterra for the

first time in early 1900. Volterra investigated the population growth, focussing his study on the

hereditary influences, where through his research work the topic of integro differential equa-

tions was established.[13, 20] More details about the sources where these equations arise can

be found in physics, biology, and engineering applications as well as in advanced integral equa-

tions. Some works based on an iterative scheme have been focusing on the development of more

advanced and efficient methods for integral equations and integro differential equations such as

the variational iteration method (VIM) which is a simple and Adomian decomposition method

(ADM) [11, 13, 20, 21], and the modified decomposition method (MDM) for solving Volterra-

Fredholm integral and integro differential equations which is a simple and powerful method for

solving a wide class of nonlinear problems [19, 20]. The Taylor polynomial solution of integro

differential equations has been studied in [23, 18]. The use of Lagrange interpolation in solving

integro differential equations was investigated by Marzban [16]. The VIM has been successfully

applied for solving integral and integro differential equations [8, 11, 13, 20]. Wazwaz [19], used

the modified decomposition method and the traditional methods for solving nonlinear integral

equations. A variety of powerful methods has been presented, such as the homotopy analysis
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method [20], homotopy perturbation method [10], the triangular-function method [14], varia-

tional iteration method [11, 20] and the Adomian decomposition method [1, 5, 20], and many

methods for solving integro differential equations [2, 4, 17, 19, 20]. By using the LADM we ob-

tain analytical solutions for the integro-differential equations. Some fundamental works on var-

ious aspects of modifications of the Adomian’s decomposition method are given by Araghi [1].

The modified form of Laplace decomposition method has been introduced by Manafianheris

[9]. Babolian et. al, [3], applied the new direct method to solve nonlinear Volterra-Fredholm

integral and integro differential equation using operational matrix with block-pulse functions.

The Laplace transform method with the Adomian decomposition method to establish exact so-

lutions or approximations of the nonlinear Volterra integro differential equations, Wazwaz [21].

Elgasery [6], applied the Laplace decomposition method for the solution of Falkner Skan equa-

tion. This paper deals with one of the most applied problems in the engineering sciences. This

technique basically illustrates how the Laplace transform may be used to approximate the so-

lutions of the nonlinear Volterra-Fredholm integro differential equations by manipulating the

decomposition method. Our aim in this paper is to obtain the analytical solutions by using the

modified Laplace Adomian decomposition method. The remainder of the paper is organized as

follows: In Section 2, preliminaries and describe the basic formulation of ADM. In Section 3,

a brief discussion for the modified Laplace Adomian decomposition method is presented. We

present and describe the basic formulation of this method. In Section 4, applications of this

method and the exact solutions for some examples are obtained. In Section 5, we prove the

convergence of LADM applied to the Volterra-Fredholm integro differential equations. Finally,

we will give report on our paper and a brief conclusion is given in Section 6.

2. Preliminaries

The Adomian decomposition method is applied to the following general nonlinear equation:

(3) Ly+Ry+Ny = g(x)

where y is the unknown function, L is the highest-order derivative which is assumed to be easily

invertible, R is a linear differential operator of order less than L, Ny represents the nonlinear
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terms, and g is the source term. Applying the inverse operator L−1 to both sides of Eq. (3) and

using the given conditions we obtain

(4) y = f (x)−L−1(Ry)−L−1(Ny)

where the function f (x) represents the terms arising from integrating the source term g(x).

The nonlinear operator Ny = G(y) is decomposed as

(5) G(y) =
∞

∑
n=0

An

where An; n > 0 are the Adomian polynomials determined formally as follows:

(6) An =
1
n!
[

dn

dλ n [N(
∞

∑
i=0

λ
iyi)]]λ=0

The Adomian polynomials were introduced in [20, 21] as:

A0 = G(y0); A1 = y1G
′
(y0); A2 = y2G

′
(y0)+

1
2

y2
1G
′′
(y0)

A3 = y3G
′
(y0)+ y1y2G

′′
(y0)+

1
3

y3
1G
′′′
(y0), ...

In recent years the Adomian decomposition method [20] has been applied to a wide class

of functional equations and inverse problems such as integral equations [1, 12]. The standard

decomposition technique represents the solution of y in Eq. 3 as the following series:

(7) y =
∞

∑
i=0

yi

where, the components y0,y1, ... are usually determined recursively by

y0 = f (x),

yn+1 = −L−1(Ryn)−L−1(An),n≥ 0.(8)

Substituting 4 into 8 leads to the determination of the components of y. Having determined the

components y0,y1, ..., the solution y in the series form defined by Eq. 7.



NONLINEAR VOLTERRA-FREDHOLM INTEGRO DIFFERENTIAL EQUATIONS 629

3. The Modified Laplace Adomian Decomposition Method

The nonlinear Volterra-Fredholm integro differential equation with difference kernels as fol-

lows:

(9) y( j)(x) = f (x)+
∫ x

a
K1(x− t)G1(y(t))dt +

∫ b

a
K2(x− t)G2(y(t))dt,

To solve the nonlinear Volterra-Fredholm integro differential Eq. (9) by using the Laplace

transform method, we recall that the Laplace transforms of the derivatives of y(x) are defined

by

(10) £{y( j)(x)}= s j£{y(x)}− s j−1y(0)− s j−2y′(0)− ...− y( j−1)(0),

Applying the Laplace transform to both sides of Eq.(9) gives:

s j£{y(x)}− s j−1y(0)− s j−2y′(0)− ...− y( j−1)(0) = £{ f (x)}

+£{K1(x− t)}£{G1(y(t))}+£{K2(x− t)}£{G2(y(t))},(11)

This can be reduced to

£{y(x)} =
1
s

y(0)+
1
s2 y′(0)+ ...+

1
si y

( j−1)(0)+
1
si £{ f (x)}+ 1

si £{K1(x− t)}

£{G1(y(t))}+
1
si £{K2(x− t)}£{G2(y(t))},(12)

The Adomian decomposition method and the Adomian polynomials can be used to handle Eq.

(12) and to address the nonlinear term G(y(x)). We first represent the linear term y(x) at the left

side by an infinite series of components given by

(13) y =
∞

∑
m=0

ym(x).

where the components ym(x),m ≥ 0 will be determined recursively. However, the nonlinear

terms G1(y(x)) and G2(y(x)) at the right side of Eq. (12) will be represented by an infinite

series of the Adomian polynomials Am and Bm in the form:

(14) G1(y(x)) =
∞

∑
m=0

Am(x), G2(y(x)) =
∞

∑
m=0

Bm(x),
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where Am and Bm, m≥ 0 are defined by

(15) Am =
1

m!
[

dm

dλ m [G1(
m

∑
i=0

λ
iyi)]]λ=0,

(16) Bm =
1

m!
[

dm

dµm [G2(
m

∑
i=0

µ
iyi)]]µ=0,

where the so-called Adomian polynomials Am can be evaluated for all forms of nonlinearity. In

other words, assuming that the nonlinear function is G1(y(x)) therefore the Adomian polyno-

mials are given by:

A0 = G1(y0),

A1 = y1G′1(y0),

A2 = y2G′1(y0)+
1
2!

y2
1G′′1(y0),

A3 = y3G′1(y0)+ y1y2G′′1(y0)+
1
3!

y3
1G′′′1 (y0),

A4 = y4G′1(y0)+(
1
2!

y2
2 + y1y3)G′′1(y0)+

1
2!

y2
1y2G′′′1 (y0)+

1
4!

y4
1G(iv)

1 (y0),

similarly, Adomian polynomials Bm can be evaluated for all forms of nonlinearity. In other

words, assuming that the nonlinear function is G2(y(x)), therefore the Adomian polynomials

are given by

B0 = G2(y0),

B1 = y1G′2(y0),

B2 = y2G′2(y0)+
1
2!

y2
1G′′2(y0),

B3 = y3G′2(y0)+ y1y2G′′2(y0)+
1
3!

y3
1G′′′2 (y0),

B4 = y4G′2(y0)+(
1
2!

y2
2 + y1y3)G′′2(y0)+

1
2!

y2
1y2G′′′2 (y0)+

1
4!

y4
1G(iv)

2 (y0),

Substituting Eq.(13) and Eq.(14) into Eq.(12) leads to

£{
∞

∑
m=0

ym(x)} =
1
s

y(0)+
1
s2 y′(0)+ ...+

1
si y

(m−1)(0)+
1
si £{ f (x)}+ 1

si £{K1(x− t)}

£{
∞

∑
m=0

Am(y(t))}+
1
si £{K2(x− t)}£{

∞

∑
m=0

Bm(y(t))}(17)
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The Adomian decomposition method presents the recursive relation

£{y0(x)}=
1
s

y(0)+
1
s2 y′(0)+ ...+

1
si y

(m−1)(0)+
1
si £{ f (x)},

£{yk+1(x)}=
1
si (£{K1(x− t)}£{Ak(y(t))}+£{K2(x− t)}£{Bk(y(t))}) ,k ≥ 0(18)

Applying the inverse Laplace transform to the first part of Eq.(18) gives y0(x), that will define

A0(x) and B0(x). Using A0(x) and B0(x) will enable us to evaluate y1(x). The determination of

y0(x) and y1(x) leads to the determination of A1(x) and B1(x) that will allows us to determine

y2(x), and so on. This in turn will lead to the complete determination of the components of

yk(x), k ≥ 0 upon using the second part of Eq.(18). The series solution follows immediately

after using Eq.(13). The obtained series solution may converge to an exact solution if such a so-

lution exists. Otherwise, the series solution can be used for numerical purposes. The combined

modified Laplace Adomian decomposition method for solving nonlinear Volterra-Fredholm in-

tegro differential equations of the second kind is illustrated by studying the following examples

in the section 4.

4. Applications

In order to elucidate the solution procedure of the modified Laplace Adomian decomposition

method for solving the nonlinear Volterra-Fredholm integro differential equations is illustrated

in the four examples in this section which shows the effectiveness and generalization of our

proposed method given above.

Example 4.1

Consider the nonlinear Volterra-Fredholm integro differential equation with:

f (x) =−xex, k1 = ex−3t , k2 = ex−2t , y(0) = 1,

we can write Eq. (1)

y′(x) = −xex +
∫ x

0
ex−3ty3(t)dt +

∫ 1

0
ex−2ty2(t)dt, y(0) = 1.(19)
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Taking Laplace transform of both sides of Eq. (19) gives

£{y′(x)} = £{−xex}+£{ex−3t ∗ y3(x)}+£{ex−2t ∗ y2(x)}

so that

sY (s)− y(0) =
−1

(s−1)2 +
1

(s−1)
£{y3(x)}+ 1

(s−1)
£{y2(x)}

or equivalently

Y (s) =
1
s
− 1

s(s−1)2 +
1

s(s−1)
[£{y3(x)}+£{y2(x)}](20)

Substituting the series assumption for Y (s) and the Adomian polynomials for y3(x) as given

above in Eq.(13) and Eq.(14) respectively, and using the recursive relation Eq.(18) we obtain

Y0(s) =
1
s
− 1

s(s−1)2

£{yk+1(x)} =
1

s(s−1)
[£{y3(x)}+£{y2(x)}], k ≥ 0.(21)

where Ak(x) and Bk(x) are the Adomian polynomials for the nonlinear term y3(x) and y2(x)

respectively. The Adomian polynomials for G1(y(x)) = y3(x) and G2(y(x)) = y2(x) are given

by

A0 = y3
0,

A1 = 3y1y2
0,

A2 = 3y2y2
0 +3y2

1y0,

A3 = 3y3y2
0 +6y0y1y2 + y3

1,

and

B0 = y2
0,

B1 = 2y1y0,

B2 = 2y2y0 + y2
1,

B3 = 2y3y0 +2y1y2,(22)
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Taking the inverse Laplace transform of both sides of the first part of Eq.(21), and using the

recursive relation Eq.(21) gives

y0 = ex− xex,

= 1− 1
2!

x2− 1
3

x3− 1
8

x4− ...,

y1 = 2[
1
2!

x2 +
1
3!

x3 +
1
4!

x4 + ...],

.

.

.

that converges to the exact solution

y(x) = ex

Example 4.2

Consider the following nonlinear Volterra-Fredholm integro differential equation of the first

kind with:

f (x) =−9
5 −

5
2x+ 1

2x2 +2ex + 1
4e2x + xex, k1 = (x− t)2, k2 = ex−t , y(0) = 2,

we can write Eq. (1)

−9
5
− 5

2
x+

1
2

x2 +2ex +
1
4

e2x + xex =
∫ x

0
(x− t)2y2(t)dt +

∫ 1

0
ex−ty′(t)dt.(23)

Taking Laplace transform of both sides of Eq. (23) gives

− 9
5s
− 5

2s2 +
1
s3 +

2
s−1

+
1

4(s−2)
+

1
(s−1)2 =

1
s2 £{y2(s)}+ 1

s−1
(sY (s)− y(0))

so that

Y (s) =
2
s
+

s−1
s

(− 9
5s
− 5

2s2 +
1
s3 +

2
s−1

+
1

4(s−2)
+

1
(s−1)2 )−

s−1
s3 £{y2(x)}(24)
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Substituting the series assumption for Y (s) and the Adomian polynomials for y2(x) as given

above in Eq.(13) and Eq.(14) respectively, and using the recursive relation Eq.(18) we obtain

Y0(s) =
2
s
+

s−1
s

(− 9
5s
− 5

2s2 +
1
s3 +

2
s−1

+
1

4(s−2)
+

1
(s−1)2 ),

£{yk+1(x)} = −s−1
s3 £{Ak(x)}, k ≥ 0.(25)

where Ak(x) are the Adomian polynomials for the nonlinear term y2(x). The Adomian polyno-

mials for G1(y(x)) = y2(x) are given by

A0 = y2
0,

A1 = 2y1y0,

A2 = 2y2y0 + y2
1,

A3 = 2y3y0 +2y1y2,(26)

Taking the inverse Laplace transform of both sides of the first part of Eqs.(25), and using the

recursive relation Eq.(25) gives

y0 = 2+ x+
5
2

x2 +
1
6

x3 +
1
8

x4 + ...,

y1 = −2x2− 3
4

x4− 1
10

x5 + ...,

(27)

and so on for other components. Using Eq. (13), the series solution is therefore given by

y(x) = 2+ x+
1
2!

x2 +
1
3!

x3 +
1
4!

x4 + ...,(28)

that converges to the exact solution

y(x) = 1+ ex

Example 4.3

Consider the nonlinear integro differential equation with:

f (x) = 9
4 −

5
2x− 1

2x2−3e−x− 1
4e−2x, k1 = (x− t), k2 = 0, j = 1



NONLINEAR VOLTERRA-FREDHOLM INTEGRO DIFFERENTIAL EQUATIONS 635

we can write Eq.(1)

y′(x) =
9
4
− 5

2
x− 1

2
x2−3e−x− 1

4
e−2x +

∫ x

0
(x− t)y2(t)dt, y(0) = 2.(29)

Taking Laplace transform of both sides of Eq. (29) gives

£{y′(x)}= £{9
4
− 5

2
x− 1

2
x2−3e−x− 1

4
e−2x}+£{(x− t)∗ y2(x)}(30)

so that

sY (s)− y(0) =
9
4s
− 5

2s2 −
1
s3 −

3
(s+1)

− 1
4(s+2)

+
1
s2 £{y2(x)}(31)

or equivalently

Y (s) =
2
s
+

9
4s2 −

5
2s3 −

1
s4 −

3
s(s+1)

− 1
4s(s+2)

+
1
s3 £{y2(x)}(32)

Substituting the series assumption for Y (s) and the Adomian polynomials for y2(x) as given

above in Eq.(13) and Eq.(14) respectively, and using the recursive relation Eq.(18) we obtain

Y0(s) =
2
s
+

9
4s2 −

5
2s3 −

1
s4 −

3
s(s+1)

− 1
4s(s+2)

£{yk+1(x)} =
1
s3 £{Ak(x)}, k ≥ 0.(33)

where Ak(x) are the Adomian polynomials for the nonlinear term y2(x). The Adomian polyno-

mials for G1(y(x)) = y2(x) are given by

A0 = y2
0,

A1 = 2y1y0,

A2 = 2y2y0 + y2
1,

A3 = 2y3y0 +2y1y2.(34)

Taking the inverse Laplace transform of both sides of the first part of Eq.(33), and using the

recursive relation Eq.(33) gives

y0 = 2− x+
1
2!

x2− 5
3!

x3 +
5
4!

x4− ...,

y1 =
2
3

x3− 1
3!

x4 +
1
20

x5 + ...,(35)



636 M. SH. BANI ISSA, AHMED A. HAMOUD, KIRTIWANT P. GHADLE, GINISWAMY

and so on for other components. Using Eq. (13), the series solution is therefore given by

y(x) = 2− x+
1
2!

x2− 1
3!

x3 +
1
4!

x4 + ...,

that converges to the exact solution

y(x) = 1+ e−x

Example 4.4

Consider the nonlinear integro differential equation with:

y′(x) = 1+
∫ x

0
y2(t)dt +

∫ 1

0
y2(t)dt, y(0) = 0.(36)

Applying the Laplace transform and by using the initial condition we have

£{y′(x)}= £{1}+£{1∗ y2(x)}+£{1∗ y2(x)}(37)

so that

sY (s)− y(0) =
1
s
+

2
s

£{y2(x)}(38)

or equivalently

Y (s) =
1
s2 +

2
s2 £{y2(x)}(39)

Substituting the series assumption for Y (s) and the Adomian polynomials for y2(x) as given

above in Eq.(13) and Eq.(14) respectively, and using the recursive relation Eq.(18) we obtain

Y0(s) =
1
s2 ,

£{yk+1(x)} =
2
s2 £{Ak(x)}, k ≥ 0.(40)

where Ak(x) are the Adomian polynomials for the nonlinear term y2(x). The Adomian polyno-

mials for G(y(x)) = y2(x) are given by

A0 = y2
0,

A1 = 2y1y0,

A2 = 2y2y0 + y2
1,

A3 = 2y3y0 +2y1y2,(41)
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Taking the inverse Laplace transform of both sides of the first part of Eq.(40), and using the

recursive relation Eq.(40) gives

y0 = x

y1 =
1
3

x3

.

.

.(42)

and so on for other components. Using Eq. (13), the series solution is therefore given by

y(x) = x+
1
3
(x)3 +

2
45

(x)6 + ...,(43)

5. Convergence Analysis

In this section, we will study the convergence analysis as the same manner in [12] of the

LADM applied to the nonlinear Volterra-Fredholm integro differential equations. Let us con-

sider the Hilbert space H which may define by H= L2((δ ,θ)× [0,T ]), the set of applications:

y : ((δ ,θ)× [0,T ]) −→ R with
∫
(δ ,θ)×[0,T ] y

2(x,s)dsdτ < +∞. Now we consider the non-

linear integro differential equations in the light of above assumptions and let us denote

L(y) =
∂ ny
∂xn

then the nonlinear Volterra-Fredholm integro differential equations become in a operator form

L(y) = f (x)+
∫ x

a
K1(x, t)[Ry(t)+Ny(t)]dt +

∫ b

a
K2(x, t)[Ry(t)+Ny(t)]dt

The LADM is convergence if the following two hypotheses are satisfied:

(H1)(L(y)−L(u),y−u)≥ K‖y−u‖2; ∀y,u ∈H.

(H2) whatever may be M > 0, there exist a constant β (M) > 0 such that for y,u ∈ H with

‖y‖ ≤M,‖u‖ ≤M, we have:

(L(y)−L(u),y−u)≥ β (M)‖y−u‖‖w‖
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for every w ∈H, [12].

Theorem 5.1. (Sufficient condition of convergence for Example 4.4 ). The Laplace Adomian

decomposition method applied to the nonlinear Volterra -Fredholm integro differential equation

as follows

L(y) =
∂

∂x
y = 1+

∫ x

0
y2(t)dt +

∫ 1

0
y2(t)dt

without initial condition, converges towards a particular solution.

Proof.

Now, we will verify the conditions (H1) and (H2) of convergence. We will start to verify the

convergence hypotheses (H1) for the operator L(y) : i.e,∃k > 0,∀y,u ∈H, we have:

L(y)−L(u) =
∫ x

0
(y2(t)−u2(t))dt +

∫ 1

0
(y2(t)−u2(t))dt

Then we get

(L(y)−L(u),y−u) = (
∫ x

0
(y2(t)−u2(t))dt +

∫ 1

0
(y2(t)−u2(t))dt,y−u)

According the Schwartz inequality, we get

(
∫ x

0
(y2(t)−u2(t))dt +

∫ 1

0
(y2(t)−u2(t))dt,y−u)≤ ξ ‖y2−u2‖‖y−u‖

Now we use the mean value theorem, then we have

(
∫ x

0
(y2(t)−u2(t))dt +

∫ 1

0
(y2(t)−u2(t))dt,y−u) ≤ ξ ‖y2−u2‖‖y−u‖

=
1
3

ξ η
3‖y−u‖2

≤ 1
3

ξ M3‖y− v‖2,

(−(
∫ x

0
(y2(t)−u2(t))dt +

∫ 1

0
(y2(t)−u2(t))dt),y−u) ≥ 1

3
ξ M3‖y−u‖2,

where y < η < u and ‖y‖ ≤M,‖u‖ ≤M. Therefore:

(L(y)−L(u),y−u)≥ K‖y−u‖2

where k = 1
3ξ M3. Hence, we find the hypothesis (H1). Now we verify the convergence hy-

potheses (H2) for the operator L(y) which is for every M > 0, there exist a constant β (M)> 0
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such that for y,u ∈H with ‖u‖ ≤M,‖u‖ ≤M, we have (L(y)−L(u),y−u)≤ β (M)‖y−u‖‖w‖

for every w ∈H. For that we have:

(L(y)−L(u),w) = (
∫ x

0
(y2(t)−u2(t))dt +

∫ 1

0
(y2(t)−u2(t))dt,w)

≤ M3‖y− v‖‖w‖= β (M)‖y−u‖‖w‖

where β (M) = M3 and therefore (H2) is hold. The proof is complete.

6. Conclusion

A reliable method for obtaining approximate solutions of nonlinear Volterra-Fredholm inte-

gro differential using the modified Laplace Adomian decomposition method which avoids the

tedious work needed by traditional techniques has been developed. Exact solutions were eas-

ily obtained. We carefully applied a reliable modification of Laplace Adomian decomposition

method for VFIDEs. The main advantage of this method is the fact that it gives the analytical

solution. Also, this method is combining of two powerful methods for obtaining exact solutions

of nonlinear Volterra-Fredholm integro differential. Also, we proved the convergence of LADM

applied to the Volterra-Fredholm integro differential equations.
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