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Abstract. A tiling of a finite abelian group G is a pair (A,B) of subsets of G, such that both A and B contain the

identity element e of G and every g ∈ G can be uniquely written in the form g = ab, where a ∈ A and b ∈ B. A

tiling (A,B) of G is called full-rank if 〈A〉= 〈B >= G, Otherwise, it is called a non-full rank tiling. In this paper,

we show some explicit constructions of non-full rank tilings of 3−groups of order 34.
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1. Introduction

A tiling of a finite abelian group G is a pair (A,B) of subsets of G containing the identity

e of G and every g ∈ G can be uniquely written in the form g = ab, where a ∈ A and b ∈ B.

Tilings are a special case of normalized factorizations of a finite abelian group G, where by

a normalized factorization of G is meant a collection of subsets A1, A2,...,An of G, such that

e ∈ Ai for each i = 1,2, ...,n and every g ∈ G can be uniquely written in the form g = a1a2...an,
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ai ∈ Ai. The notion of factorization of an abelian group into subsets was introduced by G. Hajos

[1], when he found the answer to a conjecture by H. Minkowski [4], about lattice tiling of Rn

by unit cubes or clusters of unit cubes. Hajos first translated Minkowski’s conjecture into a

question about finite abelian groups and then he solved the question.

The group-theoretic version of Minkowski’s conjecture reads as follows:

If G is a finite abelian group and G = A1 ...Ai... Ak is a normalized factorization of G, where

each of the subsets Ai is of the form {e,a,a2, ...,ak}, where k <| a |; (here | a |denotes order of

a).then at least one of the subsets Ai is a subgroup of G.

2. Preliminaries

Hajos made use of the integral group ring Z(G). Corresponding to each subset A of G, we

hav element A of G, where A = ∑a∈A a. If B = ∑nigi, ni ∈ Z, gi ∈ G is an element of Z(G),

then by < b > is meant the subgroup of G generated by the support of b; viz. those elements gi

such that ni 6= 0. We will also, use 〈A〉 to mean the subgroup generated by a subset A of G and

〈b1,b2, ...,bm〉 will denote the subgroup generated by the support of bi ∈ Z(G), 1≤ i≤ m.

Redei [4] made use of group characters; viz homomorphisms χ from G to the multiplicative

group of complex numbers C. These extend to ring homomorphisms χ from Z(G) to the

multiplicative group of complex numbers C, where χ (∑nigi) = ∑niκ(gi). He also defined the

annihilator of the subset A of G, Ann(A) = {κ : κ(A) = 0} and observed that A = B if and only

if κ
(
A
)
= κ

(
B
)

.

In particular G = A1 ...Ai... Ak is afactorization of G if and only if |G |=| A1 | ...| Ai|... |Ak | and

for each non-identity character κ there exists Ai such that κ(AI) = 0....................................(∗)

We will use(∗) to show that our constructions constitute factorizations of a given group G.

3. Main results

M. Dinitz [1], showed that if p > 5, then groups of order pn admit full-rank tiling and left the

case p = 3, as an open question. We answer this question by showing some explicit construc-

tions of non-full rank tiliings of groups of order 34.
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We recall that a finite abelian group G is said to be of type (pα1
1 , pα2

2 , ..., pαr
r ) if it is a product

of cyclic groups of orders pα1
1 , pα2

2 , ..., pαr
r . If pi = p, for each i, G is called a p−group. We con-

struct non-full-rank tilings of 3−groups of order 34 of the following types:
(
33,3

)
,
(
32,32) ,(32,3,3

)
and (3,3,3,3).

Construction 1

A non-full rank tiling of 3−groups of type
(
33,3

)
. Let G = 〈x〉× 〈y〉 , where | x |= 27 and

| y |= 3. Let A =
〈
x9y

〉
∪x

〈
x9y

〉
∪ x2 〈x9y

〉
and B =

〈
x9〉∪ x3 〈y〉∪ x6 〈y〉.

We will use (∗) to show that AB is a tiling of G. First note that the possible orders of κ (x)

are 1,3,9 and 27 and the possible orders of κ (y) are 1 and 3.

So, altogether we have 8 different cases to consider. The result is summarized below:

Case Order of κ (x) Order of κ (y) κ (A) κ (B)

1 1 1 . .

2 1 3 0

3 3 1 0

4 3 3 0

5 9 1 0

6 9 3 0

7 27 1 0

8 27 3 0

We observe that no element of B has order greater than 9.

Therefore, 〈B〉 ⊆ 〈x3,y〉. Thus, 〈B〉 6= G.

Construction 2

A non-full rank tiling of 3−groups of type
(
32,32).

Let G = 〈x〉×〈y〉 , where | x |=| y |= 9.

Let A = (〈x〉−
{

x5,x8})∪{x5y3,x8y6} and

B = = (〈y〉−
{

y5,y8})∪{x6y5,x3y8}.

Note that the possible orders of κ (x) are 1,3 and 9 and similarly for orders of κ (y).

So, altogether we have 9 different cases to consider. The result is summarized below:
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Case Order of κ (x) Order of κ (y) κ (A) κ (B)

1 1 1 . .

2 1 3 0

3 1 9 0

4 3 1 0

5 3 3 0 0

6 3 9 0

7 9 1 0

8 9 3 0

9 9 9 0* 0*

(*) All the other cases, except this one, which we will detail.

Let κ (x) = ξ and κ (y) = η , where ξ and η are primitive 9−th roots

of unity. Then

κ (A) = 1+ξ +ξ 2 +ξ 3 +ξ 4 +ξ 6 +ξ 7 +ξ 5η3 +ξ 8η6

= (1+ξ 3 +ξ 6)+ξ (1+ξ 3 +ξ 6)+ξ 2(1++ξ 3η3 +ξ 6η6)

= ξ 2(1++ξ 3η3 +ξ 6η6).

κ (B) = 1+η +η2 +η3 +η4 +η6 +η7 +ξ 6η5 +ξ 3η8

= (1+η3 +η6)+η(1+η3 +η6)+η2(1+ξ 3η6 +ξ 6η3)

= η2(1+ξ 3η5 +ξ 6η3).

Now, ξ and η are both primitive 9−th root of unity. Hence:

η = ξ ,ξ 2,ξ 4,ξ 5,ξ 7 or ξ 8. Easy calculations will show that when η = ξ ,ξ 4 or ξ 7, we obtain

κ(A) = 0. In the remaining cases, we get that κ (B) = 0. In this case, by construction, we get

that, 〈B〉 6= G.

Construction 3

A non-full rank tiling of 3−groups of type
(
32,3,3

)
.

Let G = 〈x〉×〈y〉×〈z〉 , where | x |= 9, | y |= 3 and | z |= 3.

Let A =
〈
x3〉 ∪x〈y〉∪ x2 〈y〉 and B =

〈
x3y

〉
∪ z

〈
x3y2〉∪ z2 〈x3y

〉
.
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Note that the possible orders of κ (x) are 1,3 and 9, while the possible orders of κ (y) and

κ (z) are 1 and 3 only. So, altogether we have 12 different cases to consider. The result is

summarized below:
Case Order of χ(x) Order of χ(y) Order of χ(z) χ(A) χ(B)

1 1 1 1 .

2 1 1 3 0

3 1 3 1 0

4 1 3 3 0

5 3 1 1 0

6 3 1 3 0

7 3 3 1 0

8 3 3 3 0

9 9 1 1 0

10 9 1 3 0

11 9 3 1 0**

12 9 3 3 0**

(**) All the other cases, except these, in which case, we get the result by using a similar

argument as in the previous case.

In this case, by construction, we get that, 〈A〉 6= G.

Construction 4

A non-full rank tiling of 3−groups of type (3,3,3,3).

Let G = (〈x〉×〈y〉×〈u〉×〈v〉 , where | x |=| y |=| u |=| v |= 3.

Let A = (〈x,y〉−
{

x2y,x2y2})∪ {
x2yv,x2y2v2} and

B == (〈u,v〉−
{

u2v,u2v2})∪{yu2v2,y2u2v
}

.

Note that the possible orders of κ (x) are 1,3 only. Similarly with κ(y), κ (u) and κ (v). So,

altogether we have 16 different cases to consider.

Let χ(x) = α

χ(y) = β

χ(u) = γ
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χ(v) = δ

where α,β ,γ,and δ are primitive 3rd roots of unity. Then

χ(A) = α2βδ +α2β 2δ 2−α2β −α2β 2

= α2β (δ +βδ 2−1−β ).

χ(B) = βγ2δ 2 +β 2γ2δ − γ2δ − γ2δ 2

= γ2δ
(
βδ +β 2−1−δ

)
.

Now, if β = 1, then χ(B) = 0. This takes care of 4 cases.

If δ = 1, then χ (A) = A0. This takes care of 8 cases.

Otherwise, β 6= 1 and δ 6= 1. Then either β = δ or β = δ 2.

If β = δ , then χ(A) = 0. This takes care of 4 more cases.

If β = δ 2, then χ(B) = 0. This takes care of the remaining 4 cases.

The result is summarized below.
Case Order of χ(x) Order of χ(y) Order of χ(u) Order of χ(v) χ(A) χ(B)

1 1 1 1 1 . .

2 1 1 1 3 0

3 1 1 3 1 0 0

4 1 1 3 3 0

5 1 3 1 1 0

6 1 3 1 3 0

7 1 3 3 1 0

8 1 3 3 3 0

9 3 1 1 1 0

10 3 1 1 3 0 0

11 3 1 3 1 0

12 3 1 3 3 0

13 3 3 1 1 0

14 3 3 1 3 0

15 3 3 3 1 0

16 3 3 3 3 0

In this case, by construction, we get that in fact, neither 〈A〉 6= G

nor 〈B〉 6= G .
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