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Abstract. Theory of rough sets is an extension of classic set theory, which is an important mathematical tool for

dealing with uncertain or vague information. The core concepts of classical rough sets are lower and upper ap-

proximations based on equivalence relations. Topologies via relations have very important role in rough set theory.

This paper studies some new topologies induced by a binary relation on universe with respect to neighborhood

operators. Moreover, the relations among them are studied. In addition, lower and upper approximations of rough

sets using the binary relation with respect to neighborhood operators are studied and examples are given.
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The theory of rough sets was introduced by Pawlak as a mathematical tool to process informa-

tion with uncertainty and vagueness [11].The theory of rough sets deals with the approximation

of sets for classification of objects through equivalence relations. Important applications of the

rough set theory have been applied in many fields, for example in medical science, data analysis,

knowledge discovery in database [12, 13, 15, 20]

In the original theory of rough sets, an ordered pair (U,R) is called an approximation space,

where U is a finite non- empty set called universe and R is an equivalent relation on U . But

for practical use, it needs to some extensions on original rough set concept. This is to replace

the equivalent relation by a general binary relation [4, 5, 6, 10, 16, 23, 24, 25, 26, 27]. We call

the ordered pair (U,R) as a generalized approximation space when R is a binary relation on

U.Topology is one of the most important subjects in mathematics, which to study rough sets.

Many authors studied relationship between rough sets and topologies based on binary relations

[1, 2, 7, 8, 9, 14, 17, 18, 19, 21, 22]

In this paper, we proposed and studied connections between topologies generated using

successor, predecessor, successor-and-predecessor, and successor-or-predecessor neighborhood

operators as a subbase by various binary relations on a universe, respectively. Let R be a binary

relation on a given universe U . Sets

Si =
⋃
{Ri(x)|x ∈U} ,where i : s, p,s∧ p and s∨ p

defined by successor, predecessor, successor-and-predecessor, and successor-or-predecessor

neighborhood operators, respectively. If Si ,where i : s, p, s∧ p and s∨ p, forms a subbase for

some topology on U , then the topology generated Si , denoted Ti. Z. Pei at al. in [14] used

Ss as a subbase for some topology on U if and only if R is invers serial which for each x ∈U ,

there exists y ∈U such that (y,x) ∈ R. A basic problem is: when does Si,where i : s, p, s∧ p

and s∨ p, form a subbase for some topologies on U ? We solve this problem completely and

the relations among this topologies are studied in section 3. In addition to this, we investigate

connection between lower and upper approximation operators using successor, predecessor,

successor-and-predecessor, and successor-or-predecessor neighborhood operators by various

binary relations on a universe, respectively in section 4. Moreover, we give several examples

for a better understanding of the subject.
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2. Preliminaries

In this section, we shall briefly review basic concepts and relational propositions of the rela-

tion based rough sets and topology. For more details, we refer to [24, 25, 14].

2.1. Basic properties relation based rough approximations and neighbor-
hood operators

In this paper, we always assume that U is a finite universe, i.e., a non-empty finite set of

objects, R is a binary relation on U , i.e., a subset of U2 =U×U [14].

R is serial if for each x ∈U , there exists y ∈U such that (x,y) ∈ R; R is inverse serial if for

each x ∈U , there exists y ∈U such that (y,x) ∈ R; R is reflexive if for each x ∈U , (x,x) ∈ R; R

is symmetric if for all x,y ∈U , (x,y) ∈ R implies (y,x) ∈ R ;R is transitive if for all x,y,z ∈U ,

(x,y) ∈ R and (y,z) ∈ R imply (x,z) ∈ R [9].

R is called a pre-order relation if R is both reflexive and transitive; R is called a similarity (or,

tolerance) relation if R is both reflexive and symmetric; R is called an equivalence relation if R

is reflexive, symmetric and transitive [14].

Given a universe U and a binary relation R on U , x,y ∈U, the sets

Rs(x) = {y ∈U |(x,y) ∈ R} ,

Rp(x) = {y ∈U |(y,x) ∈ R} ,

Rs∧p(x) = {y ∈U |(x,y) ∈ R and (y,x) ∈ R}= Rs(x)∩Rp(x),

Rs∨p(x) = {y ∈U |(x,y) ∈ R or (y,x) ∈ R}= Rs(x)∪Rp(x)

are called the successor, predecessor, successor-and-predecessor, and successor-or-predecessor

neighborhood of x, respectively, and the following four set-valued operators from U to the

power set P(U)
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Rs : x 7→ Rs(x),

Rp : x 7→ Rp(x),

Rs∧p : x 7→ Rs∧p(x),

Rs∨p : x 7→ Rs∨p(x)

are called the successor, predecessor, successor-and-predecessor, and successor-or-predecessor

neighborhood operators, respectively. Relationships between these neighborhood systems can

be expressed as:

Rs∧p(x)⊆ Rs(x)⊆ Rs∨p(x),

Rs∧p(x)⊆ Rp(x)⊆ Rs∨p(x)

[25, 14].

Definition 2.1 [25] Let R be a binary relation on U . The ordered pair (U,R) is called a gen-

eralized approximation space based on the relation R. For X ⊆ U , the lower and upper ap-

proximations of X with respect to Rs(x), Rp(x), Rs∧p(x), Rs∨p(x) are respectively defined as

follows:

aprRs
(X) = {x ∈U |Rs(x)⊆ X} ,

aprRp
(X) =

{
x ∈U |Rp(x)⊆ X

}
,

aprRs∧p
(X) =

{
x ∈U |Rs∧p(x)⊆ X

}
,

aprRs∨p
(X) =

{
x ∈U |Rs∨p(x)⊆ X

}
,

aprRs
(X) = {x ∈U |Rs(x)∩X 6= /0} ,

aprRp
(X) =

{
x ∈U |Rp(x)∩X 6= /0

}
,

aprRs∧p
(X) =

{
x ∈U |Rs∧p(x)∩X 6= /0

}
,

aprRs∨p
(X) =

{
x ∈U |Rs∨p(x)∩X 6= /0

}
.
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In Pawlak’s classical rough set theory for lower and upper approximations operators, an

equivalence relation R is used. In this case, four neighborhood operators become the same,

i.e., Rs(x) = Rp(x) = Rs∧p(x) = Rs∨p(x) = [x]R, where [x]R is the equivalence class containing

x.

Proposition 2.2 [24] For an arbitrary neighborhood operator in an approximation space (U,R),

the pair of approximation operators satisfy the following properties:

(L0) apr(X) = (apr(Xc))c ,

(U0) apr(X) =
(
apr(Xc)

)c
,

(L1) apr(U) =U,

(U1) apr( /0) = /0,

(L2) apr(X ∩Y ) = apr(X)∩apr(Y ),

(U2) apr(X ∪Y ) = apr(X)∪apr(Y ).

where Xc is the complement of X with respect to U.

Moreover, if R is reflexive, then

(L3) apr(X)⊆ X ,

(U3) X ⊆ apr(X).

If R is symmetric, then

(L4) X ⊆ apr(apr(X)),

(U4) apr(apr(X))⊆ X .

If R is transitive, then

(L5) apr(X)⊆ apr(apr(X)),

(U5) apr(apr(X))⊆ apr (X).
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2.2. The concept of a topological space

In this section, we give some basic information about the topology [3, 14].

Definition 2.3 [3] A topological space is a pair (U,T ) consisting of a set U and a set T of

subsets of U (called ”open sets”), such that the following axioms hold:

(A1) Any union of open sets is open.

(A2) The intersection of any two open sets is open.

(A3) /0 and U are open.

The pair (U,T ) speaks simply of a topological space U.

Definition 2.4 [14] Let U be a topological space.

(1) X ⊆U is called closed when Xc is open.

(2) X ⊆U is called a neighborhood of x ∈ X if there is an open set V with x ∈V ⊆ X .

(3) A point x of a set X is an interior point of X if X is a neighborhood of x, and the set of

all interior points of X is called the interior of X . The interior of X is denoted by
o
X .

(4) The closure of a subset X of a topological space U is the intersection of the family of all

closed sets containing X . The closure of X is denoted by
−
X .

In topological space U , the operator

o : P(U)→ P(U) , X 7→
o
X

is an interior operator on U and for all X ,Y ⊆U the following properties hold:

I1)
o
U =U,

I2)
o
X ⊆ X ,

I3)

o(
o
X
)
= X ,

I4)
(

o
X ∩Y

)
=

(
o
X
)
∩
(

o
Y
)
.

In topological space U , the operator

− : P(U)→ P(U) , X 7→
−
X

is a closure operator on U and for all X ,Y ⊆U the following properties hold:
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C1)
−
/0 = /0,

C2) X ⊆ X

C3) X = X ,

C4) X ∪Y = X ∪Y .

In a topological space (U,T ) a family B ⊆ T of sets is called a base for the topology T if

for each point x of the space, and each neighborhood X of x, there is a member V of B such

that x ∈ V ⊆ X . We know that a subfamily B of a topology T is a base for T if and only if

each member of T is the union of members of B. Moreover, B ⊆ P(U) forms a base for some

topologies on U if and only if B satisfies the following conditions:

B1) U =
⋃
{B|B ∈B},

B2) For every two members X and Y of B and each point x ∈ X ∩Y , there is Z ∈B such that

x ∈ Z ⊆ X ∩Y .

Also, a family S ⊆ T of sets is a subbase for the topology T if the family of all finite

intersections of members of S is a base for T . Moreover, S ⊆ P(U) is a subbase for some

topology on U if and only if S satisfies the following condition:

(S0) U =
⋃
{S|S ∈S } .

3. Generating topologies by relations

In this section, we show the subbase generated using successor, predecessor, successor-and-

predecessor, and successor-or-predecessor neighborhood operators by various binary relations

on a universe, respectively. Then, we introduce the topologies generated by these subbases and

compare these topologies.

Let R be a binary relation on a given universe U . Sets

Si =
⋃
{Ri(x)|x ∈U} ,where i : s, p,s∧ p and s∨ p

defined by successor, predecessor, successor-and-predecessor, and successor-or-predecessor

neighborhood operators, respectively. If Si, forms a subbase for some topology on U , then the

topology generated by Si, denoted by Ti, where i : s, p, s∧ p and s∨ p, respectively.
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The following theorem states that a inverse serial is sufficient for the Ss forms a subbase for

some topologies on U.

Theorem 3.1[14] If R is a binary relation on U , then Ss forms a subbase for some topologies

on U if and only if R is inverse serial.

Remark 3.2 It is clear that if R is inverse serial on U , then

∀x ∈U,Rp(x) 6=∅ and U =
⋃

x∈U

Rs(x).

Thus the family Ss is covering of U .

Theorem 3.3 If R is a binary relation on U , then Sp forms a subbase for some topologies on U

if and only if R is serial.

Proof. If R is serial, then

∀x ∈U,Rs(x) 6=∅ and U =
⋃

x∈U

Rp(x).

Thus the family Sp provides the condition (S0). Therefore Sp forms a subbase for some topolo-

gies on U. �

Example 3.4 Let U = {a,b,c,d} and

R = {(a,a) ,(a,c) ,(b,b) ,(b,c) ,(c,a) ,(d,c)} .

Then R is a serial relation on U, and

Rs (a) = {a,c} , Rs (b) = {c} , Rs (c) = {a} , Rs (d) = {c} ,

Rp (a) = {a,c} , Rp (b) = {b} , Rp (c) = {b,d} , Rp (d) =∅.

Thus

Sp =
⋃{

Rp(x)|x ∈U
}
= {{a,c} ,{b} ,{b,d}} .

Hence

Tp = {∅,U,{b} ,{b,d} ,{a,c} ,{a,b,c}} .

Lemma 3.5 Let U be the universe and R is a symmetric relation. Then

R is a serial relation⇐⇒ R is an inverse serial relation.
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Proof. Suppose that R is a symmetric relation on U .

R is a serial relation⇐⇒∀x∃y[(x,y) ∈ R]

⇐⇒∀x∃y[(y,x) ∈ R]

⇐⇒ R is an inverse serial relation �

Theorem 3.6 If R is a binary relation on U , then Ss∧p forms a subbase for some topologies on

U if and only if R is symmetric and serial or inverse serial.

Proof. From Lemma 3.5 and Theorem 3.3 we get

Rs(x) = Rp(x) 6=∅.

Thus

Ss∧p =
⋃{

Rs∧p(x)|x ∈U
}
=
⋃
{Rs(x)|x ∈U}=

⋃{
Rp(x)|x ∈U

}
6=∅

, therefore Ss∧p forms a subbase for some topologies on U. �

Theorem 3.7 If R is a binary relation on U , then Ss∨p forms a subbase for some topologies on

U if and only if R is serial or inverse serial.

Proof. If R is serial or inverse serial on U , then

∀x ∈U,Rs∨p(x) 6=∅ and U =
⋃

x∈U

Rs∨p(x).

Thus the family Ss∨p provides the condition (S0). Therefore Ss∨p forms a subbase for some

topologies on U. �

Let S1 and S2 be covering of U. A partition S1 is finner than S2, or is coarser than S1, for

each neighborhood operator in S1 produced by x, is subset the neighborhood operator in S2 by

x. This relation is denoted as S1 �S2.

S1 �S2⇐⇒ if every set of S1 is contained in some sets of S2, for all x ∈U.

Moreover, T1 and T2 are two topologies on U and T1 ⊆ T2, then we say that T2 is finer than

T1.

In effect, the following proposition holds.

Proposition 3.8 Let U be the universe and R is general binary relation. Then
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Ri(x)⊆ R j(x)⇔Si �S j, f or all x ∈U,where i, j : s, p,s∧ pands∨ p.

Proposition 3.9 Let U be the universe and R is a serial relation. Then the following conditions

are provided:

(1)Sp �Ss∨p,

(2) Tp � Ts∨p.

Proof. Clearly, (2) is a direct corollary of (1) We only prove (1) .

Since Rp(x)⊆ Rs∨p(x) for all x ∈U,then from Proposition 3.8 we get Sp �Ss∨p. �

Proposition 3.10 Let U be the universe and R is an inverse serial relation. Then the following

conditions are provided:

(1) Ss �Ss∨p,

(2) Ts � Ts∨p.

Proof. Clearly, (2) is a direct corollary of (1) We only prove (1) .

Since Rs(x)⊆ Rs∨p(x) for all x ∈U,then from Proposition 3.8 we get Ss �Ss∨p. �

The next proposition presents equality between Ss∧p,Ss,Sp and Ss∨p subbases, and topolo-

gies generated by them that are equality each other.

Proposition 3.11 Let U be the universe and R is a symmetric and a serial (or inverse serial)

relation. Then the following conditions are provided:

(1) Ss∧p = Ss = Sp = Ss∨p,

(2) Ts∧p = Ts = Tp = Ts∨p.

Proof. (1) If R is a symmetric and a serial (or inverse serial) relation on U , then Rs∧p(x) =

Rs(x) = Rp(x) = Rs∨p(x). Therfore Ss∧p = Ss = Sp = Ss∨p.

(2) is a direct corolary of (1) . �

Corollary 3.12 Let U be the universe and R is a tolerance (symmetric and reflexive) relation.

Then, the following conditions are provided:

(1) Ss∧p = Ss = Sp = Ss∨p,

(2) Ts∧p = Ts = Tp = Ts∨p.
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Proposition 3.13 Let U be the universe and R is a reflexive relation. Then, the following

conditions are provided:

(1) Ss∧p �Ss,Sp �Ss∨p,

(2) Ts∧p � Ts,Tp � Ts∨p.

Proof. (1) Let R is a reflexive relation on U . Then, R are serial and invers serial relation.

Since Rs∧p(x) = Rs(x)∩ Rp(x) and Rs∨p(x) = Rs(x)∪ Rp(x), then Rs∧p(x) ⊆ Rs(x),Rp(x) ⊆

Rs∨p(x).Thus Ss∧p �Ss,Sp �Ss∨p.

(2) is a direct corollary of (1) . �

Remark 3.14 Notice that the reflexive relation R does not need to hold Rs(x) = Rp(x) for each

x ∈U. This is evident by following example.

Example 3.15 Let U = {a,b,c,d} and

R = {(a,a) ,(a,c) ,(b,b) ,(b,c) ,(c,c) ,(d,d)} .

Then R is a reflexive relation on U, and

Rs (a) = {a,c} , Rs (b) = {b,c} , Rs (c) = {c} , Rs (d) = {d} ,

Rp (a) = {a} ,Rp (b) = {b} ,Rp (c) = {b,c} ,Rp (d) = {d} ,

Rp∧s (a) = {a} , Rp∧s (b) = {b} , Rp∧s (c) = {c} , Rp∧s (d) = {d}

Rp∨s (a) = {a,c} , Rp∨s (b) = {b,c} , Rp∨s (c) = {b,c} , Rp∨s (d) = {d} .

Thus Rs (a) 6= Rp (a) , for a ∈U. Let us note that Rp∧s (a)⊆ Rs (a) ,Rp (a)⊆ Rp∨s (a). Therfore

Ss∧p �Ss,Sp �Ss∨p and Ts∧p � Ts,Tp � Ts∨p.

Corollary 3.16 Let U be the universe and R is a preorder (reflexive and transitive) relation.

Then the following conditions are provided:

(1) Ss∧p �Ss,Sp �Ss∨p,

(2) Ts∧p � Ts,Tp � Ts∨p.

Remark 3.17 If R is a preorder relation on U , Ss∧p (Ss,Sp,Ss∨p) form a base for Ts∧p

(Ts,Tp,Ts∨p) topology on U, respectively. Moreover, this topologies are Alexandrov topologies

on U.
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Corollary 3.18 Let U be the universe and R is an equivalent relation. Then, the following

conditions are provided:

(1) Ss∧p = Ss = Sp = Ss∨p,

(2) Ts∧p = Ts = Tp = Ts∨p

Remark 3.19 In the case when R is an equivalent relation on U , i.e, (U,R) is a Pawlak approx-

imation space, then the set Ss∧p (Ss,Sp,Ss∨p) is a base for Ts∧p (Ts,Tp,Ts∨p) topology on U,

respectively. In these topologies, each neighborhood operator is one equivalence class for all

x ∈U .

4.Rough approximation operators induced by relations

In this section, we investigate connection between lower and upper approximation operators

using successor, predecessor, successor-and-predecessor, and successor-or-predecessor neigh-

borhood operators by various binary relations on a universe, respectively.

Proposition 4.1 Let U be the universe and R is a binary relation. Then, for lower and upper

approximation operators of X ⊆U , the following conditions are provided:

1) aprp∨s (X)⊆ aprs (X) , aprp (X)⊆ aprp∧s (X) ,

2)aprp∧s (X)⊆ aprs (X) , aprp (X)⊆ aprp∨s (X) .

Proof. (1) Let x ∈ aprp∨s (X) for any x ∈ U. Since Rp∨s (x) ⊆ X and Rs (x) ⊆ Rp∨s (x) then

Rs (x) ⊆ X and so x ∈ aprs (X) . Now, since x ∈ aprs (X) and Rp∧s (x) ⊆ Rs (x) ⊆ X then x ∈

aprp∧s (X) . Therefore aprp∨s (X)⊆ aprs (X)⊆ aprp∧s (X) . Similarly, aprp∨s (X)⊆ aprp (X)⊆

aprp∧s (X) .

(2) Let x ∈ aprp∧s (X) for any x ∈U. Since Rp∧s (x)∩X 6= /0 and Rp∧s (x)⊆ Rs (x) ,Rp (x)⊆

Rp∨s (x) then Rp∨s (x)∩X 6= /0 an so x∈ aprp∨s (X) . Therefore, aprp∧s (X)⊆ aprs (X) , aprp (X)⊆

aprp∨s (X) . �

Example 4.2 Let U = {a,b,c,d} and

R = {(a,a) ,(a,c) ,(b,c) ,(c,a) ,(c,d)}
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be a binary relation on U. Then,

Rs (a) = {a,c} , Rs (b) = {c} , Rs (c) = {a,d} , Rs (d) = /0,

Rp (a) = {a,c} , Rp (b) = /0, Rp (c) = {a,b} , Rp (d) = {c} ,

Rp∧s (a) = {a,c} , Rp∧s (b) = /0, Rp∧s (c) = {a} , Rp∧s (d) = /0,

Rp∨s (a) = {a,c} , Rp∨s (b) = {c} , Rp∨s (c) = {a,b,d} , Rp∨s (d) = {c} .

Let X = {a,c,d} . Then,

aprs (X) = {a,b,c,d} ,

aprp (X) = {a,b,d} ,

aprp∧s (X) = {a,b,c,d} ,

aprp∨s (X) = {a,b,d} ,

aprs (X) = {a,b,c} ,

aprp (X) = {a,c,d} ,

aprp∧s (X) = {a,c} ,

aprp∨s (X) = {a,b,c,d} .

Hence, note that aprs (X)⊃ aprs (X) .

In the original rough set theory, lower approximation of X is a subset of its upper approxima-

tion. In order to provide this condition, we need some properties to add binary relations.

The next propositions presents this conditions.

Proposition 4.3 [4] Let U be the universe and R is a binary relation. Then, for all X ⊆U

R is serial ⇒ aprs (X)⊆ aprs (X)

Corollary 4.4 Let U be the universe and R is a binary relation. Then, for all X ⊆U

R is serial ⇒ aprp∨s (X)⊆ aprs (X)⊆ aprs (X)⊆ aprp∨s (X)

Proof. Proof is clear from Proposition 4.1 and Proposition 4.3. �
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Proposition 4.5 Let U be the universe and R is a binary relation. Then, for all X ⊆U

R is inverse serial ⇒ aprp (X)⊆ aprp (X) .

Proof. Let x ∈ aprp (X) . Then Rp (x) ⊆ X , which gives Rp (x)∩X = Rp (x) 6= /0, that is, x ∈

aprp (X) . �

Corollary 4.6 Let U be the universe and R is a binary relation. Then, for all X ⊆U

R is inverse serial ⇒ aprp∨s (X)⊆ aprp (X)⊆ aprp (X)⊆ aprp∨s (X) .

Proof. Proof is clear from Proposition 4.1 and Proposition 4.5. �

Proposition 4.7 Let U be the universe and R is a binary relation. Then, for all X ⊆U

R is symmetric and serial (or inverse serial)⇒ aprp∧s (X)⊆ aprp∧s (X) .

Proof. Let x ∈ aprp∧s (X) . Then, from Lemma 3.5 Rp∧s (x) = Rp (x) which gives aprp∧s (X) =

aprp (X). So, from Proposition 4.3 x ∈ aprp∧s (X) . �

The next propositions present a set between its lower approximation and its upper approxi-

mation conditions.

Proposition 4.8 Let U be the universe and R is a binary relation. Then, for all X ⊆U

R is reflexive⇒ apri (X)⊆ X ⊆ apri (X) , where i: s, p, p∧ s and p∨ s, respectively.

Proof. Proof is clear from Proposition 2.2. �

Corollary 4.9 Let U be the universe and R is a reflexive or preorder binary relation. Then, for

all X ⊆U

(1) aprp∨s (X)⊆ aprp (X)⊆ aprp∧s (X)⊆ X ⊆ aprp∧s (X)⊆ aprp (X)⊆ aprp∨s (X)

(2) aprp∨s (X)⊆ aprs (X)⊆ aprp∧s (X)⊆ X ⊆ aprp∧s (X)⊆ aprs (X)⊆ aprp∨s (X) .

Proof. Proof is clear from Proposition 4.1 and Proposition 4.8. �

Proposition 4.10 Let U be the universe and R is a tolerance or equivalent binary relation. Then,

for all X ⊆U
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apri (X) = apr j (X)⊆ X ⊆ apri (X) = apr j (X)

, where i, j : s, p,s∧ p and s∨ p.

Proof. If R is a tolerance or equivalent binary relation, then for all x ∈U,

Rs∧p(x) = Rs(x) = Rpx) = Rs∨p (x)

. Thus, for all X ⊆U

aprs (X) = aprp (X) = aprp∧s (X) = aprp∨s (X)

and

aprs (X) = aprp (X) = aprp∧s (X) = aprp∨s (X) .

Therefore, from Proposition

apri (X) = apr j (X)⊆ X ⊆ apri (X) = apr j (X) ,

where i, j : s, p,s∧ p and s∨ p. �
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