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1. Introduction

The intersection problem is a fundamental process needed in modeling complex shapes

in CAD/CAM system. It is useful in the representation of the design of complex objects,

in computer animation and in NC machining for trimming o¤ the region bounded by
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the self-intersection curves of o¤set surfaces. It is also essential to Boolean operations

necessary in the creation of boundary representation in solid modeling [1]. The numerical

marching method is the most widely used method for computing intersection curves in

R3. The Marching method involves generation of sequences of points of an intersection

curve in the direction prescribed by the local di¤erential geometry [2,3]. Willmore [4]

described how to obtain the unit tangent, the unit principal normal, the unit binormal,

the curvature and the torsion of the transversal intersection curve of two implicit sur-

faces [5]. Kruppa [6] explained that the tangential direction of the intersection curve at

a tangential intersection point corresponds to the direction from the intersection point

towards the intersection of the Dupin indicatrices of the two surfaces. Hartmann [7]

provided formulas for computing the curvature of the transversal intersection curves for

all types of intersection problems in Euclidean 2-space. Kriezis et al. [8] determined

the marching direction for tangential intersection curves based on the fact that the de-

terminant of the Hessian matrix of the oriented distance function is zero. Luo et al. [9]

presented a method to trace such tangential intersection curves for parametric-parametric

surfaces employing the marching method. The marching direction is obtained by solv-

ing an undetermined system based on the equilibrium of the di¤erentiation of the two

normal vectors and the projection of the Taylor expansion of the two surfaces onto the

normal vector at the intersection point. Ye and Maekawa [1] presented algorithms for

computing all the di¤erential geometry properties of both transversal and tangentially

intersection curves of two parametric surfaces. They described how to obtain these prop-

erties for two implicit surfaces or parametric-implicit surfaces. They also gave algorithms

to evaluate the higher-order derivative of the intersection curves. Aléssio [10] studied the

di¤erential geometry properties of intersection curves of three implicit surfaces in R4 for

transversal intersection, using the implicit function theorem. Our previous work Soliman

et al. [11] presented algorithms for computing di¤erential geometry properties of both

transversal and tangentially intersection curves of implicit and parametric surfaces in R3:

Our previous work Abdel-All et al. [12] presented algorithms for computing di¤erential
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geometry properties of transversal intersection curves of implicit�parametric�parametric

and implicit�implicit�parametric hypersurfaces in R4.

In this paper we present algorithms for computing deferential geometry properties of

both transversal and tangentially intersection curves of two implicit surfaces in R3. The

necessary and su¢ cient conditions for the intersection curve to be a straight line or a plane

curve or helix or circular helix or circle are given. Finally some examples of transversal

and tangentially intersection are given and plotted.

2. Geometric preliminaries [1;13�15]

Let us �rst introduce some notation and de�nitions. Bold letters such as a, � will

be used for vectors and vector functions. The scalar product and cross product of two

vectors a and c are expressed as ha; ci and a� c respectively. The triple scalar product

of three vectors a; c and d are expressed as det(a; c;d) and the length of the vector a is

kak =
p
ha;ai: The transpose and the determinant of a square matrix A are expressed

as AT and detA respectively. The notation for the di¤erentiation of a curve � in relation

to the arc length s is �0(s) = d�
ds
; �00(s) = d2�

ds2
; �000(s) = d3�

ds3
and for a curve � with an

arbitrary parameter u, it is _�(u) = d�
du
; ��(u) = d2�

du2
;
...
�(u) = d3�

du3
; �(4) = d4�

du4
:

Let � : I �! R3 be a regular curve in R3 with arc-length parametrization,

(2.1) �(s) = (x1(s); x2(s); x3(s)):

Then from elementary di¤erential geometry, we have

(2.2) �0(s) = t;

(2.3) �00(s) = �n;

(2.4) �2(s) = h�00;�00i ;

where t is the unit tangent vector �eld and �00 is the curvature vector. The factor � is

the curvature and n is the unit principal normal vector. The unit binormal vector b is
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de�ned as

(2.5) b(s) = t� n:

The Frenet�Serret formulas along � are given by

(2.6) t0(s) = �n; n0(s) = ��t+ �b; b0(s) = ��n;

where � is the torsion which is given by

(2.7) � =
hb;�000i
�

:

provided that the curvature does not vanish.

Let � : J �! R3 be a regular curve parametrized by a parameter u, with the same

trace as the curve (2:1), i.e.

(2.8) �(u) = �(s(u)):

Then from elementary di¤erential geometry, we have

(2.9) s =

uZ
u0

k _�(u)kdu; t =
_�(u)

k _�(u)k
;

(2.10) �n =

D
_�(u); _�(u)

E
��(u)�

D
_�(u); ��(u)

E
_�(u)

k _�(u)k4
; � =

k _�(u)� ��(u)k
k _�(u)k3

;

(2.11) � =
det( _�(u); ��(u);

...
�(u))

k _�(u)� ��(u)k2
j � 6= 0

3. Transversal intersection curve

Consider two regular implicit surfaces f(x1; x2; x3) = 0 and h(x1; x2; x3) = 0. In other

words rf 6= 0; rh 6= 0; where rf = ( @f
@x1
; @f
@x2
; @f
@x3
) is the gradient vector of f . We

denote to partial derivatives of both surfaces by

fi =
@f
@xi
; fii =

@2f
@x2i
; fij =

@2f
@xi@xj

; :::;

hi =
@h
@xi
; hii =

@2h
@x2i
; hij =

@2h
@xi@xj

; :::
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The unit surface normal vector �eld of the surface f is given by

(3.1) N =
rf
krfk :

Suppose that the curve (2:8) is an intersection curve of both surfaces. Then it can be

expressed as

�(u) = �(s(u)) = (x1(u); x2(u); x3(u)) j f(�(u)) = 0; h(�(u)) = 0:

Since � can be viewed as a curve on the surface f . Then, we haveD
rf(�(u)); _�(u)

E
= 0;

which can be written in a matrix form as the follows

(3.2) rf _� = 0;

where rf =
h
f1(�(u)) f2(�(u)) f3(�(u))

i
; _� =

h
_x1(u) _x2(u) _x3(u)

iT
: Di¤erentiat-

ing Eq. (3:2) with respect to u yields

rf �� = �( _x1
@

@x1
(rf) + _x2

@

@x2
(rf) + _x3

@

@x3
(rf)) _�:

which can be written as the follows

(3.3) rf �� = � _�TH1 _�;

where H1 =

26664
f11 f12 f13

f12 f22 f23

f13 f23 f33

37775 is the Hessian matrix of the function f . Di¤erentiating Eq.
(3:3) with respect to u and using the fact ��

T
H1 _� = ( _�

T
H1��)

T = _�
T
H1��, we have

(3.4) rf
...
� = �3 _�TH1�� � _�

T
(rH1 _�) _�:

Di¤erentiating Eq. (3:4) with respect to u yields

(3.5) rf�(4) = �5 _�T (rH1 _�)�� � 4 _�
T
H1
...
� � 3��TH1�� � _�

T
(r(rH1 _�) _�) _�:

3.1. Tangential direction
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Assume that f and h have continuous �rst derivatives and if, at least one of the Jacobian

determinants @(f;h)
@(x1;x2)

, @(f;h)
@(x2;x3)

and @(f;h)
@(x1;x3)

is not zero at a point P0 on the curve �, then

from the implicit function theorem, the surfaces f and h can be solved for two of the

variables in terms of the third. Assume that @(f;h)
@(x2;x3)

6= 0, then we can write

(3.6) �(x1) = (x1; x2(x1); x3(x1)) j f(�(x1)) = 0; h(�(x1)) = 0:

Di¤erentiating Eq. (3:6) with respect to x1 yields

(3.7) _�(x1) = (1; _x2(x1); _x3(x1)):

Using Eqs. (3:2); (3:6) and (3:7) yields

rf _� = 0; rh _� = 0

which can be written in a matrix form as the follows

(3.8)

24f1 f2 f3

h1 h2 h3

35h1 _x2 _x3

iT
=

240
0

35 :
Solving the coe¢ cients _x2 and _x3 from linear system (3:8) and substituting into (3:7)

yields

(3.9) _�(x1) =
(A23;�A13; A12)

A23
;

where

(3.10) Aij = det

24fi fj

hi hj

35 :
Then the speed and the arc length of � can be obtained respectively, by

(3.11) k _�(x1)k =
p
A212 + A

2
13 + A

2
23

jA23j
:

(3.12) S =

Z x1

x01

p
(A12)2 + (A13)2 + (A23)2

jA23j
dx1;
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where x01 is the value of x1 at P0: The unit tangent vector �eld of the intersection curve

is given by

(3.13) t =
�(A23;�A13; A12)p
A212 + A

2
13 + A

2
23

; � =

8<: 1 if A23 > 0

�1 if A23 < 0
:

3.2. Curvature and curvature vector

Di¤erentiating Eq. (3:7) with respect to x1 and using Eqs. (3:3) and (3:6), we obtain

(3.14) ��(x1) = (0; �x2(x1); �x3(x1));

(3.15) rf �� = � _�TH1 _�; rh�� = � _�
T
H2 _�;

where H2 = (hij): The linear system (3:15) can be written in a matrix form as the follows24f2 f3

h2 h3

3524�x2
�x3

35 =
24� _�TH1 _�
� _�TH2 _�

35 :
Solving the coe¢ cients �x2 and �x3 from above linear system yields

(3.16)

�x2 =
1

A323
(
B311A

2
23 +B322A

2
13 +B333A

2
12

+2(B313A12A23 �B312A13A23 �B323A13A12)
);

�x3 =
�1
A323

(
B211A

2
23 +B222A

2
13 +B233A

2
12

+2(B213A12A23 �B212A13A23 �B223A13A12)
);

where

(3.17) Bijk = det

24 fi hi

fjk hjk

35 :
The curvature vector and the curvature can be calculated using Eqs. (2:10); (3:9) and

(3:14) respectively, as

(3.18) �n = (
A23

A212 + A
2
13 + A

2
23

)2(
A23A13�x2 � A23A12�x3; (A212 + A223)�x2
+A13A12�x3; (A

2
13 + A

2
23)�x3 + A13A12�x2

);
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(3.19) � = A223

s
(A212 + A

2
23)�x

2
2 + (A

2
13 + A

2
23)�x

2
3 + 2A12A13�x2�x3

(A212 + A
2
13 + A

2
23)

3
:

3.3. Torsion and third-order derivative vector

Di¤erentiating Eq. (3:14) with respect to x1 and using Eqs. (3:4) and (3:6) yields

(3.20)
...
�(x1) = (0;

...
x 2(x1);

...
x 3(x1));

rf
...
� = �3 _�TH1�� � _�

T
(rH1 _�) _�; rh

...
� = �3 _�TH2�� � _�

T
(rH2 _�) _�:

Solving the coe¢ cients
...
x 2 and

...
x 3 from above linear system yields24...x 2

...
x 3

35 = �1
A423

24 h3 �f3
�h2 f2

3524c11�x2 + c12�x3 + c13
c21�x2 + c22�x3 + c23

35 :
Explicitly

(3.22)

...
x 2 = A

�4
23 ((f3c21 � h3c11) �x2 + (f3c22 � h3c12) �x3 + f3c23 � h3c13);

...
x 3 = �A�423 ((f2c21 � h2c11) �x2 + (f2c22 � h2c12) �x3 + f2c23 � h2c13);

where

(3.21)

c11 = 3(A
3
23f12 � A13A223f22 + A12A223f23);

c21 = 3(A
3
23h12 � A13A223h22 + A12A223h23);

c12 = 3(A
3
23f13 � A13A223f23 + A12A223f33);

c22 = 3(A
3
23h13 � A13A223h23 + A12A223h33);

c13 = (

A323f111 � 6A12A13A23f123 � A313f222 + A312f333

+3(
A12A

2
23f113 � A13A223f112 + A213A23f122

+A212A23f133 � A13A212f233 + A12A213f223
)
);

c23 = (

A323h111 � 6A12A13A23h123 � A313h222 + A312h333

+3(
A12A

2
23h113 � A13A223h112 + A213A23h122

+A212A23h133 � A13A212h233 + A12A213h223
)
):
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The torsion can be calculated by using Eqs. (2:10); (2:11) and (3:19) as the follows

� =
(�x2
...
x 3 � �x3

...
x 2)

k _�k6�2
:

Explicitly

(3.23) � =
A223(�x2

...
x 3 � �x3

...
x 2)

(A212 + A
2
23)�x

2
2 + (A

2
13 + A

2
23)�x

2
3 + 2A12A13�x2�x3

:

From the foregoing results, we have the following corollaries:

Corollary 3.1. The necessary and su¢ cient condition for the curve to be a straight line

(� = 0) is given by

(3.24)

B311A
2
23 +B322A

2
13 +B333A

2
12 = 2(B312A13A23 +B323A13A12 �B313A12A23);

B211A
2
23 +B222A

2
13 +B233A

2
12 = 2(B212A13A23 +B223A13A12 �B213A12A23):

Corollary 3.2. The necessary and su¢ cient condition for the curve to be a plane curve

(� = 0) is given by

(3.25) (
(c22f3 � c12h3)�x23 + (c21f2 � c11h2)�x22 + (c23f3 � c13h3)�x3
+(c23f2 � c13h2)�x2 + (c21f3 + c22f2 � c11h3 � c12h2)�x2�x3

) = 0

Corollary 3.3. The necessary and su¢ cient condition for the curve to be a helix (�
�
=

c1 =const.) is given by

(3.26)

(A212 + A
2
13 + A

2
23)

�3((A212 + A
2
23)�x

2
2 + (A

2
13 + A

2
23)�x

2
3 + 2A12A13�x2�x3)

3

= c1A
�8
23 (

(c22f3 � c12h3)�x23 + (c21f2 � c11h2)�x22 + (c23f3 � c13h3)�x3
+(c23f2 � c13h2)�x2 + (c21f3 + c22f2 � c11h3 � c12h2)�x2�x3

)2

Corollary 3.4. The necessary and su¢ cient condition for the curve to be a circular helix

(� = c2 =const.; � = c3 =const.) is given by

(3.27)

A423((A
2
12 + A

2
23)�x

2
2 + (A

2
13 + A

2
23)�x

2
3 + 2A12A13�x2�x3) = c2(A

2
12 + A

2
13 + A

2
23)

3;

(
(c22f3 � c12h3)�x23 + (c21f2 � c11h2)�x22 + (c23f3 � c13h3)�x3
+(c23f2 � c13h2)�x2)2 + (c21f3 + c22f2 � c11h3 � c12h2)�x2�x3

)

= c3A
2
23((A

2
12 + A

2
23)�x

2
2 + (A

2
13 + A

2
23)�x

2
3 + 2A12A13�x2�x3)
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Corollary 3.5. The necessary and su¢ cient condition for the curve to be a circle (� =

c4 =const.; � = 0) is given by

(3.28)

A423((A
2
12 + A

2
23)�x

2
2 + (A

2
13 + A

2
23)�x

2
3 + 2A12A13�x2�x3) = c4(A

2
12 + A

2
13 + A

2
23)

3;

(
(c22f3 � c12h3)�x23 + (c21f2 � c11h2)�x22 + (c23f3 � c13h3)�x3
+(c23f2 � c13h2)�x2 + (c21f3 + c22f2 � c11h3 � c12h2)�x2�x3

) = 0:

4. Tangentially Intersection curve

Two surfaces intersect tangentially when whose normal vectors are parallel to each

other. Assume that the surfaces f(x1; x2; x3) = 0 and h(x1; x2; x3) = 0 intersect tangen-

tially at a point P; so that N (f)==N (h) at P , i.e.

rf(�(s))
krf(�(s))k = �

rh(�(s))
krh(�(s))k :

Which can be written as

(4.1) rf(�(s)) = A(�(s))rh(�(s)); A(�(s)) = �krf(�(s))kkrh(�(s))k :

Then

(4.2) fi(�(s)) = A(�(s))hi(�(s)):

Thus, the tangential points or tangential curve are determined by solving the following

system of equations

(4.3) f = 0; h = 0; f1 = Ah1; f2 = Ah2; f3 = Ah3:

4.1. Tangential direction

Assume that both surfaces are intersected tangentially at a curve � which is parame-

trized by the variable x1, say. Then

(4.4) �(x1) = (x1; x2(x1); x3(x1)) j f = 0; h = 0; f1 = Ah1; f2 = Ah2; f3 = Ah3:
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Di¤erentiating Eq. (4:4) with respect to x1 and using Eqs. (3:2) and (4:4) yields

(4.5) _�(x1) = (1; _x2(x1); _x3(x1)); ��(x1) = (0; �x2(x1); �x3(x1));

(4.6) rf _� = 0; rh _� = 0:

By projecting �� onto the normals of both surfaces, we obtain

(4.7)
D
��(x1);rf(�(x1))

E
= A

D
��(x1);rh(�(x1))

E
:

Using the system (3:15) and Eq. (4:7) yields

_�
T
(H1 � AH2) _� = 0:

Explicitly

(4.8) (
(f22 � Ah22)( _x2)2 + (f33 � Ah33)( _x3)2 + 2(f23 � Ah23) _x2 _x3
+2(f12 � Ah12) _x2 + 2(f13 � Ah13) _x3 + (f11 � Ah11)

) = 0:

Using (4:6), we obtain

_x2 = �
f1 + f3 _x3

f2
; f2 6= 0 or _x3 = �

f1 + f2 _x2
f3

; f3 6= 0:

Assume that f2 6= 0; and substituting in Eq. (4:8), we get

(4.9) a11(
�
x3)

2 + 2a12
�
x3 + a13 = 0;

where

(4.10)

a11 = f
2
2 (f33 � Ah33)� 2f2f3(f23 � Ah23) + f 23 (f22 � Ah22);

a12 = f
2
2 (f13 � Ah13)� f1f2(f23 � Ah23)� f2f3(f12 � Ah12) + f1f3(f22 � Ah22);

a13 = f
2
1 (f22 � Ah22)� 2f1f2(f12 � Ah12) + f 22 (f11 � Ah11):

Solving Eq. (4:9) yields

(4.11)

_x1 = 1; _x2 = �
(a11f1 � a12f3)� f3

p
a212 � a11c

a11f2
;

�
x3 =

�a12 �
p
a212 � a11a13
a11

:

Thus

(4.12)
 _�(x1) =q1 + ( _x2)2 + ( �x3)2;
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(4.13) S =
xR
x0

 _�(x1) dx1; t = _�(x1) _�(x1) :
From the previous formulas, it is easy to see that there are four distinct cases for the

solution of Eq. (4:9) depending upon the discriminant � = a212 � a11a13; these cases are

as follows [1]:

Lemma 4.1. The point P is a branch point of the intersection curve (4:4); if � > 0

and there is another intersection branch crossing the curve (4:4) at that point:

Lemma 4.2. The surfaces f and h intersect at the point P and at its neighborhood,

if � = 0 and a211 + a
2
12 + a

2
13 6= 0. (Tangential intersection curve)

Lemma 4.3.The point P is an isolated contact point of the surfaces f and h; if � < 0.

Lemma 4.4 The surfaces f and h have contact of at least second order at the point

P; if a11 = a12 = a13 = 0. (Higher-order contact point)

4.2. Curvature and curvature vector

By projecting
...
�(x1) onto unit normal vectors of both surfaces, we obtain

(4.14) rf
...
� = A(rh

...
� ):

Using Eqs. (3:3); (3:4) and (4:14) yields

(4.15) rh�� = � _�TH2 _�;

(4.16) 3 _�
T
(H1 � AH2)�� = _�

T
((rH2 � A rH1) _�) _�:

Eqs (4:15) and (4:16) can be written as the follows243((f12 � A h12) + _x2(f22 � A h22) +
�
x3(f23 � A h23)) f2

3((f13 � A h13) + _x2(f23 � A h23) +
�
x3(f33 � A h33)) f3

35T 24�x2
�x3

35
=

24 _�T ((rH2 � A rH1) _�) _�
� _�TH2 _�

35 :
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Thus

(4.17)

24�x2
�x3

35 = 1




24 f3 �3((f13 � Ah13) + _x2(f23 � Ah23) +
�
x3(f33 � Ah33))

�f2 3((f12 � Ah12) + _x2(f22 � Ah22) +
�
x3(f23 � Ah23))

35
�

24 _�T ((rH2 � ArH1) _�) _�
� _�TH2 _�

35 ; 
 6= 0;
where

(4.18) 
 = 3det

24(f12 � Ah12) + _x2(f22 � Ah22) +
�
x3(f23 � Ah23) 1

3
h2

(f13 � Ah13) + _x2(f23 � Ah23) +
�
x3(f33 � Ah33) 1

3
h3

35T :
Then the curvature and curvature vector are given by

(4.19)

�n =
( _x2�x2 + _x3�x3; (1 + _x23)�x2 � _x2 _x3�x3; (1 + _x22)�x3 � _x2 _x3�x2)

(1 + _x22 + _x23)
2

;

� =

s
(1 + _x23)�x

2
2 + (1 + _x22)�x

2
3 � 2 _x2 _x3�x2�x3

(1 + _x22 + _x23)
3

:

4.3. Torsion and third-order derivative vector

By Projecting �(4)(x1) onto unit normal vectors of both surfaces, we have

(4.20) rf�(4) = Arh�(4):

Using Eqs. (3:4); (3:5) and (4:20) yields

rh
...
� = �3 _�TH2�� � _�

T
(rH2 _�) _�;

244 _�T (H1 � AH2)
rh

35
26664
0
...
x 2
...
x 3

37775 =
245 _�T (r(H2 � AH1) _�)�� + 3��T (H2 � AH1)��

�3 _�TH2��

35

+

24 _�T (r(r(H2 � AH1)) _�) _�) _�
� _�T (rH2 _�) _�

35

;
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Explicitly

(4.21)24...x 2
...
x 3

35 = 1

�

24 h3 4((f13 � Ah13) + (f23 � Ah23) + (f22 � Ah22)) _x3
�h2 4((f12 � Ah12) + ((f33 � Ah33) + (f23 � Ah23)) _x2

35

�

245 _�T (r(H2 � AH1) _�)�� + 3��T (H2 � AH1)�� + _�
T
(r(r(H2 � AH1)) _�) _�) _�

�3 _�TH2�� � _�
T
(rH2 _�) _�

35 ;

where

(4.22) � = 4(
((f12 � Ah12) + (f22 � Ah22)h2 + (f23 � Ah23))h3 _x3
�((f13 � Ah13) + (f23 � Ah23) + (f33 � Ah33))h2 _x2

):

The torsion can be calculated by substituting in

(4.23) � =
�x2
...
x 3 � �x3

...
x 2

(1 + _x23)�x
2
2 + (1 + _x22)�x

2
3 � 2 _x2 _x3�x2�x3

:

5. Examples

Example 5.1. Consider the intersection of the two implicit surfaces (ellipsoids) [1]

(5.1)
f(x1; x2; x3) =

x21
0:62

+
x22
0:82

+
x23
12
� 1 = 0;

h(x1; x2; x3) =
x21
0:452

+
x22
0:82

+
x23
1:252

� 1 = 0:
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Fig. 1. Transversal and tangential intersection.

Transversal intersection: Since @(f;h)
@(x2;x3)

6= 0; x3 6= 0, then we can solve (5:1) for the

variables x2; x3 in terms of x1: Using Eqs (3:9) and (5:1), we obtain

(5.2) _� = (1;�4096x1
729x2

;
4375x1
729x3

):

The speed and unit tangent vector of the intersection curve can be calculated using Eqs

(3:12) and (3:13) as the follows

(5.3) _s =

p
182:33x21x

2
2 + 5:06x

2
2x
2
3 + 159:82x

2
1x
2
3

j2:25x2x3j
;

(5.4) t =

8>><>>:
(�2:25x2x3; 12:64x1x3;�13:50x1x2)p
182:33x21x

2
2 + 5:06x

2
2x
2
3 + 159:82x

2
1x
2
3

if x2x3 < 0

(2:25x2x3;�12:64x1x3; 13:50x1x2)p
182:33x21x

2
2 + 5:06x

2
2x
2
3 + 159:82x

2
1x
2
3

if x2x3 > 0
:

The curvature vector and the curvature of the intersection curve can be calculated by

using Eqs(3:16); (3:18) and (3:19) as the follows

(5.5)

�n = (
A23

A212 + A
2
13 + A

2
23

)2(A23A13�x2; (A
2
12 + A

2
23)�x2; A13A12�x2);

� =

s
A423(A

2
12 + A

2
23)�x

2
2

(A212 + A
2
13 + A

2
23)

3
;

(5.6) �� = (0;�64:x
2
2 + 359:594x

2
1

11:391x32
; 0):
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Using Eqs. (3:22) and (3:23) yields

(5.7)
...
x 2 = �

27A13�x2
4(A23)2

;
...
x 3 = 0:

Thus

(5.8) � = 0:

Thus, the intersection curve � is a plane curve as shown in Fig 1.

Tangentially intersection: Solving the system (4:3) for the surfaces (5:1), we �nd

that the surfaces are intersecting tangentially at the points P (0;�0:8; 0). Using (4:3);

(4:10) and (5:1) at P1(0; 0:8; 0) yields

A = 1; a11 =
9

2
; a12 = 0; a13 = �

4375

162
:

Then � > 0 this means that the point P1 is a branch point. The unit tangent vector

of the intersection curve at P1 can be calculated by using Eqs (4:11) and (4:13) as the

follows

(5.9) t = (
27

4
p
319

; 0;� 25
p
7

4
p
319

):

The curvature vector, the curvature and the torsion of the intersection curve at P1 can

be calculated by using Eqs. (4:17); (4:19); (4:23) and (5:1) as the follows

(5.10) �n = (0;�320
319

; 0); � =
320

319
; � = 0:

Thus, the intersection point P1 is a �at point as shown in Fig 1.

Example 5.2. Consider the intersection of two implicit surfaces

(5.11)
f(x1; x2; x3) = (x

2
1 + x

2
2 + x

2
3 + 3)

2 � 16(x21 + x22) = 0;

h(x1; x2; x3) = x
2
1 + x

2
2 + x

2
3 � 1 = 0:
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Fig. 2. Tangential intersection

At x3 = 0, we have N (f) == N (h):Using Eqs. (4:10) and (5:11), we obtain � = 0; this

means that the surfaces are intersect tangentially at a curve. Then from Eq. (4:11), we

obtain

(5.12) _� = (1;�x1
x2
; 0):

Using Eqs. (4:12) and (4:13) yields

(5.13)
�
S =

p
x21 + x

2
2

x2
; t =

(x2;�x1; 0)p
x21 + x

2
2

:

Using Eq. (4:18), we have 
 = 0, then Eq. (4:16) vanish on the intersection curve. From

Eq. (4:15), we have

x2�x2 + x3�x3 = �
x21 + x

2
2

x22
:

On the intersection curve we have x3 = 0: Thus

(5.14) �� = (0;� 1
x32
; 0):

The curvature vector and curvature of the intersection curve can be calculated using Eqs

(4:19); (5:12) and (5:14) as the follows

(5.15) �n =
�(x1; x2; 0)
(x21 + x

2
2)
; � =

1p
x21 + x

2
2

; n =
�(x1; x2; 0)p
x21 + x

2
2

:

Using Eqs. (4:21); (5:12) and (5:14), we get

(5.16)
...
� = (0;

�3x1
x52

; 0):
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The torsion of the intersection curve can be calculated by using Eqs (4:23); (5:12); (5:14)

and (5:16); thus

� = 0:

Then the tangential intersection curve is a plane curve as shown in Fig 2.

Example 5.3. Consider the intersection of the two implicit surfaces

(5.17)
f(x1; x2; x3) = x

2
1 + x

2
2 + x

2
3 � 1 = 0;

h(x1; x2; x3) = x2 � 1 = 0:

Fig. 3. Tangential intersection.

At the point P (0; 1; 0), we have N (f) == N (h): By using Eqs. (4:8) and (5:17) yielding

� < 0: Then the point P is an isolated tangential contact point as shown in Fig. 3.

Example 5.4. Consider the intersection of the two implicit surfaces

(5.18)
f(x1; x2; x3) = x

2
1 � x22 + x3 � 1 = 0;

h(x1; x2; x3) = x
2
1 + x

2
2 + x

3
3 = 0:
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Fig. 4. Transversal intersection. Fig. 5. Transversal intersection.

The point of the intersection curve is p = (
q

11
2
;
q

5
2
;�2) 2 Sf \Sh:In this point, we have

The unit tangent vector can be calculated using Eqs. (3:10) and (3:13); as

(5.19) t(p) = (
13

2

r
5

654
;
11

2

r
11

654
;�
r
55

327
):

The curvature vector and curvature can be calculated using Eqs (3:16) and (3:17), as

(5.20)
�n(p) = (

271

23762

p
22;� 737

71286

p
10;

1231

71286
);

�(p) = 6:5028� 10�2:

The torsion can be calculated using Eqs. (3:21); (3:22) and (3:23), as

(5.21) �(p) = �0:515 28:

The intersection curves are shown in Fig. 5.

5. Conclusion

Algorithms for computing the di¤erential geometry properties of intersection curves of

two implicit surfaces in R3 are given for transversal and tangential intersection. This

paper also includes the necessary and su¢ cient conditions for the curve to be a straight

line or a planer curve or helix or circular helix or circle. The types of singularities on the

intersection curve are characterized. The questions of how to exploit and extend these

algorithms to compute the di¤erential geometry properties of self-intersection curves of

an implicit surface in R3 can be topics of future research.
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