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Abstract. In this paper, we consider curves of AW(k)-type (1≤ k ≤ 3) in Three Dimensional Lie Groups. We

give harmonic curvature conditions of AW(k)-type curves. Furthermore, we investigate that under what conditions

AW(k)-type curves are helix. Besides, considering AW(k)-type curves, we investigate Bertrand curves and we

show that there are Bertrand curves of AW(2), AW(3) and weak AW(2)−types.
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1 Introduction

In the curve theory of Euclidean space, the most important subject is to obtain a characterization

for a regular curves. These characterizations can be given for a single curve or for a curve pair.

Helix, slant helix, plane curve, spherical curve, etc. especially the helices, are used in many

applications [2,3,19]. Similarly, by considering two curves, some special curve pairs such as

involute evolute curves, Bertrand curves, Mannheim curves have been defined and studied so
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far [10,11,14]. Accordingly, Bertrand mates represent particular examples of offset curves

which are used in computer-aided design (CAD) and computer-aided manufacture (CAM). The

distance between a Bertrand curve and its mate measured along the principal normal is known

to be constant. We can see helical structures in nature and mechanic tools.

As a matter of fact, it is the simplest of the three-dimensional spirals. One of the most in-

teresting spirals is referred to as the k-Fibonacci spirals which appears naturally from studying

the k-Fibonacci numbers and the related hyperbolic k-Fibonacci function. Fibonacci numbers

and the related Golden Mean or Golden Section appear very often in theoretical physics and

physics of the high energy particles (see [7,8,9]). Besides, in the field of computer aided design

and computer graphics, helices can be used for the tool path description, the simulation of kine-

matic motion or design of highways [18]. Also we can see the helix curve or helical structure in

fractal geometry, for instance hyperhelices. In differential geometry; a curve of constant slope

or general helix in Euclidean 3-space E3 is defined by the property that its tangent vector field

makes a constant angle with a fixed straight line (the axis of the general helix).

Çöken and Çiftçi have studied the degenarete semi-Riemannian geometry of Lie group [6].

They obtained a naturally reductive homogeneous semi-Riemannian space using the Lie group.

Later, some of subjects given above have been considered in three dimensional Lie groups and

some characterizations for these curves have been obtained in a three dimensional Lie group

[15,16]. Also, Çiftçi[5] defined general helices in three dimensional Lie groups with a bi-

invariant metric and obtained a generalization of Lancret’s theorem and gave a relation between

the geodesics of the so-called cylinders and general helices.

Recently, many interesting results on curves of AW(k)-type have been obtained by many

mathematicians (see [12,13,17]). For example, Özgür and Gezgin studied a Bertrand curve of

AW(k)-type and they showed that there was no such Bertrand curve of AW(1)-type and α was

of AW(3)-type if and only if it was a right circular helix. In addition they studied weak AW(2)-

type and AW(3)-type conical geodesic curves in E3. Külahci, Bektaş and Ergüt give curvature

conditions of a AW(k)-type Frenet curve in Lorentzian space.
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In this paper, we have done a study on Bertrand curves of AW(k)-type. However, to the

best of author’s knowledge, Bertrand curves of AW(k)-type have not been presented in Three

Dimensional Lie Groups. Thus, the study is proposed to serve such a need.

2 Preliminaries

Let G be a Lie group with a bi-invariant metric 〈,〉 and D be the Levi-Civita connection of Lie

group G. İf g denotes the Lie algebra of G then we know that g is isomorphic to TeG where e is

neutral element of G. If 〈,〉 is a bi-invariant metric on G then we have

(2.1) 〈X , [Y,Z]〉= 〈[X ,Y ] ,Z〉

and

(2.2) DxY =
1
2
[X ,Y ]

for all X ,Y and Z ∈ g.

Let α : I ⊂ R→ G be an arc-lenghted curve and {X1,X2, ...,Xn} be an orthonormal basis of

g. In this case, we write that any two vector fields W and Z along the curve α as W = ∑
n
i=1 wiXi

and Z = ∑
n
i=1 ziXi where wi : I→ R and zi : I→ R are smooth functions. Also the Lie bracket

of two vector fields W and Z is given

[W,Z] =
n

∑
i=1

wizi
[
Xi,X j

]
and the covariant derivative of W along the curve α with the notation Dα pW is given as

follows

(2.3) Dα pW = Ẇ +
1
2
[T,W ]

where T =α p and Ẇ =∑
n
i=1 ẇiXi or Ẇ =∑

n
i=1

dw
dt Xi. Note that if W is the left-invariant vector

field to the curve α then Ẇ = 0 (For see detail [4]).
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Let G be a three dimensional Lie group and (T,N,B,κ,τ) denote the Frenet apparatus of the

curve α, and calculate κ =
∥∥Ṫ
∥∥ .

Definition 1. Let α : I⊂R→G be a parametrized curve with the Frenet apparatus (T,N,B,κ,τ)

then

(2.4) τG =
1
2
〈[T,N] ,B〉

or

τG =
1

2κ2τ

〈
T̈ ,
[
T, Ṫ

]〉
+

1
4κ2τ

∥∥[T, Ṫ ]∥∥2

(see [4]).

Definition 2. Let α : I ⊂R→G be an arc length parametrized curve with the Frenet apparatus

(T,N,B,κ,τ). Then the harmonic curvature function of the curve α is defined by

H =
τ− τG

κ

where τG = 1
2 〈[T,N] ,B〉 .

Theorem 3. Let α : I ⊂R→G be an arc length parametrized curve with the Frenet apparatus

(T,N,B,κ,τ). If the curve α is a general helix if and only if

H = const.

(see [5]) .

Theorem 4. Let α : I ⊂R→G be an arc length parametrized curve with the Frenet apparatus

(T,N,B,κ,τ). Then α is a slant helix if and only if

σ =
κ
(
1+H2) 3

2

H p = tanθ

is a constant where H is a harmonic curvature function of the curve α and θ 6= π

2 is a constant

[16].

Proposition 5. Let α : I ⊂ R→ G be an arc-length parametrized curve with the Frenet appa-

ratus {T,N,B}. Then the following equalities
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[T,N] = 〈[T,N] ,B〉B = 2τGB

[T,B] = 〈[T,B] ,N〉N =−2τGN

hold [16].

Remark 6. Let G be a Lie group with a bi-invariant metric 〈,〉.Then the following equalities

can be given in different lie groups [4].

i) If G is abelian group then τG = 0

ii) If G is SO3 then τG = 1
2

iii) If G is SU2 then τG = 1

3 Aw(k)-type curves in Three Dimensional Lie Groups

In this section, harmonic curvature of curves of AW(k)-type are considered. We give some

theorems and corollaries.

Let α : I ⊂ R→ G be an arc-length parametrized unit speed curve in three dimensional Lie

groups. The curve α is called a Frenet curve of osculating order 3 if its derivatives

α
′
(s),α

′′
(s),α

′′′
(s),α

′′′′
(s) are linearly dependent and α

′
(s),α

′′
(s),α

′′′
(s),α

′′′′
(s) are no longer

linearly independent for all s∈ I. To each Frenet curve of order 3 one can associate an orthonor-

mal 3−frame {T (s),N(s),B(s)} along α such that (α
′
(s) = T (s)) called the Frenet frame and

functions κ,τ : I → R called the Frenet curvatures, such that the Frenet formulas in three di-

mensional Lie groups are defined

DT T (s) = κ(s)N(s)(3.1)

DT N(s) =−κ(s)T (s)+(τ− τG)(s)B(s)

DT B(s) = (τG− τ)(s)N(s)

where D is the Levi-Civita connections of Lie group G and τG = 1
2 〈[T,N] ,B〉 [16].
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Proposition 7. Let α : I ⊂ R→ G be a Frenet curve in three dimensional Lie groups, then we

have

α
′
(s) = T (s)

α
′′
(s) = κ(s)N(s)

α
′′′
(s) =−κ

2(s)T (s)+κ
′
(s)N(s)+κ

2(s)H(s)B(s)

α
′′′′
(s) = (−3κ(s)κ

′
(s))T (s)+(κ

′′
(s)−κ

3(s)(1−H2(s)))N(s)+(2κ
′
(s)κ(s)H(s)+(κ(s)H(s))

′
)B(s).

Proof. From Frenet formulas in three dimensional Lie groups (3.1) and by using H = τ−τG
κ

, we

have the results. �

Notation. Let us write

N1(s) = κ(s)N(s)(3.2)

N2(s) = κ
′
(s)N(s)+κ

2(s)H(s)B(s)(3.3)

N3(s) = (κ
′′
(s)−κ

3(s)(1−H2(s)))N(s)+(3κ
′
(s)κ(s)H(s)+κ

2(s)H
′
(s))B(s)(3.4)

Remark 8. α
′
(s),α

′′
(s),α

′′′
(s),α

′′′′
(s) are linearly dependent if and only if N1(s),N2(s),N3(s)

are linearly dependent.

As the definition of Aw(k) type curves in [1], we have

Definition 9. Frenet curves (of osculating order3) in three dimensional Lie groups are

(i) of type weak Aw(2) if they satisfy

(3.5) N3(s) = 〈N3(s),N∗2 (s)〉N∗2 (s),

(ii) of type weak Aw(3) if they satisfy

(3.6) N3(s) = 〈N3(s),N∗1 (s)〉N∗1 (s)

where

N∗1 (s) =
N1 (s)
‖N1 (s)‖

,N∗2 (s) =
N2 (s)−〈N2 (s) ,N∗1 (s)〉N∗1 (s)∥∥N2 (s)−

〈
N2 (s) ,N∗1 (s)

〉
N∗1 (s)

∥∥ .
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Proposition 10. Let α be a Frenet curve(of osculating order3) in three dimensional Lie groups.

If α is of type weak Aw(2) then

(3.7) κ
′′
(s)−κ

3(s)(1−H2(s)) = 0.

Corollary 11. Let α be a Frenet curve of type weak Aw(2). If α is plane curve then

(3.8) κ(s) =±
√

2
s+ c

where c is constant.

Proof. Suppose that α is a Frenet curve of type weak Aw(2). Then the Eq. (3.7) hold on α .

Since α is a plane curve, we have

(3.9) H(s) = 0.

Substituting (3.9) in (3.7), we get

κ
′′
(s)−κ

3(s) = 0.

So the solution of the last equation gives us (3.8). Hence, the proof is completed. �

Proposition 12. Let α be a Frenet curve (of osculating order3) in three dimensional Lie groups.

If α is of type weak Aw(3) then

(3.10) 3κ
′
(s)κ(s)H(s)+κ

2(s)H
′
(s) = 0.

Definition 13. Frenet curves (of osculating order3) in three dimensional Lie groups are

(i) of type Aw(1) if they satisfy N3 (s) = 0,

(ii) of type Aw(2) if they satisfy

(3.11) ‖N2(s)‖2 N3(s) = 〈N3(s),N2(s)〉N2(s).

(iii) of type Aw(3) if they satisfy

(3.12) ‖N1(s)‖2 N3(s) = 〈N3(s),N1(s)〉N1(s).
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Theorem 14. Let α be a Frenet curve (of osculating order3) in three dimensional Lie groups.

Then α is of type Aw(1) if and only if

(3.13) κ
′′
(s)−κ

3(s)(1−H2(s)) = 0

and

(3.14) 3κ
′
(s)κ(s)H(s)+κ

2(s)H
′
(s) = 0

Proof. Since α is a curve of type Aw(1), we have N3(s) = 0. Then from Eq. (3.4), we have

(κ
′′
(s)−κ

3(s)(1−H2(s)))N(s)+(3κ
′
(s)κ(s)H(s)+κ

2(s)H
′
(s))B(s) = 0.

Furthermore, since N and B are linearly independent, we get

κ
′′
(s)−κ

3(s)(1−H2(s)) = 0 and 3κ
′
(s)κ(s)H(s)+κ

2(s)H
′
(s) = 0.

The converse statement is trivial. Hence our theorem is proved. �

Corollary 15. Let α be a Frenet curve (of osculating order3) in three dimensional Lie groups.

Then there is no (circular or general) helix of type Aw(1).

Proof. Assume that α be a helix. Then by the Theorem (3) H(s) is constant. So, H
′
(s) = 0.

Therefore the equations (3.13) and (3.14) can be written as follows:

κ
′′
(s)−κ

3(s)(1−H2(s)) = 0

and

3κ
′
(s)κ(s)H(s) = 0.

Since the solution of above differential equations does not exist, there are not circular and

general helix of type Aw(1). �

Theorem 16. Let α be a Frenet curve (of osculating order3) in three dimensional Lie groups.

Then α is of type Aw(2) if and only if

(3.15) 3(κ
′
(s))2

κ(s)H(s)+κ
′
(s)κ2(s)H

′
(s)−κ

′′
(s)κ2(s)H(s)+κ

5(s)H(s)(1−H2(s)) = 0.
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Proof. Suppose that α is a Frenet curve of order 3, then from (3.3) and (3.4), we can write

N2(s) = γ(s)N(s)+β (s)B(s),(3.16)

N3(s) = η(s)N(s)+δ (s)B(s),(3.17)

where γ , β , η and δ are differentiable functions. Since N2(s) and N3(s) are linearly dependent,

coefficients determinant is equal to zero and hence one can write

(3.18)

∣∣∣∣∣∣ γ(s) β (s)

η(s) δ (s)

∣∣∣∣∣∣= 0.

Here,

γ(s) = κ
′
(s),β (s) = κ

2(s)H(s)

and

η(s) = κ
′′
(s)−κ

3(s)(1−H2(s)),

δ (s) = 3κ
′
(s)κ(s)H(s)+κ

2(s)H
′
(s).

Substituting these into (3.18), we obtain (3.15).

Conversely if the equation (3.15) holds it is easy to show that α is of type Aw(2). This

completes the proof. �

Corollary 17. If a Frenet curve of order 3 is a general helix of type Aw(2), then one can have

(3.19) 3(κ
′
(s))2−κ

′′
(s)κ(s)+κ

4(s)(1−H2(s)) = 0.

Theorem 18. Let α be a general helix in three dimensional Lie groups. If α is of type Aw(2),

then

(3.20) κ(s) =
1√

−As2 +Bs+C
and (τ− τG)(s) =

√
1−Aκ(s)

where A = 1−H2(s), B and C are real constants.

Proof. Suppose that α is a general helix of type Aw(2). Then Eq.(3.19) holds. If we substitute

κ(s) = x in (3.19), we get

(3.21) x
d2x
ds2 −3

(
dx
ds

)2

= Ax4, A = 1−H2(s).



BERTRAND CURVES OF AW(K)-TYPE IN THREE DIMENSIONAL LIE GROUPS 815

Let us take x = yp and differentiating it twice we obtain

dx
ds

= pyp−1 dy
ds

,(3.22)

d2x
ds2 = p(p−1)yp−2

(
dy
ds

)2

+ pyp−1 d2y
ds2 .(3.23)

Now, the substitution of (3.22) and (3.23) into (3.21), we get

yp

[
pyp−1 d2y

ds2 + p(p−1)yp−2
(

dy
ds

)2
]
−3p2y2p−2

(
dy
ds

)2

= Ay4p,

py2p−1 d2y
ds2 + p(p−1)y2p−2

(
dy
ds

)2

−3p2y2p−2
(

dy
ds

)2

= Ay4p.

Putting p(p−1) = 3p2 (i.e. p =−1
2) into the last equation we get

py2p−1 d2y
ds2 = Ay4p.

So,
d2y
ds2 =−2A.

Now, we solve this last equation. Since dy
ds =−2As+B, we get

y =−As2 +Bs+C.

Furthermore, use of x = y
−1
2 we obtain

x = (−As2 +Bs+C)
1
2 .

Since H(s) = (τ−τG)(s)
κ(s) , we have the result. �

Theorem 19. Let α be a Frenet curve(of osculating order3) in three dimensional Lie groups.

Then α is of type Aw(3) if and only if

(3.24) 3κ
′
(s)κ(s)H(s)+κ

2(s)H
′
(s) = 0.

Proof. Suppose that α is a Frenet curve of order 3 which is of type Aw(3). If substituting (3.2)

and (3.4) in (3.12), we get (3.24) .

The converse statement is trivial. Hence our proposition is proved. �
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Theorem 20. Let be α a general helix of osculating order 3. Then α is of type Aw(3) if and

only if α is a circular helix.

Proof. Suppose that α is a general helix, then by the Theorem (3) H
′
(s) = 0. So, the equation

(3.24) becomes κ
′
(s)κ(s)H(s) = 0. Since H(s) is none zero, κ

′
(s) = 0. By the general helix

(τ−τG)(s) must be constant. So, α is a circular helix. The converse statement is trivial. Hence

our theorem is proved. �

4 AW(k)-type Bertrand Curves in Three Dimensional Lie Groups G

This section characteries the curvatures of AW(k)-type Bertrand curves in G. We obtain some

theorems and results about these curves in three dimensional Lie groups.

Definition 21. A curve α : I ⊂ R→ G with κ(s) 6= 0 is called a Bertrand curve if there exist a

curve α̃ : I ⊂ R→ G such that the principal normal lines of α and α̃ at s ∈ I are equal. In this

case α̃ is called a Bertrand mate of α [15].

Theorem 22. Let α ⊂ G be a Bertrand curve. A Bertrand mate of α is as follows:

(4.1) α̃(s) = α(s)+λN(s)

where λ is constant [15].

Corollary 23. If α̃ is a Bertrand mate of α , then

(4.2) (α̃(s))
′
= (1−λκ(s))T (s)+(λκ(s)H(s))B(s).

Proof. Since (α, α̃) is a Bertrand mate, then the Eq.(4.1) hold on α . Differentiating (4.1) with

respect to s , by using Frenet formulas in three dimensional Lie groups (3.1) and H = τ−τG
κ

,

then (4.2) is obtained. �

Theorem 24. Let α : I ⊂ R→ G be unit speed curve. If α̃ is a Bertrand mate of α , then angle

measurement of this curve between tangent vectors at corresponding points is constant.
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Proof. If
〈
T̃ (s),T (s)

〉′
= 0, then the proof is complete.

〈
T̃ (s),T (s)

〉′
=
〈(

T̃ (s)
)′
,T (s)

〉
+
〈

T̃ (s),(T (s))
′〉

(4.3)

=
〈
κ̃(s)Ñ(s),T (s)

〉
+
〈
T̃ (s),κ(s)N(s)

〉
(4.4)

= κ̃(s)
〈
Ñ(s),T (s)

〉
+κ(s)

〈
T̃ (s),N(s)

〉
(4.5)

Since Ñ (s) is parallel to N(s) and N(s)⊥T (s), then

(4.6)
〈
Ñ(s),T (s)

〉
= 0.

Since Ñ(s) is parallel to N(s) and T̃ (s)⊥Ñ(s), then

(4.7)
〈
T̃ (s),N(s)

〉
= 0.

Substituting (4.6) and (4.7) in (4.5), we have

〈
T̃ (s),T (s)

〉′
= 0.

Hence, the proof is completed. �

Proposition 25. Let α be a Frenet curve (of osculating order3) in three dimensional Lie groups.

For κ (s) 6= 0, α is a Bertrand curve if and only if there exists a linear relation

(4.8) λκ(s)+µκ(s)H(s) = 1.

where λ , µ are non-zero constants and H is the harmonic curvature function of the curve α[13].

Corollary 26. Suppose that κ (s) 6= 0 and (τ− τG)(s) 6= 0. Then α is a Bertrand curve if and

only if there exist a nonzero real number λ such that

(4.9) λ (κ
′
(s)κ(s)H(s)−κ(s)(κ(s)H(s))

′
)− (κ(s)H(s))

′
= 0.

Proof. By the proposition(25), α is a Bertrand curve if and only if there exist real numbers

λ 6= 0 and µ such that λκ(s)+ µκ(s)H(s) = 1. This is equivalent to the condition that there

exists a real number λ 6= 0 such that 1−λκ(s)
κH(s) is constant. Differentiating both sides of the last

equality, we get (4.9). The converse assertion is also true. �
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Proposition 27. Let α : I ⊂ R→ G be a Bertrand curve with κ(s) 6= 0 and (τ − τG)(s) 6= 0.

Then α is of AW(2)-type if and only if there is a non zero real number λ such that

(4.10) 3(κ
′
(s))2H(s)+κ

2(s)
λκ

′
(s)H(s)

λκ(s)−1
−κ

2(s)H(s)(3κ
′
(s)H(s)+κ(s)H

′
(s)) = 0.

Proof. Since α is of Aw(2)-type, Eq.(3.15) holds and since α is a Bertrand curve, Eq.(4.9)

holds. If both of these equations are considered, (4.10) is obtained. �

Theorem 28. Let α : I ⊂ R→ G be a Bertrand curve with κ(s) 6= 0 and (τ− τG)(s) 6= 0. If α

is of type Aw(3), then α is a circular helix.

Proof. Suppose that α : I ⊂ R→ G is a Bertrand curve of AW(3)-type with κ (s) 6= 0 and

(τ− τG)(s) 6= 0. Then the Eqs.(3.24) and (4.9) hold on α, we get

(4.11) H
′
(s)(2λκ

3(s)−κ
2(s)) = 0.

Since κ(s) 6= 0, from Eq.(4.11) H
′
(s) = 0. Thus, H(s) is constant, then α is a circular helix.

Hence our theorem is proved. �

Proposition 29. Let α : I ⊂ R→ G be a Bertrand curve with κ(s) 6= 0 and (τ− τG)(s) 6= 0. If

α is of weak AW(2)-type, then

(4.12) H
′
(s)(λκ

2(s)−κ(s))+H
′
(s)(2λκ(s)κ

′
(s)−2κ

′
(s))−κ

3(s)H(s)(1−H2(s)) = 0.

Proof. Since α is of weak Aw(2)-type, From Eq.(3.7) we have

(4.13) κ
′′
(s)−κ

3(s)
(
1−H2(s)

)
= 0.

Since α is a Bertrand curve, Eq.(4.9) holds

(4.14) H
′
(s)
(
λκ

2(s)−κ(s)
)
= κ

′
(s)H(s).

Differentiating above equation(4.14), we get

(4.15) κ
′′
(s) =

H
′′
(s)(λκ2(s)−κ(s))+H

′
(s)(2λκ(s)κ

′
(s)−2κ

′
(s))

H(s)

If equation (4.13) is substituted in (4.15), then (4.12) is obtained. �
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