Available online at http://scik.org J. Math. Comput. Sci. 2 (2012), No. 6, 1721-1733 ISSN: 1927-5307

ON WEIGHTED CLASSES OF ANALYTIC FUNCTION SPACES

A. EL-SAYED AHMED^{1,2*} AND A. KAMAL³

¹Department of Mathematics, Sohag University, Faculty of Science, Sohag 82524, Egypt ²Current Address: Department of Mathematics, Taif University, Faculty of Science Mathematics Department Box 888 El-Hawiyah, El-Taif 5700, Saudi Arabia ³Majmaah University Faculty of Science and Humanities, City Majmaah, KSA

Abstract. In this paper, we introduce a general class of analytic functions which extend the generalized Hardy space. We investigate the continuity of the point evaluations on this space.

2000 AMS Subject Classification: 30H05; 46E15

1. Introduction

Let $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk in the complex plane \mathbb{C} , $\partial \Delta$ its boundary and $H(\Delta)$ the space of all analytic function on the unit disk. For an analytic function f on the unit disk and 0 < r < 1, we define the delay function f_r by $f_r(e^{i\theta}) = f(re^{i\theta})$. It is easy to see that the functions f_r are continuous on $\partial \Delta$ for each r.

The theory of harmonic functions motivates the following classes of analytic functions, determined by their limiting behavior as their arguments approach to the boundary $\partial \Delta$. For $0 , the Hardy space <math>H^p$ is defined as the set of analytic functions $f : \Delta \to \mathbb{C}$ such that

$$||f||_{H^p}^p = \sup_{0 < r < 1} \int_0^{2\pi} |f_r(e^{i\theta})|^p \frac{d\theta}{2\pi} < \infty.$$

^{*}Corresponding author

Received April 14, 2012

By the Littlewood Subordination Theorem (see [1]), we see that the supremum in the above definition of H^p is actually a limit, that is,

$$||f||_{H^p}^p = \lim_{r \to 1} \int_0^{2\pi} |f_r(e^{i\theta})|^p \frac{d\theta}{2\pi} < \infty.$$

It should be mentioned that the function $\|.\|_{H^p}^p : H^p \to \mathbb{R}^+$ is a norm on H^p , and makes H^p into a Banach space for $1 \leq p < \infty$ (see [2]). For more studies on Hardy space, we refer to [2, 5, 6].

Recently Fatehi [4], introduced the following definition

Definition 1. Let $F : H(\Delta) \to H(\Delta)$ be a linear operator such that F(f) = 0 if and only if f = 0, that is, F is 1 - 1. For $1 \le p < \infty$, the generalized Hardy space $H_{F,p}(\Delta) = H_{F,p}$ is defined to be the collection of all analytic functions f on Δ for which

$$\sup_{0< r<1} \int_0^{2\pi} |(F(f))_r(e^{i\theta})|^p \frac{d\theta}{2\pi} < \infty.$$

Denote the *p*th root of this supremum by $||f||_{H_{F,p}}$. Since, $|F(f)|^p$ is a subharmonic function, so by [1], we have

$$||f||_{H_{F,p}}^{p} = \lim_{r \to 1^{-}} \int_{0}^{2\pi} |F(f)_{r}(e^{i\theta})|^{p} \frac{d\theta}{2\pi} < \infty.$$

Therefore, $f \in H_{F,p}$ if and only if $F(f) \in H^p$ and

$$||F(f)||_{p}^{p} = ||f||_{H_{F,p}}^{p} = \lim_{r \to 1^{-}} \int_{0}^{2\pi} |F(f)_{r}(e^{i\theta})|^{p} \frac{d\theta}{2\pi}.$$

It is easy to see that $H_{F,p}$ is a normed space with the norm $\|.\|_{H_{F,p}}$. For $0 , the Bergman space <math>A^p$ is the set of all $f \in H(\Delta)$ such that

$$\int_{\Delta} |f(z)|^p dA(z) < \infty,$$

where $dA(z) = dx dy = r dr d\theta$ is the Lebegue area measure. We mention [3] as general reference for the theory of Bergman spaces.

Throughout this paper, P denotes the set of all analytic polynomials and for a function F, R_F denotes the range of F.

We assume from now on that $\Psi : [0,1] \to [0,\infty)$ to appear in this paper is rightcontinuous and nondecreasing functions such that the integral

$$\int_0^1 \Psi(1-\rho))\rho d\rho < \infty.$$

We can define an auxiliary function as follows:

(1)
$$\varphi_{\Psi}(s) = \sup_{0 < t \le 1} \frac{\Psi(st)}{\Psi(t)}, \quad 0 < s < \infty,$$

we assume that

(2)
$$\int_0^1 \varphi_{\Psi}(s) \frac{ds}{s} < \infty.$$

From now on we suppose that the above weight function Ψ satisfies the following properties:

- (a) Ψ is nondecreasing on [0, 1],
- (b) Ψ is twice differentiable on (0, 1),

(c)
$$\int_0^1 \Psi(1-r)rdr < \infty$$
,
(d) $\Psi(t) = \Psi(1) > 0, t \ge 1$ and
(e) $\Psi(st) \approx \Psi(t), t \ge 0$.

We will need the following condition in the sequel.

(3)
$$\int_0^1 (1 - r^2)^{q-2} \Psi(1 - r) dr < \infty \quad \text{where } 0 < q < \infty.$$

Throughout this paper, P denotes the set of all analytic polynomials and for a function F, R_F denotes the range of F.

For $p, q \in (0, \infty)$, the weighted Bergman space $A^p_{\Psi,q}$ is the set of all $f \in H(\Delta)$ such that

(4)
$$\|f\|_{A^p_{\Psi,q}} = \sup_{0 < \rho < 1} \int_0^1 \int_0^{2\pi} |f_\rho(e^{i\theta})|^p (1-r^2)^{q-2} \Psi(1-r) \, d\theta \, dr < \infty.$$

The above formula defines a norm that turns $A^2_{\Psi,q}$ into a Hilbert space whose inner product is given by

(5)
$$\langle f,g\rangle_{A^2_{\Psi,q}} = \sum_{n=0}^{\infty} \widehat{f}(n)\overline{\widehat{g}(n)} = \int_0^{2\pi} \left(f_r(e^{i\theta})\right) \left(\overline{g_r(e^{i\theta})}\right) r \, d\theta \, dr$$

for each $f, g \in A^2_{\Psi,q}$.

Remark 1. By using known technique, it not hard to prove that $(A_{\Psi,q}^p, \|.\|_{A_{\Psi,q}^p})$ is a Banach space, that is, the norm $\|.\|_{A_{\Psi,q}^p}$ is complete.

1. (F, Ψ) -Bergman spaces

Definition 2. Let $F : H(\Delta) \to H(\Delta)$ be a linear operator such the F(f) = 0 if and only if f = 0, that is, F is 1 - 1. Suppose that $\Psi : [0, 1] \to [0, \infty)$ is a nondecreasing and rightcontinuous function. For $p, q \in (0, \infty)$, the (F, Ψ) -Bergman space $A_{F,\Psi,q}^p(\Delta) = A_{F,\Psi,q}^p$ is defined to be the collection of all analytic function f on Δ for which

(6)
$$||f||_{A^p_{F,\Psi,q}} = \sup_{0 < \rho < 1} \int_0^1 \int_0^{2\pi} |F(f_\rho(e^{i\theta}))|^p (1 - r^2)^{q-2} \Psi(1 - r) d\theta \, dr < \infty.$$

The importance of this definition is that it contains some known classes of analytic function spaces like Bergman and Hardy classes as we mention in the following remark:

Remark 2. We note that if $\int_0^1 (1-r^2)^{q-2} \Psi(1-r)r \, dr = 1$, then we obtain the generalized Hardy space as defined and studied in [4]. Also, if $\Psi(1-r) = 1$, q = 0, and $F(f_{\rho}(e^{i\theta})) = f(z)$, then we obtain the Bergman space A^p .

Theorem 1. Let $0 < p, q < \infty$ and $P \subseteq R_F$. Then $A^p_{\Psi,q}$ is a subspace of R_F if and only if $A^p_{F,\Psi,q}$ is a Banach space.

Proof. Suppose that $A_{\Psi,q}^p \subseteq R_F$. Since $A_{F,\Psi,q}^p$ is a normed space, it suffices to show that it is complete. Let $\{f_n\}$ be Cauchy sequence in $A_{F,\Psi,q}^p$ and set $F(f_n) = g_n$. Then $\{g_n\}$ is a Cauchy sequence in $A_{\Psi,q}^p$. Since $A_{\Psi,q}^p$ is complete, there is a $g \in A_{\Psi,q}^p$ such that

$$||g_n - g||_{A^p_{\Psi,q}} \to 0$$
, as $n \to \infty$.

Since $A^p_{\Psi,q} \subseteq R_F$, there is an $f \in A(\Delta)$ such that F(f) = g. Now we show that this f is the $A^p_{F,\Psi,q}$ -limit of $\{f_n\}$. We have

$$||f_n - f||_{A^p_{F,\Psi,q}} = ||g_n - g||^p_{\Psi,q} \to 0, \text{ as } n \to \infty.$$

Hence $f_n \to f \in A^p_{F,\Psi,q}$ for sufficiently large positive integer n, which implies that $f \in A^p_{F,\Psi,q}$. So $f_n \to f$ in $A^p_{F,\Psi,q}$ as $n \to \infty$.

Conversely, suppose that $A_{F,\Psi,q}^p$ is a Banach space. If $A_{\Psi,q}^p \subseteq R_F$, then there is a $g \in A_{\Psi,q}^p$

such that g is not in R_f . Since the polynomials are dense in $A^p_{\Psi,q}$, there is a sequence $\{p_n\}$ in P such that $\|p_n - g\|_{A^p_{\Psi,q}} \to 0$ as $n \to \infty$. Let $q_n = F^{-1}(p_n)$. Then $\{q_n\}$ is a Cauchy sequence in $A^p_{F,\Psi,q}$ and so there is a $q \in A^p_{F,\Psi,q}$ such that $\|q_n - q\|_{A^p_{F,\Psi,q}} \to 0$ as $n \to \infty$. Hence $\|F(q_n) - F(q)\|_{A^p_{\Psi,q}} \to 0$ as $n \to \infty$. On the other hand, $\|F(q_n) - g\|_{A^p_{\Psi,q}} \to 0$ as $n \to \infty$. This shows that g = F(q) which is a contradiction.

Proposition 1. Let $A^2_{\Psi,q} \subseteq R_F$, and suppose that

(7)
$$J(\Psi, q) = \int_0^1 (1 - r^2)^{q-2} \Psi(1 - r) \, dr < \infty,$$

then $A^2_{F,\Psi,q}$ is a Hilbert space.

Proof. We define the scalar product on $A_{F,\Psi,q}^2$ by

$$\begin{aligned} \langle f,g \rangle_{A^2_{F,\Psi,q}} &= \int_0^1 \int_0^{2\pi} F(f_{\rho}(e^{i\theta})) \overline{F(g_r(e^{i\theta}))} (1-r^2)^{(q-2)} \Psi(1-r) d\theta \, dr \\ &\leq C \int_0^{2\pi} F(f_{\rho}(e^{i\theta})) \overline{F(g_r(e^{i\theta}))} \, d\theta = \langle F(f), F(g) \rangle_{H^2}. \end{aligned}$$

It is not hard to show that this scalar product defines an inner product on $A_{F,\Psi,2}^2$.

There is a Banach space $A^p_{\Psi,q}$, such that it does not satisfy the conditions of Theorem 2.1. For example, let $1 \leq p, q < \infty$, F(f)(z) = zf(z) for each $f \in H(\Delta)$. Then $1 \nexists R_F$. By the following proposition, we see that although $A^p_{\Psi,q} \subseteq R_F$, $A^p_{F,\Psi,q}$ is a Banach space.

Proposition 2. Suppose that $1 \leq p < \infty$, $0 < q < \infty$, $h(z) \in H(\Delta)$, $h \neq 0$ and F(f) = fh for every $f(z) \in H(\Delta)$. Then $A_{F,\Psi,q}^p$ is a Banach space.

Proof. If $A^p_{\Psi,p} \subseteq R_F$, then by Theorem 2.1, the proposition holds. Otherwise, let $\{f_n\}$ be a Cauchy sequence in $A^p_{F,\Psi,q}$. Setting $F(f_n) = g_n$, so $\{g_n\}$ is a Cauchy sequence in $A^p_{\Psi,q}$. Therefore, there is a $g \in A^p_{\Psi,q}$ such that $||g_n - g||_{A^p_{\Psi,q}} \to 0$ as $n \to \infty$. If $g \in R_F$, then the proof is similar to the proof of Theorem 2.1.

Now suppose that g is not in R_F . Then there are $z_0 \in \Delta$, $m_1 \ge 0$, and $m_2 > m_1$ such that

$$g(z) = (z - z_0)^{m_1} g_0(z),$$

 $h(z) = (z - z_0)^{m_2} h_0(z),$

where $h_0(z), g_0(z) \in H(\Delta); g_0(z_0) \neq 0$ and $h_0(z_0) \neq 0$. Therefore, we have

$$||g_n - g||_{A^p_{\Psi,q}} = ||hf_n - g||_{A^p_{\Psi,q}}$$

= $\int_0^1 \int_0^{2\pi} \Lambda_1(f_n, h_n, r, \theta) (1 - r^2)^{q-2} \Psi(1 - r) d\theta dr,$

where

$$\left| \left((\rho e^{i\theta} - z_0)^{m_2} h_0(\rho e^{i\theta}) f_n - (\rho e^{i\theta} - z_0)^{m_1} g_0(\rho e^{i\theta}) \right) \right|^p = \Lambda_1(f_n, h_n, r, \theta).$$

Since $||g_n - g||_{A^p_{\Psi,q}} \to 0$ as $n \to \infty$, we obtain

(8)
$$\lim_{n \to \infty} \int_0^1 \int_0^{2\pi} \Lambda(f_n, h_n, r, \theta) (1 - r^2)^{q-2} \Psi(1 - r) d\theta \, dr = 0.$$

where $\left| \left((\rho e^{i\theta} - z_0)^{m_2} h_0(\rho e^{i\theta}) f_n - (\rho e^{i\theta} - z_0)^{m_1} g_0 \right) (\rho e^{i\theta}) \right|^p = \Lambda(f_n, h_n, r, \theta).$ Hence, $\| (z - z_0)^{m_2} h_0 f_n - (z - z_0)^{m_1} g_0 \|_{A^p_{\Psi,q}} \to 0$ as $n \to \infty$. Since the point evaluation at z_0 is a bounded linear functional on $A^p_{\Psi,q}$, we obtain

(9)
$$(z_0 - z_0)^{m_2} h_0 f_n(z_0) - (z_0 - z_0)^{m_1} g_0(z_0) \to 0, \ n \to \infty.$$

So $g_0(z_0) = 0$, which is a contradiction. The proof of Proposition 2 is therefore established. In the following proposition, we will find a dense subset in $A^p_{F,\Psi,q}$, whenever $P \subseteq R_F$.

Proposition 3. Suppose that $1 \le p < \infty$, $0 < q < \infty$, and $P \subseteq R_F$. Then

$$\{\overline{F^{-1}(p): p \in P}\} = A^p_{F,\Psi,q}$$

Proof. It is clear that $\{F^{-1}(p) : p \in P\} \subseteq A^p_{F,\Psi,q}$. Suppose that $f \in A^p_{F,\Psi,q}$. Then there is a sequence $\{h_n\}$ in P such that $\|h_n - F(f)\|_{A^p_{\Psi,q}} \to 0$ as $n \to \infty$. Setting $f_n = F^{-1}(h_n)$, we have

(10)
$$||f_n - f||_{A^p_{F,\Psi,q}} = ||h_n - F(f)||_{A^p_{\Psi,q}},$$

so the result follows.

Corollary 1. Suppose that $1 \le p < \infty$, $0 < q < \infty$, $P \subseteq R_F$, and $F^{-1}(p) \in P$ for each $p \in P$. Then $\overline{P \cap A^p_{F,\Psi,q}} = A^p_{F,\Psi,q}$.

1726

ANALYTIC FUNCTION SPACES

2. Point Evaluations

Let e_{ω} be the point evaluation at ω , that is, $e_{\omega}(f) = f(\omega)$. Let $\omega \in \Delta$ and H be a Hilbert space of analytic functions on Δ . If e_{ω} is a bounded linear functional on H, then the Riesz Representation Theorem implies that there is a function (which is usually called K_{ω}) in H that induces this linear functional, that is, $e_{\omega}(f) = \langle f, K_{\omega} \rangle$. It is well known that point evaluations at the point of Δ are all continuous.

In this section, we investigate the continuity of the point evaluations on $A_{F,\Psi,q}^p$. Next, we prove that an analytic function f on the unit disk with Hadamard gaps, that is, f(z) satisfying $\frac{n_{k+1}}{n_k} \ge c > 1$ for all $k \in \mathbb{N}$ belongs to the space $A_{F,K,q}^p$.

Theorem 2. Let $0 < q < \infty$ and $1 \leq p < \infty$. Suppose that Ψ satisfies the following condition

(11)
$$\int_0^1 r^{2^n - p + 1} \left(\log \frac{1}{r} \right)^{\frac{2q - p - 3}{2}} \Psi(1 - r) dr < \infty.$$

Also, suppose that

$$f(z) = \sum_{j=1}^{\infty} b_j z^{n_j - 1},$$

is in the Hadamard gap class, then $f \in A^p_{F,\Psi,q}$ if

(12)
$$\sum_{j=1}^{\infty} |b_j|^p < \infty$$

Proof. First assume that condition (12) holds. We write $z = re^{i\theta}$ in polar form and observe that

$$|f(z)| \le \sum_{j=1}^{\infty} |b_j| r^{n_j - 1}.$$

Then by Theorem 2.1, letting F(f) = g, we obtain

$$\begin{split} \|f\|_{A_{F,\Psi,q}^{p}} &= \int_{0}^{1} \int_{0}^{2\pi} |F(f(re^{i\theta}))|^{p} (1-r^{2})^{q-2} \Psi(1-r) d\theta \, dr \\ &= \int_{0}^{1} \int_{0}^{2\pi} |g(re^{i\theta})|^{p} (1-r^{2})^{q-2} \Psi(1-r) d\theta \, dr \\ &= \int_{0}^{1} \int_{0}^{2\pi} \left(\sum_{j=1}^{\infty} |b_{j}| r^{n_{j}-1} \right)^{p} (1-r^{2})^{q-2} \Psi(1-r) d\theta \, dr \\ &= 2\pi \int_{0}^{1} r^{-p+1} \left[\sum_{j=1}^{\infty} |b_{j}| r^{n_{j}} \right]^{p} (1-r^{2})^{q-2} \Psi(1-r) \, dr. \end{split}$$

Using Cauchy-Schwarz inequality to produce

$$\begin{split} \left[\sum_{j=1}^{\infty} |b_j| r^{n_j}\right]^p &= \left[\sum_{n=0}^{\infty} \sum_{n_j \in I_n} |b_j| r^{n_j}\right]^p \leq \left[\sum_{n=0}^{\infty} \sum_{n_j \in I_n} |b_j| r^{2^n}\right]^p \\ &\leq \left[\sum_{n=0}^{\infty} (2^{n/2} r^{2^n})^{1-1/p} (r^{2^n} 2^{(1-p)n/2})^{1/p} \sum_{n_j \in I_n} |b_j|\right]^p \\ &\leq \left[\sum_{n=0}^{\infty} r^{2^n} 2^{((1-p)/2)n} \left(\sum_{n_j \in I_n} |b_j|\right)^p\right] \left[\sum_{n=0}^{\infty} 2^{n/2} r^{2^n}\right]^{p-1} \\ &\leq C \left(\log \frac{1}{r}\right)^{-(p-1)/2} \sum_{n=0}^{\infty} r^{2^n} 2^{((1-p)/2)n} \left(\sum_{n_j \in I_n} |b_j|\right)^p, \end{split}$$

where $I_n = \{j : 2^n \le j < 2^{n+1}, j \in \mathbb{N}\}$. To this end, we combine the elementary estimates:

$$\sum_{n=0}^{\infty} 2^{\frac{n}{2}} r^{2^n} = \sqrt{2} \sum_{n=0}^{\infty} \int_{2^n}^{2^{n+1}} t^{-\frac{1}{2}} r^{\frac{t}{2}} dt$$
$$\leq \sqrt{2} \int_0^{\infty} t^{-\frac{1}{2}} r^{\frac{t}{2}} dt$$
$$\leq 2\Gamma(\frac{1}{2}) \left(\log \frac{1}{r}\right)^{-\frac{1}{2}}.$$

This very useful tool can now be applied to the calculation above to obtain

(13)
$$||f||_{A^p_{F,K,q}} \le C \sum_{n=0}^{\infty} (2^n)^{\frac{1-p}{2}} \left[\sum_{n_j \in I_n} |b_j| \right]^p \int_0^1 r^{2^n - p + 1} \left(\log \frac{1}{r} \right)^{\frac{2q - p - 3}{2}} \Psi(1 - r) dr$$

1728

where $(1 - r^2) \leq 2 \log \frac{1}{r}$. This together with (11), imply that

(14)
$$\|f\|_{A_{F,\Psi,q}^{p}} \leq C \sum_{n=0}^{\infty} \left[\sum_{n_{j}\in I_{n}} |b_{j}|\right]^{p} \left(\frac{1}{2^{n}}\right)^{\frac{p-1}{2}} \leq C \sum_{n=0}^{\infty} \left[\sum_{n_{j}\in I_{n}} |b_{j}|\right]^{p} \left(\frac{1}{2^{n}}\right)^{\frac{p-1}{2}}$$

If $n_j \in I_n$, then $n_j < 2^n < 2^{n+1}$. It follows that

$$\left(\frac{1}{2^n}\right)^{\frac{p-1}{2}} < n_j^{\frac{p-1}{2}}.$$

Combining this with (14), we obtain

(15)
$$\|f\|_{A^p_{F,K,q}} \lesssim \sum_{n=0}^{\infty} \left[\sum_{n_j \in I_n} |b_j|\right]^p n_j^{\frac{p-1}{2}}.$$

Since f is in the Hadamard gap class, there exists a constant c such that $n_{j+1} \ge cn_j$ for all $j \in \mathbb{N}$. Hence, the Taylor series of f(z) has at most $(\lfloor \log_c 2 \rfloor + 1)$ terms $a_j z^{n_j}$ such that $n_j \in I_n$. By (15) and Hölder's inequality, we deduce that

$$||f||_{A^p_{F,K,q}} \lesssim (\log_c 2 + 1)^{\frac{p-1}{2}} \sum_{n=0}^{\infty} \sum_{n_j \in I_n} |b_j|^p.$$

Then, $f \in A^p_{F,\Psi,q}$

Lemma 1. If $f \in A^p_{K,q}(0 < p, q < \infty)$, then

$$\lim_{\rho \to 1} \int_0^1 \int_0^{2\pi} |F(f(\rho e^{i\theta}))|^p (1 - r^2)^{q-2} \Psi(1 - r) r \, d\theta \, dr$$
$$= \int_0^1 \int_0^{2\pi} |F(f(e^{i\theta}))|^p (1 - r^2)^{q-2} \Psi(1 - r) r \, d\theta \, dr$$

and

$$\lim_{\rho \to 1} \int_0^1 \int_0^{2\pi} |F(f(\rho e^{i\theta})) - F(f(e^{i\theta}))|^p (1 - r^2)^{q-2} \Psi(1 - r) d\theta \, dr = 0.$$

Proof. First let us prove

$$\lim_{\rho \to 1} \int_0^1 \int_0^{2\pi} |F(f_\rho(e^{i\theta})) - F(f(e^{i\theta}))|^p (1 - r^2)^{q-2} \Psi(1 - r) d\theta \, dr = 0$$

for p = 2. If $F(f(z)) = \sum b_j^p (f(z))^n$ is in $A_{F,\Psi,q}^2$, then $\sum_{j=1}^{\infty} |b_j|^p < \infty$. But by Fatou's lemma, we have

$$\begin{split} &\int_{0}^{1} \int_{0}^{2\pi} |F(f_{\rho}(e^{i\theta})) - F(f(e^{i\theta}))|^{2} (1 - r^{2})^{q - 2} \Psi(1 - r) \, d\theta \, dr \\ &\leq \lim \inf_{\rho \to 1} \int_{0}^{1} \int_{0}^{2\pi} |F(f_{\rho}(e^{i\theta})) - F(f(\rho e^{i\theta}))|^{2} (1 - r^{2})^{q - 2} \Psi(1 - r) \, d\theta \, dr \\ &= \sum_{n = 1}^{\infty} \int_{0}^{1} \int_{0}^{2\pi} \left| b_{j} f(\rho e^{i\theta}) - b_{j} f(e^{i\theta}) \right|^{2} (1 - r^{2})^{q - 2} \Psi(1 - r) \, d\theta \, dr \\ &= \sum_{n = 1}^{\infty} |b_{j}|^{2} K\left(\frac{1}{n_{j}}\right) \int_{0}^{1} \int_{0}^{2\pi} |f(\rho e^{i\theta}) - f(e^{i\theta})|^{2} (1 - r^{2})^{q - 2} \Psi(1 - r) \, d\theta \, dr \end{split}$$

which tends to zero as $\rho \rightarrow 1.$ Now, we proof

$$\begin{split} \lim_{\rho \to 1} \int_0^1 \int_0^{2\pi} |F(f(\rho \, e^{i\theta}))|^p (1 - r^2)^{q-2} \Psi(1 - r) \, d\theta \, dr \\ = \int_0^1 \int_0^{2\pi} |F(f(e^{i\theta}))|^p (1 - r^2)^{q-2} \Psi(1 - r) \, d\theta \, dr \end{split}$$

in the case p = 2, If $f \in A^p_{F,\Psi,q}$ $(0 < q < \infty)$, we use the factorization f = B g where B(z) is a Blaschke product and g(z) is an $A^p_{F,\Psi,q}$. Since $(g(z))^{\frac{p}{2}} \in A^2_{F,\Psi,q}$, it follows from what we have just proved that

$$\int_0^1 \int_0^{2\pi} |F(f(\rho e^{i\theta}))|^p (1-r^2)^{q-2} \Psi(1-r) \, d\theta \, dr$$

$$\leq \int_0^1 \int_0^{2\pi} |F(g(\rho e^{i\theta}))|^p (1-r^2)^{q-2} \Psi(1-r) r \, d\theta \, dr.$$

Then,

$$\int_0^1 \int_0^{2\pi} |F(g(e^{i\theta}))|^p (1-r^2)^{q-2} \Psi(1-r) r \, d\theta \, dr = \int_0^1 \int_0^{2\pi} |F(f(e^{i\theta}))|^p (1-r^2)^{q-2} \Psi(1-r) r \, d\theta \, dr$$

This together with Fatou's lemma complete the proof.

Theorem 3. Let $\Psi : [0,1] \to [0,\infty)$ be a non-decreasing and right-continuous function. Suppose that $\omega \in \Delta$ and $A^p_{\Psi,q} \subseteq R_F$. For $1 \leq p < 2$, $0 < q < \infty$ and $\sum_{j=0}^{\infty} \overline{F^{-1}(z^j)(\omega)} z^j \in H^{\infty}$. If for each $0 < \rho < 1$, $f \in A^1_{F,\Psi,q}$, and $(F(f))_{\rho} = F(f_{\rho})$, then e_{ω} is continuous on $A^p_{F,\Psi,q}$.

1730

Proof. Let $f \in A^1_{F,\Psi,q}$. Then for each $0 < \rho < 1$, $f_{\rho} \in A^2_{F,\Psi,q}$ and then

$$\begin{aligned} f_{\rho}(\omega) &= \langle f_{\rho}, K_{\omega} \rangle_{A^{2}_{F,\Psi,q}} \\ &= \langle F(f_{\rho}), F(K_{\omega}) \rangle_{A^{2}_{\Psi,q}} \\ &= \int_{0}^{1} \int_{0}^{2\pi} F(f_{\rho}(e^{i\theta})) \overline{F(K_{\omega})}(e^{i\theta}) (1-r^{2})^{q-2} \Psi(1-r) r \, d\theta \, dr. \end{aligned}$$

Also by Lemma 1, we have $||(F(f))_{\rho} - F(f)||_{A^{1}_{F,\Psi,q}} \to 0$ as $\rho \to 1$. Hence, using Hölder's inequality and the fact that $F(K_{\omega}) = \sum_{j=0}^{\infty} \overline{F^{-1}(z^{j})(\omega)} z^{j}$, we obtain

$$\begin{split} & \left| \int_{0}^{1} \int_{0}^{2\pi} \left(F((f))_{\rho} - F(f)(e^{i\theta}) \right) \overline{F(K_{\omega})}(e^{i\theta}) (1 - r^{2})^{q-2} \Psi(1 - r) r d\theta \, dr \right| \\ \leq & \|F(K_{\omega})\|_{\infty} \int_{0}^{1} \int_{0}^{2\pi} \left| F(f_{\rho}(e^{i\theta})) - F(f(e^{i\theta})) \right| (1 - r^{2})^{q-2} \Psi(1 - r) r \, d\theta \, dr \\ \leq & \|F(K_{\omega})\|_{\infty} \|(F(f))_{\rho} - F(f)\|_{A_{F,\Psi,q}^{1}} \to 0 \text{ as } \rho \to 1, \end{split}$$

so we obtain

$$\begin{aligned} f(\omega) &= \lim_{\rho \to 1} f_{\rho}(\omega) \\ &= \int_{0}^{1} \int_{0}^{2\pi} F(\lim_{\rho \to 1} f_{\rho}(\rho e^{i\theta})) \overline{F(K_{\omega})}(e^{i\theta})(1-r^{2})^{q-2} \Psi(1-r) r d\theta \, dr \\ &= \int_{0}^{1} \int_{0}^{2\pi} F(f(e^{i\theta})) \overline{F(K_{\omega})}(e^{i\theta})(1-r^{2})^{q-2} \Psi(1-r) r d\theta \, dr. \end{aligned}$$

Hence,

$$\begin{aligned} |f(\omega)| &= \left| \int_0^1 \int_0^{2\pi} F(f(e^{i\theta})) \overline{F(K_\omega)}(e^{i\theta}) (1-r^2)^{q-2} \Psi(1-r) r d\theta \, dr \right| \\ &\leq \|F(K_\omega)\|_\infty \|f\|_{A^1_{F,\Psi,q}} \end{aligned}$$

for each $f \in A^1_{F,\Psi,q}$. Now let $1 \le p < 2$. If $f \in A^p_{F,\Psi,q}$, then

$$|f(w)| \le ||F(K_{\omega})||_{\infty} ||f||_{A_{F,\Psi,q}^{1}} \le ||F(K_{\omega})||_{\infty} ||f||_{A_{F,\Psi,q}^{p}},$$

so, the result follows.

Theorem 4. Let $\Psi : [0,1] \to [0,\infty)$ be a non-decreasing and right-continuous function satisfying (7) and let $1 \leq p < \infty$, $0 < q < \infty$, $\omega \in \Delta$, $h \in H(\Delta)$, $h \neq 0$. For each $f \in H(\Delta)$, F(f) = fh. Then e_{ω} is continuous on $A^p_{F,K,q}$.

Proof. We break the proof in to two parts.

(1) Let $h(w) \neq 0$. If $|\omega| < \rho < 1$ and Γ_{ρ} is the circle of radius ρ with center at the origin, then the Cauchy formula shows that for any f in $A^{p}_{F,\Psi,q}$,

$$\begin{split} f(\omega)h(\omega) &= \frac{1}{2\pi i} \int_{\Gamma_{\rho}} \frac{f(\zeta)h(\zeta)}{\zeta - \omega} d\zeta \\ &= \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(\rho e^{i\theta})h(\rho e^{i\theta})}{\rho e^{i\theta} - \omega} \rho i e^{i\theta} d\theta \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} f(\rho e^{i\theta})h(\rho e^{i\theta}) \frac{\rho}{\rho - \omega e^{-i\theta}} d\theta, \end{split}$$

Then,

$$\int_0^1 f(\omega)h(\omega)(1-r^2)^{q-2}\Psi(1-r)rdr = \frac{1}{2\pi}\int_0^1\int_0^{2\pi}\frac{f(re^{i\theta})h(\rho e^{i\theta})}{\rho - \omega e^{-i\theta}}(1-\rho^2)^{q-2}\Psi(1-\rho)r\,\rho\,d\theta\,dr.$$

By Hölder's inequality, it follows that

(16)
$$|f(\omega)||h(\omega)| \int_0^1 (1-r^2)^{q-2} \Psi(1-r) r \, dr \le \frac{1}{2\pi} \|(fh)_\rho\|_{A^p_{\Psi,q}} \left\|\frac{\rho}{\rho - \omega e^{-i\theta}}\right\|_{p^*}$$

where $\frac{1}{p} + \frac{1}{p^*} = 1$. Now if r tends to 1, $\left|\frac{\rho}{(\rho - \omega e^{-i\theta})}\right|$ converges uniformly to the bounded function $|1 - \omega e^{i\theta}|^{-1}$ and

$$\|(fh)_{\rho}\|_{A^{p}_{\Psi,q}} \leq \|fh\|_{A^{p}_{\Psi,q}}.$$

Hence there in an $M = \frac{\|\rho/(\rho - \omega e^{-i\theta})\|}{2\pi J(\Psi,q)} < \infty$ such that

$$|f(\omega)| \le \frac{M}{|h(\omega)|} ||f||_{A^p_{F,\Psi,q}},$$

and the result follows.

(2) Let $h(\omega) = 0$. Then $h(z) = (z - \omega)^m h_0(z)$, where $m \in \mathbb{N}$, $h_0(z) \in H(\Delta)$, and $h_0(\omega) \neq 0$. Let $F_1(f) = fh_0$ for each $f \in H(\Delta)$, it is easy to see that $A^p_{F,\Psi,q} \subseteq A^p_{F_1,\Psi,q}$. Then by the preceding part, there is a constant $0 < C < \infty$ such that

$$\begin{split} |f(\omega)|^{p} &\leq C ||fh_{0}||_{A_{\Psi,q}^{p}} \\ &= C \int_{0}^{1} \int_{0}^{2\pi} |f(\rho e^{i\theta})|^{p} |h_{0}(e^{i\theta})|^{p} \frac{|e^{i\theta} - \omega|^{mp}}{|e^{i\theta} - \omega|^{mp}} (1 - r^{2})^{q-2} \Psi(1 - r) r d\theta \, dr \\ &\leq \frac{C}{(1 - |\omega|)^{mp}} \int_{0}^{1} \int_{0}^{2\pi} |f(\rho e^{i\theta})|^{p} |h(e^{i\theta})|^{p} (1 - r^{2})^{q-2} \Psi(1 - r) r d\theta \, dr \\ &= \frac{C}{(1 - |\omega|)^{mp}} ||f||_{A_{F,\Psi,q}^{p}} \end{split}$$

for each $f \in A^p_{F,\Psi,q}$. So e_{ω} is continuous on $A^p_{F,\Psi,q}$.

References

- C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, Fla, USA, 1995.
- [2] P. L. Duren, Theory of H^p spaces, New York and London: Academic Press XII (1970).
- [3] P. Duren, A.P. Schuster, Bergman spaces, Math. Surveys and Monographs, Vol 100, American Mathematical Society, Providence, RI (2004).
- [4] M. Fatehi, On the generalized Hardy spaces, Abstr. Appl. Anal. Article ID 803230, 14 pages, (2010).
- [5] M. N. Galán, and A. Nicolau, The closure of the Hardy space in the Bloch norm, St. Petersbg. Math. J. 22(1)(2011), 55-59.
- [6] J. Mashreghi, Representation theorems in Hardy spaces, London Mathematical Society Texts 74. Cambridge: Cambridge University Press. xii(2009).
- [7] H. Wulan and K. Zhu, Lacunary series in Q_K spaces, Stud. Math. 178(3)(2007), 217-230.