

Available online at http://scik.org
J. Math. Comput. Sci. 2 (2012), No. 6, 1721-1733

ISSN: 1927-5307

ON WEIGHTED CLASSES OF ANALYTIC FUNCTION SPACES

A. EL-SAYED AHMED ${ }^{1,2 *}$ AND A. KAMAL ${ }^{3}$
${ }^{1}$ Department of Mathematics, Sohag University, Faculty of Science, Sohag 82524, Egypt
${ }^{2}$ Current Address: Department of Mathematics, Taif University, Faculty of Science Mathematics Department Box 888 El-Hawiyah, El-Taif 5700, Saudi Arabia
${ }^{3}$ Majmaah University Faculty of Science and Humanities, City Majmaah, KSA

Abstract

In this paper, we introduce a general class of analytic functions which extend the generalized Hardy space. We investigate the continuity of the point evaluations on this space.

2000 AMS Subject Classification: 30H05; 46E15

1. Introduction

Let $\Delta=\{z \in \mathbb{C}:|z|<1\}$ be the open unit disk in the complex plane $\mathbb{C}, \partial \Delta$ its boundary and $H(\Delta)$ the space of all analytic function on the unit disk. For an analytic function f on the unit disk and $0<r<1$, we define the delay function f_{r} by $f_{r}\left(e^{i \theta}\right)=$ $f\left(r e^{i \theta}\right)$. It is easy to see that the functions f_{r} are continuous on $\partial \Delta$ for each r.

The theory of harmonic functions motivates the following classes of analytic functions, determined by their limiting behavior as their arguments approach to the boundary $\partial \Delta$. For $0<p<\infty$, the Hardy space H^{p} is defined as the set of analytic functions $f: \Delta \rightarrow \mathbb{C}$ such that

$$
\|f\|_{H^{p}}^{p}=\sup _{0<r<1} \int_{0}^{2 \pi}\left|f_{r}\left(e^{i \theta}\right)\right|^{p} \frac{d \theta}{2 \pi}<\infty
$$

[^0]Received April 14, 2012

By the Littlewood Subordination Theorem (see [1]), we see that the supremum in the above definition of H^{p} is actually a limit, that is,

$$
\|f\|_{H^{p}}^{p}=\lim _{r \rightarrow 1} \int_{0}^{2 \pi}\left|f_{r}\left(e^{i \theta}\right)\right|^{p} \frac{d \theta}{2 \pi}<\infty
$$

It should be mentioned that the function $\|\cdot\|_{H^{p}}^{p}: H^{p} \rightarrow \mathbb{R}^{+}$is a norm on H^{p}, and makes H^{p} into a Banach space for $1 \leq p<\infty$ (see [2]). For more studies on Hardy space, we refer to $[2,5,6]$.

Recently Fatehi [4], introduced the following definition

Definition 1. Let $F: H(\Delta) \rightarrow H(\Delta)$ be a linear operator such that $F(f)=0$ if and only if $f=0$, that is, F is $1-1$. For $1 \leq p<\infty$, the generalized Hardy space $H_{F, p}(\Delta)=H_{F, p}$ is defined to be the collection of all analytic functions f on Δ for which

$$
\sup _{0<r<1} \int_{0}^{2 \pi}\left|(F(f))_{r}\left(e^{i \theta}\right)\right|^{p} \frac{d \theta}{2 \pi}<\infty .
$$

Denote the p th root of this supremum by $\|f\|_{H_{F, p}}$. Since, $|F(f)|^{p}$ is a subharmonic function, so by [1], we have

$$
\|f\|_{H_{F, p}}^{p}=\lim _{r \rightarrow 1^{-}} \int_{0}^{2 \pi}\left|F(f)_{r}\left(e^{i \theta}\right)\right|^{p} \frac{d \theta}{2 \pi}<\infty
$$

Therefore, $f \in H_{F, p}$ if and only if $F(f) \in H^{p}$ and

$$
\|F(f)\|_{p}^{p}=\|f\|_{H_{F, p}}^{p}=\lim _{r \rightarrow 1^{-}} \int_{0}^{2 \pi}\left|F(f)_{r}\left(e^{i \theta}\right)\right|^{p} \frac{d \theta}{2 \pi} .
$$

It is easy to see that $H_{F, p}$ is a normed space with the norm $\|\cdot\|_{H_{F, p}}$.
For $0<p<\infty$, the Bergman space A^{p} is the set of all $f \in H(\Delta)$ such that

$$
\int_{\Delta}|f(z)|^{p} d A(z)<\infty
$$

where $d A(z)=d x d y=r d r d \theta$ is the Lebegue area measure. We mention [3] as general reference for the theory of Bergman spaces.

Throughout this paper, P denotes the set of all analytic polynomials and for a function F, R_{F} denotes the range of F.

We assume from now on that $\Psi:[0,1] \rightarrow[0, \infty)$ to appear in this paper is rightcontinuous and nondecreasing functions such that the integral

$$
\left.\int_{0}^{1} \Psi(1-\rho)\right) \rho d \rho<\infty
$$

We can define an auxiliary function as follows:

$$
\begin{equation*}
\varphi_{\Psi}(s)=\sup _{0<t \leq 1} \frac{\Psi(s t)}{\Psi(t)}, \quad 0<s<\infty \tag{1}
\end{equation*}
$$

we assume that

$$
\begin{equation*}
\int_{0}^{1} \varphi_{\Psi}(s) \frac{d s}{s}<\infty \tag{2}
\end{equation*}
$$

From now on we suppose that the above weight function Ψ satisfies the following properties:
(a) Ψ is nondecreasing on $[0,1]$,
(b) Ψ is twice differentiable on $(0,1)$,
(c) $\int_{0}^{1} \Psi(1-r) r d r<\infty$,
(d) $\Psi(t)=\Psi(1)>0, t \geq 1$ and
$(\mathrm{e}) \Psi(s t) \approx \Psi(t), \quad t \geq 0$.
We will need the following condition in the sequel.

$$
\begin{equation*}
\int_{0}^{1}\left(1-r^{2}\right)^{q-2} \Psi(1-r) d r<\infty \quad \text { where } 0<q<\infty \tag{3}
\end{equation*}
$$

Throughout this paper, P denotes the set of all analytic polynomials and for a function F, R_{F} denotes the range of F.

For $p, q \in(0, \infty)$, the weighted Bergman space $A_{\Psi, q}^{p}$ is the set of all $f \in H(\Delta)$ such that

$$
\begin{equation*}
\|f\|_{A_{\Psi, q}^{p}}=\sup _{0<\rho<1} \int_{0}^{1} \int_{0}^{2 \pi}\left|f_{\rho}\left(e^{i \theta}\right)\right|^{p}\left(1-r^{2}\right)^{q-2} \Psi(1-r) d \theta d r<\infty \tag{4}
\end{equation*}
$$

The above formula defines a norm that turns $A_{\Psi, q}^{2}$ into a Hilbert space whose inner product is given by

$$
\begin{equation*}
\langle f, g\rangle_{A_{\Psi, q}^{2}}=\sum_{n=0}^{\infty} \widehat{f}(n) \overline{\widehat{g}(n)}=\int_{0}^{2 \pi}\left(f_{r}\left(e^{i \theta}\right)\right)\left(\overline{g_{r}\left(e^{i \theta}\right)}\right) r d \theta d r \tag{5}
\end{equation*}
$$

for each $f, g \in A_{\Psi, q}^{2}$.

Remark 1. By using known technique, it not hard to prove that $\left(A_{\Psi, q}^{p},\|\cdot\|_{A_{\Psi, q}^{p}}\right)$ is a Banach space, that is, the norm $\|\cdot\|_{A_{\Psi, q}^{p}}$ is complete.

1. (F, Ψ)-Bergman spaces

Definition 2. Let $F: H(\Delta) \rightarrow H(\Delta)$ be a linear operator such the $F(f)=0$ if and only if $f=0$, that is, F is $1-1$. Suppose that $\Psi:[0,1] \rightarrow[0, \infty)$ is a nondecreasing and rightcontinuous function. For $p, q \in(0, \infty)$, the (F, Ψ)-Bergman space $A_{F, \Psi, q}^{p}(\Delta)=A_{F, \Psi, q}^{p}$ is defined to be the collection of all analytic function f on Δ for which

$$
\begin{equation*}
\|f\|_{A_{F, \Psi, q}^{p}}=\sup _{0<\rho<1} \int_{0}^{1} \int_{0}^{2 \pi}\left|F\left(f_{\rho}\left(e^{i \theta}\right)\right)\right|^{p}\left(1-r^{2}\right)^{q-2} \Psi(1-r) d \theta d r<\infty \tag{6}
\end{equation*}
$$

The importance of this definition is that it contains some known classes of analytic function spaces like Bergman and Hardy classes as we mention in the following remark:

Remark 2. We note that if $\int_{0}^{1}\left(1-r^{2}\right)^{q-2} \Psi(1-r) r d r=1$, then we obtain the generalized Hardy space as defined and studied in [4]. Also, if $\Psi(1-r)=1, q=0$, and $F\left(f_{\rho}\left(e^{i \theta}\right)\right)=$ $f(z)$, then we obtain the Bergman space A^{p}.

Theorem 1. Let $0<p, q<\infty$ and $P \subseteq R_{F}$. Then $A_{\Psi, q}^{p}$ is a subspace of R_{F} if and only if $A_{F, \Psi, q}^{p}$ is a Banach space.

Proof. Suppose that $A_{\Psi, q}^{p} \subseteq R_{F}$. Since $A_{F, \Psi, q}^{p}$ is a normed space, it suffices to show that it is complete. Let $\left\{f_{n}\right\}$ be Cauchy sequence in $A_{F, \Psi, q}^{p}$ and set $F\left(f_{n}\right)=g_{n}$. Then $\left\{g_{n}\right\}$ is a Cauchy sequence in $A_{\Psi, q}^{p}$. Since $A_{\Psi, q}^{p}$ is complete, there is a $g \in A_{\Psi, q}^{p}$ such that

$$
\left\|g_{n}-g\right\|_{A_{\Psi, q}^{p}} \rightarrow 0, \text { as } n \rightarrow \infty
$$

Since $A_{\Psi, q}^{p} \subseteq R_{F}$, there is an $f \in A(\Delta)$ such that $F(f)=g$. Now we show that this f is the $A_{F, \Psi, q^{-}}^{p}$-limit of $\left\{f_{n}\right\}$. We have

$$
\left\|f_{n}-f\right\|_{A_{F, \Psi, q}^{p}}=\left\|g_{n}-g\right\|_{\Psi, q}^{p} \rightarrow 0, \quad \text { as } \quad n \rightarrow \infty .
$$

Hence $f_{n} \rightarrow f \in A_{F, \Psi, q}^{p}$ for sufficiently large positive integer n, which implies that $f \in$ $A_{F, \Psi, q}^{p}$. So $f_{n} \rightarrow f$ in $A_{F, \Psi, q}^{p}$ as $n \rightarrow \infty$.
Conversely, suppose that $A_{F, \Psi, q}^{p}$ is a Banach space. If $A_{\Psi, q}^{p} \subseteq R_{F}$, then there is a $g \in A_{\Psi, q}^{p}$
such that g is not in R_{f}. Since the polynomials are dense in $A_{\Psi, q}^{p}$, there is a sequence $\left\{p_{n}\right\}$ in P such that $\left\|p_{n}-g\right\|_{A_{\Psi, q}^{p}} \rightarrow 0$ as $n \rightarrow \infty$. Let $q_{n}=F^{-1}\left(p_{n}\right)$. Then $\left\{q_{n}\right\}$ is a Cauchy sequence in $A_{F, \Psi, q}^{p}$ and so there is a $q \in A_{F, \Psi, q}^{p}$ such that $\left\|q_{n}-q\right\|_{A_{F, \Psi, q}^{p}} \rightarrow 0$ as $n \rightarrow \infty$. Hence $\left\|F\left(q_{n}\right)-F(q)\right\|_{A_{\Psi, q}^{p}} \rightarrow 0$ as $n \rightarrow \infty$. On the other hand, $\left\|F\left(q_{n}\right)-g\right\|_{A_{\Psi, q}^{p}} \rightarrow 0$ as $n \rightarrow \infty$. This shows that $g=F(q)$ which is a contradiction.

Proposition 1. Let $A_{\Psi, q}^{2} \subseteq R_{F}$, and suppose that

$$
\begin{equation*}
J(\Psi, q)=\int_{0}^{1}\left(1-r^{2}\right)^{q-2} \Psi(1-r) d r<\infty \tag{7}
\end{equation*}
$$

then $A_{F, \Psi, q}^{2}$ is a Hilbert space.

Proof. We define the scalar product on $A_{F, \Psi, q}^{2}$ by

$$
\begin{aligned}
\langle f, g\rangle_{A_{F, \Psi, q}^{2}} & =\int_{0}^{1} \int_{0}^{2 \pi} F\left(f_{\rho}\left(e^{i \theta}\right)\right) \overline{F\left(g_{r}\left(e^{i \theta}\right)\right)}\left(1-r^{2}\right)^{(q-2)} \Psi(1-r) d \theta d r \\
& \leq C \int_{0}^{2 \pi} F\left(f_{\rho}\left(e^{i \theta}\right)\right) \overline{F\left(g_{r}\left(e^{i \theta}\right)\right)} d \theta=\langle F(f), F(g)\rangle_{H^{2}}
\end{aligned}
$$

It is not hard to show that this scalar product defines an inner product on $A_{F, \Psi, 2}^{2}$.
There is a Banach space $A_{\Psi, q}^{p}$, such that it does not satisfy the conditions of Theorem 2.1. For example, let $1 \leq p, q<\infty, F(f)(z)=z f(z)$ for each $f \in H(\Delta)$. Then $1 \nexists R_{F}$. By the following proposition, we see that although $A_{\Psi, q}^{p} \subseteq R_{F}, A_{F, \Psi, q}^{p}$ is a Banach space.

Proposition 2. Suppose that $1 \leq p<\infty, 0<q<\infty, h(z) \in H(\Delta), h \neq 0$ and $F(f)=f h$ for every $f(z) \in H(\Delta)$. Then $A_{F, \Psi, q}^{p}$ is a Banach space.

Proof. If $A_{\Psi, p}^{p} \subseteq R_{F}$, then by Theorem 2.1, the proposition holds. Otherwise, let $\left\{f_{n}\right\}$ be a Cauchy sequence in $A_{F, \Psi, q}^{p}$. Setting $F\left(f_{n}\right)=g_{n}$, so $\left\{g_{n}\right\}$ is a Cauchy sequence in $A_{\Psi, q}^{p}$. Therefore, there is a $g \in A_{\Psi, q}^{p}$ such that $\left\|g_{n}-g\right\|_{A_{\Psi, q}^{p}} \rightarrow 0$ as $n \rightarrow \infty$. If $g \in R_{F}$, then the proof is similar to the proof of Theorem 2.1.

Now suppose that g is not in R_{F}. Then there are $z_{0} \in \Delta, m_{1} \geq 0$, and $m_{2}>m_{1}$ such that

$$
\begin{aligned}
& g(z)=\left(z-z_{0}\right)^{m_{1}} g_{0}(z), \\
& h(z)=\left(z-z_{0}\right)^{m_{2}} h_{0}(z),
\end{aligned}
$$

where $h_{0}(z), g_{0}(z) \in H(\Delta) ; g_{0}\left(z_{0}\right) \neq 0$ and $h_{0}\left(z_{0}\right) \neq 0$. Therefore, we have

$$
\begin{aligned}
& \left\|g_{n}-g\right\|_{A_{\Psi, q}^{p}}=\left\|h f_{n}-g\right\|_{A_{\Psi, q}^{p}} \\
= & \int_{0}^{1} \int_{0}^{2 \pi} \Lambda_{1}\left(f_{n}, h_{n}, r, \theta\right)\left(1-r^{2}\right)^{q-2} \Psi(1-r) d \theta d r
\end{aligned}
$$

where

$$
\left|\left(\left(\rho e^{i \theta}-z_{0}\right)^{m_{2}} h_{0}\left(\rho e^{i \theta}\right) f_{n}-\left(\rho e^{i \theta}-z_{0}\right)^{m_{1}} g_{0}\left(\rho e^{i \theta}\right)\right)\right|^{p}=\Lambda_{1}\left(f_{n}, h_{n}, r, \theta\right)
$$

Since $\left\|g_{n}-g\right\|_{A_{\Psi, q}^{p}} \rightarrow 0$ as $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{1} \int_{0}^{2 \pi} \Lambda\left(f_{n}, h_{n}, r, \theta\right)\left(1-r^{2}\right)^{q-2} \Psi(1-r) d \theta d r=0 \tag{8}
\end{equation*}
$$

where $\left|\left(\left(\rho e^{i \theta}-z_{0}\right)^{m_{2}} h_{0}\left(\rho e^{i \theta}\right) f_{n}-\left(\rho e^{i \theta}-z_{0}\right)^{m_{1}} g_{0}\right)\left(\rho e^{i \theta}\right)\right|^{p}=\Lambda\left(f_{n}, h_{n}, r, \theta\right)$.
Hence, $\left\|\left(z-z_{0}\right)^{m_{2}} h_{0} f_{n}-\left(z-z_{0}\right)^{m_{1}} g_{0}\right\|_{A_{\Psi, q}^{p}} \rightarrow 0$ as $n \rightarrow \infty$. Since the point evaluation at z_{0} is a bounded linear functional on $A_{\Psi, q}^{p}$, we obtain

$$
\begin{equation*}
\left(z_{0}-z_{0}\right)^{m_{2}} h_{0} f_{n}\left(z_{0}\right)-\left(z_{0}-z_{0}\right)^{m_{1}} g_{0}\left(z_{0}\right) \rightarrow 0, \quad n \rightarrow \infty \tag{9}
\end{equation*}
$$

So $g_{0}\left(z_{0}\right)=0$, which is a contradiction. The proof of Proposition 2 is therefore established.

In the following proposition, we will find a dense subset in $A_{F, \Psi, q}^{p}$, whenever $P \subseteq R_{F}$.

Proposition 3. Suppose that $1 \leq p<\infty, 0<q<\infty$, and $P \subseteq R_{F}$. Then

$$
\left\{\overline{F^{-1}(p): p \in P}\right\}=A_{F, \Psi, q}^{p}
$$

Proof. It is clear that $\left\{F^{-1}(p): p \in P\right\} \subseteq A_{F, \Psi, q}^{p}$. Suppose that $f \in A_{F, \Psi, q}^{p}$. Then there is a sequence $\left\{h_{n}\right\}$ in P such that $\left\|h_{n}-F(f)\right\|_{A_{\Psi, q}^{p}} \rightarrow 0$ as $n \rightarrow \infty$. Setting $f_{n}=F^{-1}\left(h_{n}\right)$, we have

$$
\begin{equation*}
\left\|f_{n}-f\right\|_{A_{F, \Psi, q}^{p}}=\left\|h_{n}-F(f)\right\|_{A_{\Psi, q}^{p}} \tag{10}
\end{equation*}
$$

so the result follows.

Corollary 1. Suppose that $1 \leq p<\infty, 0<q<\infty,, P \subseteq R_{F}$, and $F^{-1}(p) \in P$ for each $p \in P$. Then $\overline{P \cap A_{F, \Psi, q}^{p}}=A_{F, \Psi, q}^{p}$.

2. Point Evaluations

Let e_{ω} be the point evaluation at ω, that is, $e_{\omega}(f)=f(\omega)$. Let $\omega \in \Delta$ and H be a Hilbert space of analytic functions on Δ. If e_{ω} is a bounded linear functional on H, then the Riesz Representation Theorem implies that there is a function (which is usually called $\left.K_{\omega}\right)$ in H that induces this linear functional, that is, $e_{\omega}(f)=\left\langle f, K_{\omega}\right\rangle$. It is well known that point evaluations at the point of Δ are all continuous.

In this section, we investigate the continuity of the point evaluations on $A_{F, \Psi, q}^{p}$.
Next, we prove that an analytic function f on the unit disk with Hadamard gaps, that is, $f(z)$ satisfying $\frac{n_{k+1}}{n_{k}} \geq c>1$ for all $k \in \mathbb{N}$ belongs to the space $A_{F, K, q}^{p}$.

Theorem 2. Let $0<q<\infty$ and $1 \leq p<\infty$. Suppose that Ψ satisfies the following condition

$$
\begin{equation*}
\int_{0}^{1} r^{2^{n}-p+1}\left(\log \frac{1}{r}\right)^{\frac{2 q-p-3}{2}} \Psi(1-r) d r<\infty . \tag{11}
\end{equation*}
$$

Also, suppose that

$$
f(z)=\sum_{j=1}^{\infty} b_{j} z^{n_{j}-1}
$$

is in the Hadamard gap class, then $f \in A_{F, \Psi, q}^{p}$ if

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left|b_{j}\right|^{p}<\infty \tag{12}
\end{equation*}
$$

Proof. First assume that condition (12) holds. We write $z=r e^{i \theta}$ in polar form and observe that

$$
|f(z)| \leq \sum_{j=1}^{\infty}\left|b_{j}\right| r^{n_{j}-1}
$$

Then by Theorem 2.1, letting $F(f)=g$, we obtain

$$
\begin{aligned}
\|f\|_{A_{F, \Psi, q}^{p}} & =\int_{0}^{1} \int_{0}^{2 \pi}\left|F\left(f\left(r e^{i \theta}\right)\right)\right|^{p}\left(1-r^{2}\right)^{q-2} \Psi(1-r) d \theta d r \\
& =\int_{0}^{1} \int_{0}^{2 \pi}\left|g\left(r e^{i \theta}\right)\right|^{p}\left(1-r^{2}\right)^{q-2} \Psi(1-r) d \theta d r \\
& =\int_{0}^{1} \int_{0}^{2 \pi}\left(\sum_{j=1}^{\infty}\left|b_{j}\right| r^{n_{j}-1}\right)^{p}\left(1-r^{2}\right)^{q-2} \Psi(1-r) d \theta d r \\
& =2 \pi \int_{0}^{1} r^{-p+1}\left[\sum_{j=1}^{\infty}\left|b_{j}\right| r^{n_{j}}\right]^{p}\left(1-r^{2}\right)^{q-2} \Psi(1-r) d r
\end{aligned}
$$

Using Cauchy-Schwarz inequality to produce

$$
\begin{aligned}
{\left[\sum_{j=1}^{\infty}\left|b_{j}\right| r^{n_{j}}\right]^{p} } & =\left[\sum_{n=0}^{\infty} \sum_{n_{j} \in I_{n}}\left|b_{j}\right| r^{n_{j}}\right]^{p} \leq\left[\sum_{n=0}^{\infty} \sum_{n_{j} \in I_{n}}\left|b_{j}\right| r^{2^{n}}\right]^{p} \\
& \leq\left[\sum_{n=0}^{\infty}\left(2^{n / 2} r^{2^{n}}\right)^{1-1 / p}\left(r^{2^{n}} 2^{(1-p) n / 2}\right)^{1 / p} \sum_{n_{j} \in I_{n}}\left|b_{j}\right|\right]^{p} \\
& \leq\left[\sum_{n=0}^{\infty} r^{2^{n}} 2^{((1-p) / 2) n}\left(\sum_{n_{j} \in I_{n}}\left|b_{j}\right|\right)^{p}\right]\left[\sum_{n=0}^{\infty} 2^{n / 2} r^{2^{n}}\right]^{p-1} \\
& \leq C\left(\log \frac{1}{r}\right)^{-(p-1) / 2} \sum_{n=0}^{\infty} r^{2^{n}} 2^{((1-p) / 2) n}\left(\sum_{n_{j} \in I_{n}}\left|b_{j}\right|\right)^{p}
\end{aligned}
$$

where $I_{n}=\left\{j: 2^{n} \leq j<2^{n+1}, j \in \mathbb{N}\right\}$. To this end, we combine the elementary estimates:

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2^{\frac{n}{2}} r^{2^{n}} & =\sqrt{2} \sum_{n=0}^{\infty} \int_{2^{n}}^{2^{n+1}} t^{-\frac{1}{2}} r^{\frac{t}{2}} d t \\
& \leq \sqrt{2} \int_{0}^{\infty} t^{-\frac{1}{2}} r^{\frac{t}{2}} d t \\
& \leq 2 \Gamma\left(\frac{1}{2}\right)\left(\log \frac{1}{r}\right)^{-\frac{1}{2}}
\end{aligned}
$$

This very useful tool can now be applied to the calculation above to obtain

$$
\begin{equation*}
\|f\|_{A_{F, K, q}^{p}} \leq C \sum_{n=0}^{\infty}\left(2^{n}\right)^{\frac{1-p}{2}}\left[\sum_{n_{j} \in I_{n}}\left|b_{j}\right|\right]^{p} \int_{0}^{1} r^{2^{n}-p+1}\left(\log \frac{1}{r}\right)^{\frac{2 q-p-3}{2}} \Psi(1-r) d r \tag{13}
\end{equation*}
$$

where $\left(1-r^{2}\right) \leq 2 \log \frac{1}{r}$. This together with (11), imply that

$$
\begin{align*}
\|f\|_{A_{F, \Psi, q}^{p}} & \leq C \sum_{n=0}^{\infty}\left[\sum_{n_{j} \in I_{n}}\left|b_{j}\right|\right]^{p}\left(\frac{1}{2^{n}}\right)^{\frac{p-1}{2}} \\
& \leq C \sum_{n=0}^{\infty}\left[\sum_{n_{j} \in I_{n}}\left|b_{j}\right|\right]^{p}\left(\frac{1}{2^{n}}\right)^{\frac{p-1}{2}} \tag{14}
\end{align*}
$$

If $n_{j} \in I_{n}$, then $n_{j}<2^{n}<2^{n+1}$. It follows that

$$
\left(\frac{1}{2^{n}}\right)^{\frac{p-1}{2}}<n_{j}^{\frac{p-1}{2}}
$$

Combining this with (14), we obtain

$$
\begin{equation*}
\|f\|_{A_{F, K, q}^{p}} \lesssim \sum_{n=0}^{\infty}\left[\sum_{n_{j} \in I_{n}}\left|b_{j}\right|\right]^{p} n_{j}^{\frac{p-1}{2}} \tag{15}
\end{equation*}
$$

Since f is in the Hadamard gap class, there exists a constant c such that $n_{j+1} \geq c n_{j}$ for all $j \in \mathbb{N}$. Hence, the Taylor series of $f(z)$ has at most $\left(\left[\log _{c} 2\right]+1\right)$ terms $a_{j} z^{n_{j}}$ such that $n_{j} \in I_{n}$. By (15) and Hölder's inequality, we deduce that

$$
\|f\|_{A_{F, K, q}^{p}} \lesssim\left(\log _{c} 2+1\right)^{\frac{p-1}{2}} \sum_{n=0}^{\infty} \sum_{n_{j} \in I_{n}}\left|b_{j}\right|^{p} .
$$

Then, $f \in A_{F, \Psi, q}^{p}$

Lemma 1. If $f \in A_{K, q}^{p}(0<p, q<\infty)$, then

$$
\begin{aligned}
& \lim _{\rho \rightarrow 1} \int_{0}^{1} \int_{0}^{2 \pi}\left|F\left(f\left(\rho e^{i \theta}\right)\right)\right|^{p}\left(1-r^{2}\right)^{q-2} \Psi(1-r) r d \theta d r \\
& \quad=\int_{0}^{1} \int_{0}^{2 \pi}\left|F\left(f\left(e^{i \theta}\right)\right)\right|^{p}\left(1-r^{2}\right)^{q-2} \Psi(1-r) r d \theta d r
\end{aligned}
$$

and

$$
\lim _{\rho \rightarrow 1} \int_{0}^{1} \int_{0}^{2 \pi}\left|F\left(f\left(\rho e^{i \theta}\right)\right)-F\left(f\left(e^{i \theta}\right)\right)\right|^{p}\left(1-r^{2}\right)^{q-2} \Psi(1-r) d \theta d r=0
$$

Proof. First let us prove

$$
\lim _{\rho \rightarrow 1} \int_{0}^{1} \int_{0}^{2 \pi}\left|F\left(f_{\rho}\left(e^{i \theta}\right)\right)-F\left(f\left(e^{i \theta}\right)\right)\right|^{p}\left(1-r^{2}\right)^{q-2} \Psi(1-r) d \theta d r=0
$$

for $p=2$. If $F(f(z))=\sum b_{j}^{p}(f(z))^{n}$ is in $A_{F, \Psi, q}^{2}$, then $\sum_{j=1}^{\infty}\left|b_{j}\right|^{p}<\infty$.
But by Fatou's lemma, we have

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{2 \pi}\left|F\left(f_{\rho}\left(e^{i \theta}\right)\right)-F\left(f\left(e^{i \theta}\right)\right)\right|^{2}\left(1-r^{2}\right)^{q-2} \Psi(1-r) d \theta d r \\
& \leq \lim \inf _{\rho \rightarrow 1} \int_{0}^{1} \int_{0}^{2 \pi}\left|F\left(f_{\rho}\left(e^{i \theta}\right)\right)-F\left(f\left(\rho e^{i \theta}\right)\right)\right|^{2}\left(1-r^{2}\right)^{q-2} \Psi(1-r) d \theta d r \\
& =\sum_{n=1}^{\infty} \int_{0}^{1} \int_{0}^{2 \pi}\left|b_{j} f\left(\rho e^{i \theta}\right)-b_{j} f\left(e^{i \theta}\right)\right|^{2}\left(1-r^{2}\right)^{q-2} \Psi(1-r) d \theta d r \\
& =\sum_{n=1}^{\infty}\left|b_{j}\right|^{2} K\left(\frac{1}{n_{j}}\right) \int_{0}^{1} \int_{0}^{2 \pi}\left|f\left(\rho e^{i \theta}\right)-f\left(e^{i \theta}\right)\right|^{2}\left(1-r^{2}\right)^{q-2} \Psi(1-r) d \theta d r
\end{aligned}
$$

which tends to zero as $\rho \rightarrow 1$. Now, we proof

$$
\begin{aligned}
& \lim _{\rho \rightarrow 1} \int_{0}^{1} \int_{0}^{2 \pi}\left|F\left(f\left(\rho e^{i \theta}\right)\right)\right|^{p}\left(1-r^{2}\right)^{q-2} \Psi(1-r) d \theta d r \\
& \quad=\int_{0}^{1} \int_{0}^{2 \pi}\left|F\left(f\left(e^{i \theta}\right)\right)\right|^{p}\left(1-r^{2}\right)^{q-2} \Psi(1-r) d \theta d r
\end{aligned}
$$

in the case $p=2$, If $f \in A_{F, \Psi, q}^{p}(0<q<\infty)$, we use the factorization $f=B g$ where $B(z)$ is a Blaschke product and $\mathrm{g}(\mathrm{z})$ is an $A_{F, \Psi, q}^{p}$. Since $(g(z))^{\frac{p}{2}} \in A_{F, \Psi, q}^{2}$, it follows from what we have just proved that

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{2 \pi}\left|F\left(f\left(\rho e^{i \theta}\right)\right)\right|^{p}\left(1-r^{2}\right)^{q-2} \Psi(1-r) d \theta d r \\
& \leq \int_{0}^{1} \int_{0}^{2 \pi}\left|F\left(g\left(\rho e^{i \theta}\right)\right)\right|^{p}\left(1-r^{2}\right)^{q-2} \Psi(1-r) r d \theta d r
\end{aligned}
$$

Then,

$$
\int_{0}^{1} \int_{0}^{2 \pi}\left|F\left(g\left(e^{i \theta}\right)\right)\right|^{p}\left(1-r^{2}\right)^{q-2} \Psi(1-r) r d \theta d r=\int_{0}^{1} \int_{0}^{2 \pi}\left|F\left(f\left(e^{i \theta}\right)\right)\right|^{p}\left(1-r^{2}\right)^{q-2} \Psi(1-r) r d \theta d r
$$

This together with Fatou's lemma complete the proof.

Theorem 3. Let $\Psi:[0,1] \rightarrow[0, \infty)$ be a non-decreasing and right-continuous function. Suppose that $\omega \in \Delta$ and $A_{\Psi, q}^{p} \subseteq R_{F}$. For $1 \leq p<2,0<q<\infty$ and $\sum_{j=0}^{\infty} \overline{F^{-1}\left(z^{j}\right)(\omega)} z^{j} \in$ H^{∞}. If for each $0<\rho<1, f \in A_{F, \Psi, q}^{1}$, and $(F(f))_{\rho}=F\left(f_{\rho}\right)$, then e_{ω} is continuous on $A_{F, \Psi, q}^{p}$.

Proof. Let $f \in A_{F, \Psi, q}^{1}$. Then for each $0<\rho<1, f_{\rho} \in A_{F, \Psi, q}^{2}$ and then

$$
\begin{aligned}
f_{\rho}(\omega) & =\left\langle f_{\rho}, K_{\omega}\right\rangle_{A_{F, \Psi, q}^{2}} \\
& =\left\langle F\left(f_{\rho}\right), F\left(K_{\omega}\right)\right\rangle_{A_{\Psi, q}} \\
& =\int_{0}^{1} \int_{0}^{2 \pi} F\left(f_{\rho}\left(e^{i \theta}\right)\right) \overline{F\left(K_{\omega}\right)}\left(e^{i \theta}\right)\left(1-r^{2}\right)^{q-2} \Psi(1-r) r d \theta d r .
\end{aligned}
$$

Also by Lemma 1 , we have $\left\|(F(f))_{\rho}-F(f)\right\|_{A_{F, \Psi, q}^{1}} \rightarrow 0$ as $\rho \rightarrow 1$.
Hence, using Hölder's inequality and the fact that $F\left(K_{\omega}\right)=\sum_{j=0}^{\infty} \overline{F^{-1}\left(z^{j}\right)(\omega)} z^{j}$, we obtain

$$
\begin{aligned}
& \left|\int_{0}^{1} \int_{0}^{2 \pi}\left(F((f))_{\rho}-F(f)\left(e^{i \theta}\right)\right) \overline{F\left(K_{\omega}\right)}\left(e^{i \theta}\right)\left(1-r^{2}\right)^{q-2} \Psi(1-r) r d \theta d r\right| \\
\leq & \left\|F\left(K_{\omega}\right)\right\|_{\infty} \int_{0}^{1} \int_{0}^{2 \pi}\left|F\left(f_{\rho}\left(e^{i \theta}\right)\right)-F\left(f\left(e^{i \theta}\right)\right)\right|\left(1-r^{2}\right)^{q-2} \Psi(1-r) r d \theta d r \\
\leq & \left\|F\left(K_{\omega}\right)\right\|_{\infty}\left\|(F(f))_{\rho}-F(f)\right\|_{A_{F, \Psi, q}^{1}} \rightarrow 0 \text { as } \rho \rightarrow 1,
\end{aligned}
$$

so we obtain

$$
\begin{aligned}
f(\omega) & =\lim _{\rho \rightarrow 1} f_{\rho}(\omega) \\
& =\int_{0}^{1} \int_{0}^{2 \pi} F\left(\lim _{\rho \rightarrow 1} f_{\rho}\left(\rho e^{i \theta}\right)\right) \overline{F\left(K_{\omega}\right)}\left(e^{i \theta}\right)\left(1-r^{2}\right)^{q-2} \Psi(1-r) r d \theta d r \\
& =\int_{0}^{1} \int_{0}^{2 \pi} F\left(f\left(e^{i \theta}\right)\right) \overline{F\left(K_{\omega}\right)}\left(e^{i \theta}\right)\left(1-r^{2}\right)^{q-2} \Psi(1-r) r d \theta d r .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
|f(\omega)| & =\left|\int_{0}^{1} \int_{0}^{2 \pi} F\left(f\left(e^{i \theta}\right)\right) \overline{F\left(K_{\omega}\right)}\left(e^{i \theta}\right)\left(1-r^{2}\right)^{q-2} \Psi(1-r) r d \theta d r\right| \\
& \leq\left\|F\left(K_{\omega}\right)\right\|_{\infty}\|f\|_{A_{F, \Psi, q}^{1}}
\end{aligned}
$$

for each $f \in A_{F, \Psi, q}^{1}$. Now let $1 \leq p<2$. If $f \in A_{F, \Psi, q}^{p}$, then

$$
|f(w)| \leq\left\|F\left(K_{\omega}\right)\right\|_{\infty}\|f\|_{A_{F, \Psi, q}^{1}} \leq\left\|F\left(K_{\omega}\right)\right\|_{\infty}\|f\|_{A_{F, \Psi, q}^{p}}
$$

so, the result follows.

Theorem 4. Let $\Psi:[0,1] \rightarrow[0, \infty)$ be a non-decreasing and right-continuous function satisfying (7) and let $1 \leq p<\infty, 0<q<\infty, \omega \in \Delta, h \in H(\Delta), h \neq 0$. For each $f \in H(\Delta), F(f)=f h$. Then e_{ω} is continuous on $A_{F, K, q}^{p}$.

Proof. We break the proof in to two parts.
(1) Let $h(w) \neq 0$. If $|\omega|<\rho<1$ and Γ_{ρ} is the circle of radius ρ with center at the origin, then the Cauchy formula shows that for any f in $A_{F, \Psi, q}^{p}$,

$$
\begin{aligned}
f(\omega) h(\omega) & =\frac{1}{2 \pi i} \int_{\Gamma_{\rho}} \frac{f(\zeta) h(\zeta)}{\zeta-\omega} d \zeta \\
& =\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(\rho e^{i \theta}\right) h\left(\rho e^{i \theta}\right)}{\rho e^{i \theta}-\omega} \rho i e^{i \theta} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(\rho e^{i \theta}\right) h\left(\rho e^{i \theta}\right) \frac{\rho}{\rho-\omega e^{-i \theta}} d \theta
\end{aligned}
$$

Then,

$$
\int_{0}^{1} f(\omega) h(\omega)\left(1-r^{2}\right)^{q-2} \Psi(1-r) r d r=\frac{1}{2 \pi} \int_{0}^{1} \int_{0}^{2 \pi} \frac{f\left(r e^{i \theta}\right) h\left(\rho e^{i \theta}\right)}{\rho-\omega e^{-i \theta}}\left(1-\rho^{2}\right)^{q-2} \Psi(1-\rho) r \rho d \theta d r .
$$

By Hölder's inequality, it follows that

$$
\begin{equation*}
\left|f(\omega)\left\|h(\omega) \left\lvert\, \int_{0}^{1}\left(1-r^{2}\right)^{q-2} \Psi(1-r) r d r \leq \frac{1}{2 \pi}\right.\right\|(f h)_{\rho}\left\|_{A_{\Psi, q}^{p}}\right\| \frac{\rho}{\rho-\omega e^{-i \theta}} \|_{p^{*}}\right. \tag{16}
\end{equation*}
$$

where $\frac{1}{p}+\frac{1}{p^{*}}=1$. Now if r tends to $1,\left|\frac{\rho}{\left(\rho-\omega e^{-i \theta}\right)}\right|$ converges uniformly to the bounded function $\left|1-\omega e^{i \theta}\right|^{-1}$ and

$$
\left\|(f h)_{\rho}\right\|_{A_{\Psi, q}^{p}} \leq\|f h\|_{A_{\Psi, q}^{p}}
$$

Hence there in an $M=\frac{\left\|\rho /\left(\rho-\omega e^{-i \theta}\right)\right\|}{2 \pi J(\Psi, q)}<\infty$ such that

$$
|f(\omega)| \leq \frac{M}{|h(\omega)|}\|f\|_{A_{F, \Psi, q}^{p}}
$$

and the result follows.
(2) Let $h(\omega)=0$. Then $h(z)=(z-\omega)^{m} h_{0}(z)$, where $m \in \mathbb{N}, h_{0}(z) \in H(\Delta)$, and $h_{0}(\omega) \neq 0$.

Let $F_{1}(f)=f h_{0}$ for each $f \in H(\Delta)$, it is easy to see that $A_{F, \Psi, q}^{p} \subseteq A_{F_{1}, \Psi, q}^{p}$. Then by the
preceding part, there is a constant $0<C<\infty$ such that

$$
\begin{aligned}
|f(\omega)|^{p} & \leq C\left\|f h_{0}\right\|_{A_{\Psi, q}^{p}} \\
& =C \int_{0}^{1} \int_{0}^{2 \pi}\left|f\left(\rho e^{i \theta}\right)\right|^{p}\left|h_{0}\left(e^{i \theta}\right)\right|^{p} \frac{\left|e^{i \theta}-\omega\right|^{m p}}{\left|e^{i \theta}-\omega\right|^{m p}}\left(1-r^{2}\right)^{q-2} \Psi(1-r) r d \theta d r \\
& \leq \frac{C}{(1-|\omega|)^{m p}} \int_{0}^{1} \int_{0}^{2 \pi}\left|f\left(\rho e^{i \theta}\right)\right|^{p}\left|h\left(e^{i \theta}\right)\right|^{p}\left(1-r^{2}\right)^{q-2} \Psi(1-r) r d \theta d r \\
& =\frac{C}{(1-|\omega|)^{m p}}\|f\|_{A_{F, \Psi, q}^{p}}
\end{aligned}
$$

for each $f \in A_{F, \Psi, q^{*}}^{p}$. So e_{ω} is continuous on $A_{F, \Psi, q}^{p}$.

References

[1] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, Fla, USA, 1995.
[2] P. L. Duren, Theory of H^{p} spaces, New York and London: Academic Press XII (1970).
[3] P. Duren, A.P. Schuster, Bergman spaces, Math. Surveys and Monographs, Vol 100, American Mathematical Society, Providence, RI (2004).
[4] M. Fatehi, On the generalized Hardy spaces, Abstr. Appl. Anal. Article ID 803230, 14 pages, (2010).
[5] M. N. Galán, and A. Nicolau, The closure of the Hardy space in the Bloch norm, St. Petersbg. Math. J. 22(1)(2011), 55-59.
[6] J. Mashreghi, Representation theorems in Hardy spaces, London Mathematical Society Texts 74. Cambridge: Cambridge University Press. xii(2009).
[7] H. Wulan and K. Zhu, Lacunary series in Q_{K} spaces, Stud. Math. 178(3)(2007), 217-230.

[^0]: *Corresponding author

