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1. Introduction

Let ∆ = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C, ∂∆ its

boundary and H(∆) the space of all analytic function on the unit disk. For an analytic

function f on the unit disk and 0 < r < 1, we define the delay function fr by fr(e
iθ) =

f(reiθ). It is easy to see that the functions fr are continuous on ∂∆ for each r.

The theory of harmonic functions motivates the following classes of analytic functions,

determined by their limiting behavior as their arguments approach to the boundary ∂∆.

For 0 < p <∞, the Hardy space Hp is defined as the set of analytic functions f : ∆→ C

such that

‖f‖pHp = sup
0<r<1

∫ 2π

0

|fr(eiθ)|p
dθ

2π
<∞.
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By the Littlewood Subordination Theorem (see [1]), we see that the supremum in the

above definition of Hp is actually a limit, that is,

‖f‖pHp = lim
r→1

∫ 2π

0

|fr(eiθ)|p
dθ

2π
<∞.

It should be mentioned that the function ‖.‖pHp : Hp → R+ is a norm on Hp, and makes

Hp into a Banach space for 1 ≤ p < ∞ (see [2]). For more studies on Hardy space, we

refer to [2, 5, 6].

Recently Fatehi [4], introduced the following definition

Definition 1. Let F : H(∆)→ H(∆) be a linear operator such that F (f) = 0 if and only

if f = 0, that is, F is 1− 1. For 1 ≤ p <∞, the generalized Hardy space HF,p(∆) = HF,p

is defined to be the collection of all analytic functions f on ∆ for which

sup
0<r<1

∫ 2π

0

|(F (f))r(e
iθ)|p dθ

2π
<∞.

Denote the pth root of this supremum by ‖f‖HF,p . Since, |F (f)|p is a subharmonic

function, so by [1], we have

‖f‖pHF,p = lim
r→1−

∫ 2π

0

|F (f)r(e
iθ)|p dθ

2π
<∞.

Therefore, f ∈ HF,p if and only if F (f) ∈ Hp and

‖F (f)‖pp = ‖f‖pHF,p = lim
r→1−

∫ 2π

0

|F (f)r(e
iθ)|p dθ

2π
.

It is easy to see that HF,p is a normed space with the norm ‖.‖HF,p .

For 0 < p <∞, the Bergman space Ap is the set of all f ∈ H(∆) such that∫
∆

|f(z)|pdA(z) <∞,

where dA(z) = dx dy = r dr dθ is the Lebegue area measure. We mention [3] as general

reference for the theory of Bergman spaces.

Throughout this paper, P denotes the set of all analytic polynomials and for a function

F,RF denotes the range of F.
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We assume from now on that Ψ : [0, 1] → [0,∞) to appear in this paper is right-

continuous and nondecreasing functions such that the integral∫ 1

0

Ψ(1− ρ))ρdρ <∞.

We can define an auxiliary function as follows:

ϕΨ(s) = sup
0<t≤1

Ψ(st)

Ψ(t)
, 0 < s <∞,(1)

we assume that ∫ 1

0

ϕΨ(s)
ds

s
<∞.(2)

From now on we suppose that the above weight function Ψ satisfies the following proper-

ties:

(a) Ψ is nondecreasing on [0, 1],

(b) Ψ is twice differentiable on (0, 1),

(c)
∫ 1

0
Ψ(1− r)rdr <∞,

(d)Ψ(t) = Ψ(1) > 0, t ≥ 1 and

(e)Ψ(st) ≈ Ψ(t), t ≥ 0.

We will need the following condition in the sequel.

(3)

∫ 1

0

(1− r2)q−2Ψ(1− r)dr <∞ where 0 < q <∞.

Throughout this paper, P denotes the set of all analytic polynomials and for a function

F,RF denotes the range of F.

For p, q ∈ (0,∞), the weighted Bergman space ApΨ,q is the set of all f ∈ H(∆) such that

‖f‖ApΨ,q = sup
0<ρ<1

∫ 1

0

∫ 2π

0

|fρ(eiθ)|p(1− r2)q−2Ψ(1− r) dθ dr <∞.(4)

The above formula defines a norm that turns A2
Ψ,q into a Hilbert space whose inner product

is given by

〈f, g〉A2
Ψ,q

=
∞∑
n=0

f̂(n)ĝ(n) =

∫ 2π

0

(
fr(e

iθ)
)(
gr(eiθ)

)
r dθ dr(5)

for each f, g ∈ A2
Ψ,q.
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Remark 1. By using known technique, it not hard to prove that (ApΨ,q, ‖.‖ApΨ,q) is a Banach

space, that is, the norm ‖.‖ApΨ,q is complete.

1. (F,Ψ)-Bergman spaces

Definition 2. Let F : H(∆)→ H(∆) be a linear operator such the F (f) = 0 if and only

if f = 0, that is,F is 1− 1. Suppose that Ψ : [0, 1]→ [0,∞) is a nondecreasing and right-

continuous function. For p, q ∈ (0,∞), the (F,Ψ)-Bergman space ApF,Ψ,q(∆) = ApF,Ψ,q is

defined to be the collection of all analytic function f on ∆ for which

‖f‖ApF,Ψ,q = sup
0<ρ<1

∫ 1

0

∫ 2π

0

|F (fρ(e
iθ))|p(1− r2)q−2Ψ(1− r)dθ dr <∞.(6)

The importance of this definition is that it contains some known classes of analytic

function spaces like Bergman and Hardy classes as we mention in the following remark:

Remark 2. We note that if
∫ 1

0
(1− r2)q−2Ψ(1− r)r dr = 1, then we obtain the generalized

Hardy space as defined and studied in [4]. Also, if Ψ(1− r) = 1, q = 0, and F (fρ(e
iθ)) =

f(z), then we obtain the Bergman space Ap.

Theorem 1. Let 0 < p, q <∞ and P ⊆ RF . Then ApΨ,q is a subspace of RF if and only

if ApF,Ψ,q is a Banach space.

Proof. Suppose that ApΨ,q ⊆ RF . Since ApF,Ψ,q is a normed space, it suffices to show that

it is complete. Let {fn} be Cauchy sequence in ApF,Ψ,q and set F (fn) = gn. Then {gn} is

a Cauchy sequence in ApΨ,q. Since ApΨ,q is complete, there is a g ∈ ApΨ,q such that

‖gn − g‖ApΨ,q → 0, as n→∞.

Since ApΨ,q ⊆ RF , there is an f ∈ A(∆) such that F (f) = g. Now we show that this f is

the ApF,Ψ,q-limit of {fn}. We have

‖fn − f‖ApF,Ψ,q = ‖gn − g‖pΨ,q → 0, as n→∞.

Hence fn → f ∈ ApF,Ψ,q for sufficiently large positive integer n, which implies that f ∈

ApF,Ψ,q. So fn → f in ApF,Ψ,q as n→∞.

Conversely, suppose that ApF,Ψ,q is a Banach space. If ApΨ,q ⊆ RF , then there is a g ∈ ApΨ,q
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such that g is not in Rf . Since the polynomials are dense in ApΨ,q, there is a sequence {pn}

in P such that ‖pn − g‖ApΨ,q → 0 as n → ∞. Let qn = F−1(pn). Then {qn} is a Cauchy

sequence in ApF,Ψ,q and so there is a q ∈ ApF,Ψ,q such that ‖qn − q‖ApF,Ψ,q → 0 as n → ∞.

Hence ‖F (qn) − F (q)‖ApΨ,q → 0 as n → ∞. On the other hand, ‖F (qn) − g‖ApΨ,q → 0 as

n→∞. This shows that g = F (q) which is a contradiction.

Proposition 1. Let A2
Ψ,q ⊆ RF , and suppose that

(7) J(Ψ, q) =

∫ 1

0

(1− r2)q−2Ψ(1− r) dr <∞,

then A2
F,Ψ,q is a Hilbert space.

Proof. We define the scalar product on A2
F,Ψ,q by

〈f, g〉A2
F,Ψ,q

=

∫ 1

0

∫ 2π

0

F (fρ(e
iθ))F (gr(eiθ))(1− r2)(q−2)Ψ(1− r)dθ dr

≤ C

∫ 2π

0

F (fρ(e
iθ))F (gr(eiθ)) dθ = 〈F (f), F (g)〉H2 .

It is not hard to show that this scalar product defines an inner product on A2
F,Ψ,2.

There is a Banach space ApΨ,q, such that it does not satisfy the conditions of Theorem 2.1.

For example, let 1 ≤ p, q <∞, F (f)(z) = zf(z) for each f ∈ H(∆). Then 1@RF . By the

following proposition, we see that although ApΨ,q ⊆ RF , A
p
F,Ψ,q is a Banach space.

Proposition 2. Suppose that 1 ≤ p < ∞, 0 < q < ∞, h(z) ∈ H(∆), h 6= 0 and

F (f) = fh for every f(z) ∈ H(∆). Then ApF,Ψ,q is a Banach space.

Proof. If ApΨ,p ⊆ RF , then by Theorem 2.1, the proposition holds. Otherwise, let {fn} be

a Cauchy sequence in ApF,Ψ,q. Setting F (fn) = gn, so {gn} is a Cauchy sequence in ApΨ,q.

Therefore, there is a g ∈ ApΨ,q such that ‖gn − g‖ApΨ,q → 0 as n→∞. If g ∈ RF , then the

proof is similar to the proof of Theorem 2.1.

Now suppose that g is not in RF . Then there are z0 ∈ ∆, m1 ≥ 0, and m2 > m1 such that

g(z) = (z − z0)m1g0(z),

h(z) = (z − z0)m2h0(z),
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where h0(z), g0(z) ∈ H(∆); g0(z0) 6= 0 and h0(z0) 6= 0. Therefore, we have

‖gn − g‖ApΨ,q = ‖hfn − g‖ApΨ,q

=

∫ 1

0

∫ 2π

0

Λ1(fn, hn, r, θ)(1− r2)q−2Ψ(1− r)dθ dr,

where ∣∣∣∣((ρ eiθ − z0)m2h0(ρ eiθ)fn − (ρ eiθ − z0)m1g0(ρ eiθ)

)∣∣∣∣p = Λ1(fn, hn, r, θ).

Since ‖gn − g‖ApΨ,q → 0 as n→∞, we obtain

lim
n→∞

∫ 1

0

∫ 2π

0

Λ(fn, hn, r, θ)(1− r2)q−2Ψ(1− r)dθ dr = 0.(8)

where

∣∣∣∣((ρ eiθ − z0)m2h0(ρ eiθ)fn − (ρ eiθ − z0)m1g0

)
(ρeiθ)

∣∣∣∣p = Λ(fn, hn, r, θ).

Hence, ‖(z − z0)m2h0fn − (z − z0)m1g0‖ApΨ,q → 0 as n→∞. Since the point evaluation at

z0 is a bounded linear functional on ApΨ,q, we obtain

(z0 − z0)m2h0fn(z0)− (z0 − z0)m1g0(z0)→ 0, n→∞.(9)

So g0(z0) = 0, which is a contradiction. The proof of Proposition 2 is therefore established.

In the following proposition, we will find a dense subset in ApF,Ψ,q, whenever P ⊆ RF .

Proposition 3. Suppose that 1 ≤ p <∞, 0 < q <∞, and P ⊆ RF . Then

{F−1(p) : p ∈ P} = ApF,Ψ,q.

Proof. It is clear that {F−1(p) : p ∈ P} ⊆ ApF,Ψ,q. Suppose that f ∈ ApF,Ψ,q. Then there is

a sequence {hn} in P such that ‖hn − F (f)‖ApΨ,q → 0 as n → ∞. Setting fn = F−1(hn),

we have

‖fn − f‖ApF,Ψ,q = ‖hn − F (f)‖ApΨ,q ,(10)

so the result follows.

Corollary 1. Suppose that 1 ≤ p <∞, 0 < q <∞,, P ⊆ RF , and F−1(p) ∈ P for each

p ∈ P. Then P ∩ ApF,Ψ,q = ApF,Ψ,q.



ANALYTIC FUNCTION SPACES 1727

2. Point Evaluations

Let eω be the point evaluation at ω, that is, eω(f) = f(ω). Let ω ∈ ∆ and H be a

Hilbert space of analytic functions on ∆. If eω is a bounded linear functional on H, then

the Riesz Representation Theorem implies that there is a function (which is usually called

Kω) in H that induces this linear functional, that is, eω(f) = 〈f,Kω〉. It is well known

that point evaluations at the point of ∆ are all continuous.

In this section, we investigate the continuity of the point evaluations on ApF,Ψ,q.

Next, we prove that an analytic function f on the unit disk with Hadamard gaps, that

is, f(z) satisfying nk+1

nk
≥ c > 1 for all k ∈ N belongs to the space ApF,K,q.

Theorem 2. Let 0 < q < ∞ and 1 ≤ p < ∞. Suppose that Ψ satisfies the following

condition

(11)

∫ 1

0

r2n−p+1

(
log

1

r

) 2q−p−3
2

Ψ(1− r)dr <∞.

Also, suppose that

f(z) =
∞∑
j=1

bjz
nj−1

,

is in the Hadamard gap class, then f ∈ ApF,Ψ,q if

(12)
∞∑
j=1

|bj|p <∞.

Proof. First assume that condition (12) holds. We write z = reiθ in polar form and

observe that

|f(z)| ≤
∞∑
j=1

|bj|rnj−1.
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Then by Theorem 2.1, letting F (f) = g, we obtain

‖f‖ApF,Ψ,q =

∫ 1

0

∫ 2π

0

|F (f(reiθ))|p(1− r2)q−2Ψ(1− r)dθ dr

=

∫ 1

0

∫ 2π

0

|g(reiθ)|p(1− r2)q−2Ψ(1− r)dθ dr

=

∫ 1

0

∫ 2π

0

( ∞∑
j=1

|bj|rnj−1

)p
(1− r2)q−2Ψ(1− r)dθ dr

= 2π

∫ 1

0

r−p+1

[ ∞∑
j=1

|bj|rnj
]p

(1− r2)q−2Ψ(1− r) dr.

Using Cauchy-Schwarz inequality to produce

[ ∞∑
j=1

|bj|rnj
]p

=

[ ∞∑
n=0

∑
nj∈In

|bj|rnj
]p
≤
[ ∞∑
n=0

∑
nj∈In

|bj|r2n
]p

≤
[ ∞∑
n=0

(2n/2r2n)1−1/p(r2n2(1−p)n/2)1/p
∑
nj∈In

|bj|
]p

≤
[ ∞∑
n=0

r2n2((1−p)/2)n

( ∑
nj∈In

|bj|
)p][ ∞∑

n=0

2n/2r2n
]p−1

≤ C

(
log

1

r

)−(p−1)/2 ∞∑
n=0

r2n2((1−p)/2)n

( ∑
nj∈In

|bj|
)p
,

where In = {j : 2n ≤ j < 2n+1, j ∈ N}. To this end, we combine the elementary estimates:

∞∑
n=0

2
n
2 r2n =

√
2
∞∑
n=0

∫ 2n+1

2n
t−

1
2 r

t
2dt

≤
√

2

∫ ∞
0

t−
1
2 r

t
2dt

≤ 2Γ(
1

2
)

(
log

1

r

)− 1
2

.

This very useful tool can now be applied to the calculation above to obtain

‖f‖ApF,K,q ≤ C
∞∑
n=0

(2n)
1−p

2

[ ∑
nj∈In

|bj|
]p ∫ 1

0

r2n−p+1

(
log

1

r

) 2q−p−3
2

Ψ(1− r)dr(13)
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where (1− r2) ≤ 2 log 1
r
. This together with (11), imply that

‖f‖ApF,Ψ,q ≤ C

∞∑
n=0

[ ∑
nj∈In

|bj|
]p(

1

2n

) p−1
2

≤ C
∞∑
n=0

[ ∑
nj∈In

|bj|
]p(

1

2n

) p−1
2

(14)

If nj ∈ In, then nj < 2n < 2n+1. It follows that(
1

2n

) p−1
2

< n
p−1

2
j .

Combining this with (14), we obtain

‖f‖ApF,K,q .
∞∑
n=0

[ ∑
nj∈In

|bj|
]p
nj

p−1
2 .(15)

Since f is in the Hadamard gap class, there exists a constant c such that nj+1 ≥ cnj for

all j ∈ N. Hence, the Taylor series of f(z) has at most ([logc 2] + 1) terms ajz
nj such that

nj ∈ In. By (15) and Hölder’s inequality, we deduce that

‖f‖ApF,K,q . (logc 2 + 1)
p−1

2

∞∑
n=0

∑
nj∈In

|bj|p.

Then, f ∈ ApF,Ψ,q

Lemma 1. If f ∈ ApK,q(0 < p, q <∞), then

lim
ρ→1

∫ 1

0

∫ 2π

0

|F (f(ρ eiθ))|p(1− r2)q−2Ψ(1− r)r dθ dr

=

∫ 1

0

∫ 2π

0

|F (f(eiθ))|p(1− r2)q−2Ψ(1− r)r dθ dr

and

lim
ρ→1

∫ 1

0

∫ 2π

0

|F (f(ρ eiθ))− F (f(eiθ))|p(1− r2)q−2Ψ(1− r)dθ dr = 0.

Proof. First let us prove

lim
ρ→1

∫ 1

0

∫ 2π

0

|F (fρ(e
iθ))− F (f(eiθ))|p(1− r2)q−2Ψ(1− r)dθ dr = 0
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for p = 2. If F (f(z)) =
∑
bpj(f(z))n is in A2

F,Ψ,q , then
∞∑
j=1

|bj|p <∞.

But by Fatou’s lemma, we have∫ 1

0

∫ 2π

0

|F (fρ(e
iθ))− F (f(eiθ))|2(1− r2)q−2Ψ(1− r) dθ dr

≤ lim inf
ρ→1

∫ 1

0

∫ 2π

0

|F (fρ(e
iθ))− F (f(ρeiθ))|2(1− r2)q−2Ψ(1− r) dθ dr

=
∞∑
n=1

∫ 1

0

∫ 2π

0

∣∣∣∣bjf(ρ eiθ)− bj f(eiθ)

∣∣∣∣2(1− r2)q−2Ψ(1− r) dθ dr

=
∞∑
n=1

|bj|2K
(

1

nj

)∫ 1

0

∫ 2π

0

|f(ρ eiθ)− f(eiθ)|2(1− r2)q−2Ψ(1− r)dθ dr

which tends to zero as ρ→ 1. Now, we proof

lim
ρ→1

∫ 1

0

∫ 2π

0

|F (f(ρ eiθ))|p(1− r2)q−2Ψ(1− r) dθ dr

=

∫ 1

0

∫ 2π

0

|F (f(eiθ))|p(1− r2)q−2Ψ(1− r) dθ dr

in the case p = 2, If f ∈ ApF,Ψ,q (0 < q < ∞), we use the factorization f = B g where

B(z) is a Blaschke product and g(z) is an ApF,Ψ,q. Since (g(z))
p
2 ∈ A2

F,Ψ,q, it follows from

what we have just proved that∫ 1

0

∫ 2π

0

|F (f(ρ eiθ))|p(1− r2)q−2Ψ(1− r) dθ dr

≤
∫ 1

0

∫ 2π

0

|F (g(ρ eiθ))|p(1− r2)q−2Ψ(1− r)r dθ dr.

Then,∫ 1

0

∫ 2π

0

|F (g(eiθ))|p(1−r2)q−2Ψ(1−r)r dθ dr =

∫ 1

0

∫ 2π

0

|F (f(eiθ))|p(1−r2)q−2Ψ(1−r)r dθ dr.

This together with Fatou’s lemma complete the proof.

Theorem 3. Let Ψ : [0, 1] → [0,∞) be a non-decreasing and right-continuous function.

Suppose that ω ∈ ∆ and ApΨ,q ⊆ RF . For 1 ≤ p < 2, 0 < q <∞ and
∞∑
j=0

F−1(zj)(ω) zj ∈

H∞. If for each 0 < ρ < 1, f ∈ A1
F,Ψ,q, and (F (f))ρ = F (fρ), then eω is continuous on

ApF,Ψ,q.
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Proof. Let f ∈ A1
F,Ψ,q. Then for each 0 < ρ < 1, fρ ∈ A2

F,Ψ,q and then

fρ(ω) = 〈fρ, Kω〉A2
F,Ψ,q

= 〈F (fρ), F (Kω)〉A2
Ψ,q

=

∫ 1

0

∫ 2π

0

F (fρ(e
iθ))F (Kω)(eiθ)(1− r2)q−2Ψ(1− r)r dθ dr.

Also by Lemma 1, we have ‖(F (f))ρ − F (f)‖A1
F,Ψ,q
→ 0 as ρ→ 1.

Hence, using Hölder’s inequality and the fact that F (Kω) =
∞∑
j=0

F−1(zj)(ω) zj, we obtain

∣∣∣∣ ∫ 1

0

∫ 2π

0

(
F ((f))ρ − F (f)(eiθ)

)
F (Kω)(eiθ)(1− r2)q−2Ψ(1− r)rdθ dr

∣∣∣∣
≤ ‖F (Kω)‖∞

∫ 1

0

∫ 2π

0

∣∣F (fρ(e
iθ))− F (f(eiθ))

∣∣ (1− r2)q−2Ψ(1− r)r dθ dr

≤ ‖F (Kω)‖∞‖(F (f))ρ − F (f)‖A1
F,Ψ,q
→ 0 as ρ→ 1,

so we obtain

f(ω) = lim
ρ→1

fρ(ω)

=

∫ 1

0

∫ 2π

0

F (lim
ρ→1

fρ(ρ e
iθ))F (Kω)(eiθ)(1− r2)q−2Ψ(1− r)rdθ dr

=

∫ 1

0

∫ 2π

0

F (f(eiθ))F (Kω)(eiθ)(1− r2)q−2Ψ(1− r)rdθ dr.

Hence,

|f(ω)| =

∣∣∣∣ ∫ 1

0

∫ 2π

0

F (f(eiθ))F (Kω)(eiθ)(1− r2)q−2Ψ(1− r)rdθ dr
∣∣∣∣

≤ ‖F (Kω)‖∞‖f‖A1
F,Ψ,q

for each f ∈ A1
F,Ψ,q. Now let 1 ≤ p < 2. If f ∈ ApF,Ψ,q, then

|f(w)| ≤ ‖F (Kω)‖∞‖f‖A1
F,Ψ,q
≤ ‖F (Kω)‖∞‖f‖ApF,Ψ,q ,

so, the result follows.
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Theorem 4. Let Ψ : [0, 1] → [0,∞) be a non-decreasing and right-continuous function

satisfying (7) and let 1 ≤ p < ∞, 0 < q < ∞, ω ∈ ∆, h ∈ H(∆), h 6= 0. For each

f ∈ H(∆), F (f) = fh. Then eω is continuous on ApF,K,q.

Proof. We break the proof in to two parts.

(1) Let h(w) 6= 0. If |ω| < ρ < 1 and Γρ is the circle of radius ρ with center at the origin,

then the Cauchy formula shows that for any f in ApF,Ψ,q,

f(ω)h(ω) =
1

2πi

∫
Γρ

f(ζ)h(ζ)

ζ − ω
dζ

=
1

2πi

∫ 2π

0

f(ρ eiθ)h(ρ eiθ)

ρ eiθ − ω
ρ ieiθdθ

=
1

2π

∫ 2π

0

f(ρ eiθ)h(ρ eiθ)
ρ

ρ− ωe−iθ
dθ,

Then,∫ 1

0

f(ω)h(ω)(1−r2)q−2Ψ(1−r)rdr =
1

2π

∫ 1

0

∫ 2π

0

f(reiθ)h(ρ eiθ)

ρ− ωe−iθ
(1−ρ2)q−2Ψ(1−ρ)r ρ dθ dr.

By Hölder’s inequality, it follows that

|f(ω)||h(ω)|
∫ 1

0

(1− r2)q−2Ψ(1− r)r dr ≤ 1

2π
‖(fh)ρ‖ApΨ,q

∥∥ ρ

ρ− ωe−iθ
∥∥
p∗

(16)

where 1
p

+ 1
p∗

= 1. Now if r tends to 1,
∣∣ ρ

(ρ−ωe−iθ)

∣∣ converges uniformly to the bounded

function |1− ωeiθ|−1 and

‖(fh)ρ‖ApΨ,q ≤ ‖fh‖ApΨ,q .

Hence there in an M = ‖ρ/(ρ−ωe−iθ)‖
2πJ(Ψ,q)

<∞ such that

|f(ω)| ≤ M

|h(ω)|
‖f‖ApF,Ψ,q ,

and the result follows.

(2) Let h(ω) = 0. Then h(z) = (z−ω)mh0(z), where m ∈ N, h0(z) ∈ H(∆), and h0(ω) 6= 0.

Let F1(f) = fh0 for each f ∈ H(∆), it is easy to see that ApF,Ψ,q ⊆ ApF1,Ψ,q
. Then by the
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preceding part, there is a constant 0 < C <∞ such that

|f(ω)|p ≤ C‖fh0‖ApΨ,q

= C

∫ 1

0

∫ 2π

0

∣∣f(ρ eiθ)
∣∣p ∣∣h0(eiθ)

∣∣p |eiθ − ω|mp
|eiθ − ω|mp

(1− r2)q−2Ψ(1− r)rdθ dr

≤ C

(1− |ω|)mp

∫ 1

0

∫ 2π

0

∣∣f(ρ eiθ)
∣∣p ∣∣h(eiθ)

∣∣p (1− r2)q−2Ψ(1− r)rdθ dr

=
C

(1− |ω|)mp
‖f‖ApF,Ψ,q

for each f ∈ ApF,Ψ,q. So eω is continuous on ApF,Ψ,q.
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