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Abstract. In this paper, we apply two solitary wave ansatzes in terms of sech p and tanhp to obtain

bright and dark soliton solutions of the Ostrovsky-Benjamin-Bona-Mahony (OS-BBM) which describes

the motion of ocean currents.
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1. Introduction

The Ostrovsky equation [6] is a model of ocean currents motion,

(1) (ut + (u2)x − βuxxx)x = γu, x ∈ ℜ,

where, β, γ are constants. Parameter β determines the type of dispersion, namely, β = −1 (negative-

dispersion) for surface and internal waves in the ocean and surface waves in a shallow channel with an

uneven bottom; β = 1 (positive dispersion) for capillary waves on the surface of liquid or for oblique

magneto-acoustic waves. Parameter γ > 0 measures the effect of rotation. When γ = 0, integrating

once with respect to x and letting the integral constant be zero, the Ostrovsky equation becomes the

well-known KdV equation.
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Existence and non-existence of localized solitary waves of the Ostrovsky equation is classified accord-

ing to the sign of the dispersion parameter (which can be either positive or negative). Yue Liu and

Vladimir Varlamov [7] proved that for the case of positive dispersion the set of solitary waves is stable

with respect to perturbations. The issue of passing to the limit as the rotation parameter tends to zero

for solutions of the Cauchy problem is investigated on a bounded time interval. V. Varlamov and Yue

Liu [8] studied initial-value problems that arises in modeling the unidirectional propagation of long waves

in a rotating homogeneous incompressible fluid. Local- and global-in-time solvability is investigated. For

the case of positive dispersion a fundamental solution of the Cauchy problem for the linear equation is

constructed, and its asymptotic is calculated as t −→ ∞ and x
t = constant. For the nonlinear problem

solutions are constructed in the form of a series and the analogous long−time asymptotic is obtained.

The Benjamin-Bona-Mahony (BBM) equation [9, 16]

(2) ut + ux − a(u2)x − buxxt = 0,

is a well-known equation in physics. The equation has dispersion effect and exists solitary wave behavior.

The experimental realization of bright and dark solitons for nonlinear PDEs lead to interest in their

formation and dynamics. Having analytical solutions to nonlinear PDEs will thus be of great importance

as it will help in understanding the dynamical behavior of solitons. The mathematical physics literature

has appeared a large amount of new powerful methods to calculate exact solutions to nonlinear wave

equations, among these methods, we cite [10, 12, 13, 14, 15, 16].

In this work, the following OS-BBM equation will be studied

(3) (ut + ux − α(u2)x − βuxxt)x = γ(u+ u2).

In what follows we highlight the main features of the solitary wave ansatzes that will be used in this work

where more details and examples can be found in [1, 2].

2. Solitary Wave Ansatzes; bright and dark solitons

In this section, we will highlight briefly the main steps of the methods that will be used in this paper.

We first unite the independent variables x and t into one wave variable ζ = x− λt to convert the PDE

(4) P (u, ut, ux, uxx, uxt, utt, uxxx, ...) = 0,

into an ODE

(5) Q(u,−λu′, u′, u′′, λu′′, λ2u′′, u′′′, ...) = 0.
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Eq. (5) is then integrated as long as all terms contain derivatives.

Bright solitons 2.1.

In order to obtain the bright soliton solution of (4), the solitary wave ansatze is assumed as [1, 3, 4, 11]

(6) u(x, t) =
A

coshq(µζ)
, q > 0,

where ζ = x − λt. Here A is the soliton amplitude, µ is the inverse width of the soliton and λ is the

soliton velocity. The unknown index q as well as A, µ and λ are to be determined during the course of

derivation of the solution of (5). Based on this ansatze, we have

u′ =
du(ζ)

dζ
= −Aqµ cosh−1−q(µζ) sinh(µζ)(7)

u′′ =
d2u(ζ)

dζ2
= A

(
−qµ2 cosh−q(µζ) + q(1 + q)µ2 cosh−2−q(µζ) sinh2(µζ)

)
(8)

Substituting (6)−(8) into the reduced ODE (5) gives a polynomial equation of cosh terms after using

the identity sinh2 = cosh2 −1. To determine the parameters we first balancing the exponents of each

pair of cosh to determine q. Then we collect the coefficients of the same power in cosh and setting them

to zeros, to get a system of algebraic equations among the unknowns A, λ and µ. The problem is now

completely reduced to an algebraic one. Having determined A, λ and µ by algebraic calculations or by

using Mathematica, the solutions proposed in (6) follows immediately.

Dark solitons 2.2.

In order to obtain the bright soliton solution of (4), the solitary wave ansatze is assumed as [1, 11]

(9) u(x, t) = A tanhq(µζ), q > 0,

where ζ = x− λt. Here A and µ are free parameters and λ is the soliton velocity. The unknown index q

as well as A, µ and λ are to be determined during the course of derivation of the solution of (5). Based

on this ansatze, we have

u′ = Aqµ tanh−1+q(µζ) sech 2(µζ)(10)

u′′ = A
(
q(−1 + q)µ2sech 4(µζ) tanh−2+q(µζ)− 2qµ2sech 2(µζ) tanhq(µζ)

)
(11)

Substituting (9)−(11) into the reduced ODE (5) gives a polynomial equation of tanh terms after using

the identity sech 2 = 1 − tanh2. To determine the parameters we first balancing the exponents of each

pair of tanh to determine q and then we proceed as the above analysis stated in the bright soliton case.
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3. Ostrovsky-Benjamin-Bona-Mahony (OS-BBM)

In this section we consider the OS−BBM

(12) (ut + ux − α(u2)x − βuxxt)x = γ(u+ u2).

Using the wave variable ζ = x− λt transforms (12) into the ODE

(13) (1− λ)u′′ − 2α(uu′′ + (u′)2) + βu′′′′ = γ(u+ u2).

3.1. Bright soliton solution

Substituting (6)−(8) into (13) gives

0 = 2Aq(1 + 2q)αµ2 cosh2(zµ)−A(γ + 4q2αµ2) cosh4(zµ) + q(6 + 11q + 6q2 + q3)βλµ4 coshq(zµ)

− q(1 + q)µ2(1 + λ(−1 + 2(2 + 2q + q2)βµ2)) cosh2+q(zµ)

+
(
−γ + q2µ2(1 + λ(−1 + q2βµ2))

)
cosh4+q(zµ)(14)

By equating the exponents and the coefficients of each pair of the cosh function we obtain the following

algebraic system:

2 = q

0 = 2Aq(1 + 2q)αµ2 + q(6 + 11q + 6q2 + q3)βλµ4

0 = −A(γ + 4q2αµ2)− q(1 + q)µ2(1 + λ(−1 + 2(2 + 2q + q2)βµ2))

0 = −γ + q2µ2(1 + λ(−1 + q2βµ2)).(15)

Solving the above system yields

A =
−3

2

λ =
α+ α2

α+ βγ

µ = ∓
√
α+ βγ

2
√
β + αβ

.(16)

Based on the obtained results, a bright soliton solution of (12) exists if α+ βγ > 0 and β + αβ > 0, and

thus the solution is

(17) u(x, t) =
−3

2
sech 2

( √
α+ βγ

2
√
β + αβ

(x− α+ α2

α+ βγ
t)

)
.

Figure 1, 2 shows the plots of the above obtained solution when β = 1,−1 respectively.
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Figure 1. The obtained bright soliton solution of OS-BBM: β = 1 ; α = 2 ;

γ = 1 ; −10 ≤ x ≤ 10 ; 0 ≤ t ≤ 5

Figure 2. The obtained bright soliton solution of OS-BBM: β = −1 ; α = 2 ;

γ = 1 ; −10 ≤ x ≤ 10 ; 0 ≤ t ≤ 5
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3.2. Dark soliton solution

Substituting (9)−(11) into (13) gives

2 = q

0 = Aq(−6 + 11q − 6q2 + q3)βλµ4

0 = −A(−1 + q)qµ2(−1 + λ(1 + 4(2− 2q + q2)βµ2))

0 = A(−γ + 2qµ2(Aα+ 3q3β]λµ2 + q(−1− 2Aα+ λ+ 5βλµ2)))

0 = −A(A(γ − 8q2αµ2) + q(1 + q)µ2(−1 + λ(1 + 4(2 + 2q + q2)βµ2)))

0 = Aqµ2(−2A(α+ 2qα) + (6 + 11q + 6q2 + q3)βλµ2).(18)

For the case β = 1, solving the above system yields

λ =
1

1 + 8µ2

A = ± 6µ2

α(1 + 8µ2)

γ = 0.(19)

Therefore, a dark soliton solution exists for OS-BBM equation if the coefficient γ is zero and accordingly,

the solution is

(20) u(x, t) =
6µ2

α(1 + 8µ2)
tanh2(x− t

1 + 8µ2
),

where µ is a free parameter.

Where as β = −1, solving the above system yields

λ =
1

1− 8µ2

A = ± −6µ2

α(1− 8µ2)

γ = 0.(21)

Therefore, a dark soliton solution exists for OS-BBM equation if the coefficient γ is zero and accordingly,

the solution is

(22) u(x, t) =
−6µ2

α(1− 8µ2)
tanh2(x− t

1− 8µ2
).
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4. Conclusions

In this work we used solitary wave ansatzes in terms of sech p and tanhp to obtain bright and dark

soliton solutions of the Ostrovsky−Benjamin−Bona−Mahony (OS−BBM). We have stated the conditions

on the parameters that guarantees the existence of bright and dark soliton solutions of the OS−BBM.

References

[1] Triki, H., Wazwaz, A. M. Bright and dark soliton solution for a K(m,n) equation with t−dependent

coefficients. Phys. Lett. A., Volume 373 (2009) 2162-5.

[2] Triki, H., Wazwaz, A. M. Sub-ODE method and soliton solutions for the variable-coefficient mKdV

equation. Applied Mathematics and Computation, Volume 214 (2009).

[3] Biswas, A., Solitary wave solution for the generalized Kawahara equation. Appl. Math. Lett., Volume

22(2009) 208-10.

[4] Biswas, A., 1−soliton solution of the B(m,n) equation with generalized evolution. Nonlinear Sci.

Numer. Simul., Volume 14(2009) 3226-29.

[5] A.H.A. Ali, A.A. Soliman, K.R. Raslan. Soliton solution for nonlinear partial differential equations

by cosine-function method. Physics Letters A, Volume 368(2007) 299-304.

[6] L. A Ostrovsky. Nonlinear internal waves in a rotating ocean. Okeanologia 18.

[7] Y. Liu, V. Varlamov, Stability of solitary waves and weak rotation limit for the ostrovsky equation.

J. Differ. Equ., Volume 203(2004) 159-83.

[8] V. Varlamov, Y. Liu, Cauchy problem for the ostrovsky equation. Discrete Dynam Systems, Volume

10(3)(2004) 731-53.

[9] M. Sorion, On the controllability of the linearized Benjamin-Bona-Mahony equation. SIAM J Control

Optim, Volume 39(6)(2004) 1677-96.

[10] S. L. Palacios, Two simple ansatze for obtaining exact solutions of high dispersive nonlinear

schrodinger equations. Chaos, Solitons and Fractals., Volume 19(2004) 203-7.

[11] K. Nakkeeran, Bright and dark optical solitons in fiber media with higher order effects. Chaos,

Solitons and Fractals., Volume 13, (2002) 673-9.

[12] X. Li and M. Wang, A sub-ODE method for finding exact solutions of a generalized KdV-mKdV

equation with high order nonlinear terms. Physics Letters A., Volume 361, (2007) 115-8.

[13] A. M. Wazwaz, Integrable (2+1)-dimentional and (3+1)-dimentional breaking soliton equations.

Physica Scripta, Volume 81, (2010).

[14] Marwan Alquran, Kamel Al-Khaled, Sinc and solitary wave solutions to the generalized Benjamin-

Bona-Mahony-Burgers equations. Physica Scripta, Volume 83, (2011).



22 MARWAN ALQURAN∗

[15] Marwan Alquran, Kamel Al-Khaled, The tanh and sine-cosine methods for higher order equations

of Korteweg-de Vries type. Physica Scripta, Volume 84, (2011).

[16] Marwan Alquran, Solitons and periodic solutions to nonlinear partial differential equations by the

Sine-Cosine method . Appl. Math. Inf. Sci., Volume 6(1), (2012) pp. 85-8


