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Abstract. In this paper, it is assumed that the solution of the general second order initial value problem u′′ =

f (t,u,u′) ; u(t0) = u0, u′(t0) = u′0, t ∈ [t0, tn] can be approximated by a polynomial u(t). To obtain the values of

the coefficients of the terms of u(t), the problem is converted to an optimization problem and the simple stochastic

function minimizer called differential evolution is used to obtain the optimal values of the coefficients. Numerical

examples show the efficiency and accuracy of the proposed technique compared with some existing classical

methods.
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1. Introduction

In recent years, the quest for substantially improved accuracy of numerical methods for the

solution of ordinary differential equations is on the increase. One of the approach that is gaining
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more popularity is the idea of converting the differential equation problem to an optimization

problem. The transformed problem is then solved using the techniques of optimization. Inter-

estingly, evolutionary algorithms for solving optimization problems appear to be ideal for this

type of transformation.

The author in [4] used the classical genetic algorithm to obtain approximate solutions of

secondorder initial value problems. Approximate solutions of firstorder initial value problem

was computed via the combination of collocation method (finite elements) and genetic algo-

rithms by the author in [6]. In an earlier work, the author in [5] combined the genetic algo-

rithm with the Nelder-Mead method for solving the secondorder initial value problem of the

form u′′ = f (x,y). The idea of adapting neural network for the solution of secondorder initial

value problems was also proposed by the authors in [2]. The use of continuous genetic algo-

rithm for the solution of the twopoint secondorder ordinary differential equation was discussed

by the authors in[1]. In an early work by the authors in [7], the adaptation of the differen-

tial evolution algorithm for the solution of the secondorder initial value problem of the form

u′′+ p(t)u′+q(t)y = r(t) was proposed. For the second-order two-point boundary value prob-

lem u′′ = f (t,u); u(a) = η1; u(b) = η2 with oscillatory/periodic behaviour, the authors in [3]

used the differential algorithm to obtain approximate solutions. In this paper, the second-order

initial value problem of the form

u′′ = f (t,u,u′), u(t0) = u0, u′(t0) = u′0(1)

is considered. It is assumed that the solution can be approximated by a polynomial u(t). The

differential evolution algorithm is used to optimize the coefficients of the terms of the solutions

u(t).

2. Basic Notions of Differential Evolution Algorithm

Formally, let f : Rn → R be the function which must be optimized. The function takes

a candidate solution as argument in the form of a vector of real numbers and produces a real

number as output which indicates the fitness of the given candidate solution. The gradient of f is

not known. The goal is to find a solution m for which f (m)≤ f (p) for all p in the search-space,
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which would mean m is the global minimum. Maximization can be performed by considering

the function h :=− f instead.

Let x ∈ Rn designate a candidate solution (agent) in the population. The basic differential

evolution algorithm can then be described as follows:

• Initialize all agents x with random positions in the search-space.

• Until a termination criterion is met (e.g. number of iterations performed, or adequate

fitness reached), repeat the following:

– For each agent x in the population do:

∗ Pick three agents a,b, and c from the population at random, they must be

distinct from each other as well as from agent x

∗ Pick a random index R ∈ {1, . . . ,n} (n being the dimensionality of the prob-

lem to be optimized).

∗ Compute the agent’s potentially new position y = [y1, . . . ,yn] as follows:

· For each i, pick a uniformly distributed number ri ≡U(0,1)

· If ri < CR or i = R then set yi = ai +F(bi− ci) otherwise set yi = xi

· (In essence, the new position is outcome of binary crossover of agent x

with intermediate agent z = a+F(b− c).)

∗ If f (y) < f (x) then replace the agent in the population with the improved

candidate solution, that is, replace x with y in the population.

• Pick the agent from the population that has the highest fitness or lowest cost and return

it as the best found candidate solution.

Note that F ∈ [0,2] is called the differential weight and CR ∈ [0,1] is called the crossover

probability, both these parameters are selectable by the practitioner along with the population

size NP≥ 4.

3. Proposed Method

Consider the second order initial value problem (1), assume a solution of the form

u(t) =
k

∑
i=0

ψit i, k ∈ Z+(2)
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where ψi are parameters to be determined. Substituting (2) and its derivatives into (1) gives

k

∑
i=2

i(i−1)ψit i−2 = f
(
t,u,u′

)
(3)

Using the initial conditions we have the constraint that[
k

∑
i=0

ψit i

]
t=t0

= u0, and

[
k

∑
i=1

iψit i−1

]
t=t0

= u′0(4)

At each node point tn, we require that

En(t) =

[
k

∑
i=2

i(i−1)ψit i−2− f
(
t,u,u′

)]
t=tn

= 0(5)

To solve the above problem, we need to find the set {ψi|i = 0(1)k}, which minimizes the sum

of square of the error at each node point given by the expression

N

∑
n=1

E 2
n (t)(6)

where N = b−t0
h and h is the steplength. We now formulate the problem as an optimization

problem in the following way:

Minimize :
N

∑
n=1

E 2
n (t)(7)

Subject to :

[
k

∑
i=0

ψit i

]
t=t0

= u0, and

[
k

∑
i=1

iψit i−1

]
t=t0

= u′0(8)

4. Numerical Experiments

To investigate the performance and efficiency of the technique, two numerical test cases are

inplemnted. The propose algorithm is compared with the Runge-Kutta Nystrom scheme for

solving (1). The table of ”CPU-time” and the maximum error of all computations are also

given.

The following parameters are used for all computations:

Differential Evolution:

Cross Probability = 0.55;

Initial Points = Automatic;
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Penalty Function = Automatic;

PostProcess = Automatic;

RandomSeed = 0;

ScalingFactor = 0.75;

SearchPoints = Automatic;

Tolerance = 0.000001.

All computations were carried out on a ”Core i5 Intel” processor machine.

4.1. Problem 1

Consider the initial value problem

u′′(t) = u′(t); u(0) = 1, u′(0) = 1, t ∈ [0,1](9)

with the exact solution u(t) = exp(t).

Implementing the proposed scheme with k = 20, we obtain {ψi|i = 0(1)20} as{
1,1,

6571423687
13142847286

,
3750870629

22505274403
,

7336207996
176002735153

,
732496906

91712212181
,

705861058
115866640069

,

− 10986667886
258057057903

,
2823470745

10261587094
,−1827770759

1408551750
,
25397155139
5523008714

,−14708743442
1182364621

,

35546102816
1370863545

,−55553531801
1329747565

,
43377764775
836005046

,−38377792753
780093189

,
61792464421
1768320675

,

−47744574869
2653329647

,
20459494229
3226181133

,−5108479858
3734187003

,
12835075157
94230559872

}

4.2. Problem 2

Consider the equation

u′′ = u′+1; u(0) = 1, u′(0) = 1(10)

with the exact solution u(t) = 2exp(t)− t−1

Implementing the proposed scheme with k = 10, we obtain {ψi|i = 0(1)10} as{
1,1,

10909673950
10909673949

,
853653175

2560959546
,

3343143521
40117707883

,
1184829193

71090457963
,

842174384
303124757325

,

185292131
468169656459

,
55944720

1099597192847
,

24891421
5434233307879

,
20840312

22784206947911

}
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Maximum Absolute Error CPU-Time (Seconds)

i Runge-Kutta Method DEODEs Runge-Kutta Method DEODEs

3 4.984042E-06 7.580603E-13 1.875000E-2 1.562500E-3

4 3.281185E-07 7.580603E-13 2.968750E-2 3.125000E-3

5 2.104785E-08 7.580603E-13 5.781250E-2 6.250000E-3

6 1.332722E-09 7.747136E-13 1.171875E-1 1.093750E-2

7 8.383871E-11 7.747136E-13 2.453125E-1 2.343750E-2

8 5.258460E-12 7.749357E-13 4.968750E-1 5.625000E-2

9 3.286260E-13 7.767120E-13 9.531250E-1 9.531250E-2
TABLE 1. Maximum Absolute Error and CPU-time in seconds for Problem

with step-size h = 2−i, i = 3(1)9

Maximum Absolute Error CPU-Time (Seconds)

i Runge-Kutta Method DEODEs Runge-Kutta Method DEODEs

3 9.968085E-06 1.123546E-13 1.718750E-2 1.562500E-3

4 6.562369E-07 1.261213E-13 2.812500E-2 0.000000E00

5 4.209570E-08 1.327827E-13 6.093750E-2 4.687500E-3

6 2.665442E-09 1.350031E-13 1.125000E-1 7.812500E-3

7 1.676757E-10 1.354472E-13 2.218750E-1 1.406250E-2

8 1.051470E-11 1.354472E-13 5.625000E-1 2.812500E-2

9 6.568079E-13 1.354472E-13 9.250000E-1 6.093750E-2
TABLE 2. Maximum Absolute Error and CPU-time in seconds for Problem

with step-size h = 2−i, i = 3(1)9

5. Conclusion

In this paper, we have been able to derive and implement an evolutionary scheme for the

solution of the second order initial value problem (1) using the techniques of optimimization

(Differential Evolution). With the two test problems, clearly, the technique gave very accurate

results compared with the well-known Runge–Kutta method for the direct integration of (1).
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Also, the technique is stable and consistent even as the stepsize reduces. Other evolutionary

techniques can be exploited as well.
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