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Abstract: In this paper, a new three-parameter model which can be used in lifetime data analysis is introduced. Its 

failure rate function can be decreasing, increasing, constant and bathtub-shaped depending on its parameters. We 

derive explicit expressions for some of its statistical and mathematical quantities including the ordinary moments, 

generating function, incomplete moments, order statistics, moment of residual life and reversed residual life. Some 

useful characterizations are presented. Maximum likelihood method is used to estimate the model parameters. 

Simulation results to assess the performance of the maximum likelihood estimators are discussed in case of 

uncensored data. The censored maximum likelihood estimation is presented in the general case of the multi-

censored data. We demonstrate empirically the importance and flexibility of the new model in modeling real data set. 

Keywords: odd Lindley-G family; Nadarajah-Haghighi distribution; characterization; multicensored data; 

simulation study.  
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1.  Introduction 

Statistical distributions are very useful in describing and predicting real world phenomena. 

Numerous classical models have been extensively used over the past decades for modeling real 

data sets in several areas. Recent developments focus on definining the new families of 
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distributions that extend well-known distributions and at the same time provide great flexibility 

in modeling real data. 

Recently, a new generalization of the exponential distribution as an alternative to the gamma, 

Weibull and exponentiated-exponential distributions was proposed by Nadarajah and Haghighi 

(2011). The cumulative distribution function (cdf) is given by 

𝐺(𝑥, 𝛼, 𝜆) = 1 − exp[1 − (1 + 𝜆 𝑥)𝛼], 𝑥 > 0,                                                       (1) 

and the corresponding probability density function (pdf) is 

 𝑔(𝑥, 𝛼, 𝜆) = 𝛼𝜆 (1 + 𝜆 𝑥)𝛼−1exp[1 − (1 + 𝜆 𝑥)𝛼], 𝑥 > 0,                                 (2) 

where the parameter 𝛼 > 0 control the shape of the distribution and 𝜆 > 0 is the scale parameter. 

Nadarajah and Haghighi (2011) pointed out that the density function (2) has the attractive feature 

of always having the zero mode. They also showed that larger values of 𝛼 in (2) will lead to 

faster decay of the upper tail. 

We shall refer to the new distribution using (1) and (2) as the Odd Lindley-Nadarajah-Haghighi 

(OLNH) model using the Odd Lindley-G (OL-G) family of distributions which introduced by 

Silva et al. (2017). The pdf and cdf of  the OL-G family of distributions are given by  

 𝑓(𝑥; 𝑎, 𝜉) =
𝑎2

(1+𝑎)

𝑔(𝑥;𝜉)

𝐺(𝑥;𝜉)3
 exp [−𝑎

𝐺(𝑥;𝜉)

𝐺(𝑥;𝜉)
]                                                    (3) 

and 

 𝐹(𝑥; 𝑎, 𝜉) = 1 −
𝑎+𝐺(𝑥;𝜉)

(1+𝑎)𝐺(𝑥;𝜉)
exp [−𝑎

𝐺(𝑥;𝜉)

𝐺(𝑥;𝜉)
],                                                     (4) 

respectively, where 𝐺(𝑥; 𝜉) and 𝐺(𝑥; 𝜉)are the baseline cdf and survival function which depends 

on a parameter vector 𝜉 . where 𝑎 is a positive shape parameter. To this end, we use (1), (2) and 

(3) to obtain the three-parameter OLNH pdf (for 𝑥 > 0) 

 𝑓(𝑥; 𝑎, 𝛼, 𝜆) =
𝑎2𝛼𝜆

(1+𝑎)

 (1+𝜆 𝑥)𝛼−1

exp{2[1−(1+𝜆 𝑥)𝛼]}
 exp [−𝑎

1−exp[1−(1+𝜆 𝑥)𝛼]

exp[1−(1+𝜆 𝑥)𝛼]
].                     (5) 

The corresponding cdf is given by 

 𝐹(𝑥; 𝑎, 𝛼, 𝜆) = 1 −
𝑎+exp[1−(1+𝜆 𝑥)𝛼]

(1+𝑎)exp[1−(1+𝜆 𝑥)𝛼]
exp [−𝑎

1−exp[1−(1+𝜆 𝑥)𝛼]

exp[1−(1+𝜆 𝑥)𝛼]
] , 𝑥 ≥ 0.       (6) 

Note that the Type I odd Lindley exponential model (TIOLE) arises when 𝛼 = 1  and the 

TIIOLE model arises when 𝑎 = 𝛼 = 1. 
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The OLNH density function can be expressed as an infinite mixture of exponentiated-G (exp-G) 

density functions  

 𝑓(𝑥) = ∑∞
𝑚,𝑘=0 𝜐𝑚,𝑘𝜋𝑚+𝑘+1(𝑥),                                                       (7) 

where  

𝜐𝑚,𝑘 =
(−1)𝑘𝑎2+𝑘Γ(𝑚 + 𝑘 + 3)

(𝑎 + 1)(𝑚 + 𝑘 + 1)𝑚! 𝑘!Γ(𝑘 + 3)
 

 and  

𝜋𝛾(𝑥) = 𝛾 𝛼𝜆 (1 + 𝜆 𝑥)
𝛼−1exp[1 − (1 + 𝜆 𝑥)𝛼]⏟                        
𝑔(𝑥,𝛼,𝜆)

 {1 − exp[1 − (1 + 𝜆 𝑥)𝛼]}𝛾−1⏟                  
𝐺(𝑥,𝛼,𝜆)𝛾−1

 

 represents the exp-NH density with power parameter 𝛾 > 0 . The exp-NH distribution was 

introduced and studied by Lemonte (2013). 

The properties of exp-G distributions have been studied by many authors in recent years, see 

Mudholkar and Srivastava (1993) and Mudholkar et al. (1995) for exponentiated Weibull, Gupta 

et al. (1998) for exponentiated Pareto, Gupta and Kundu (1999) for exponentiated exponential, 

Nadarajah (2005) for the exponentiated-type distributions, Nadarajah and Kotz (2006) for 

exponentiated Gumbel, Shirke and Kakade (2006) for exponentiated log-normal and Nadarajah 

and Gupta (2007) for exponentiated gamma distributions, among others. The cdf of OLNH 

model can be given by integrating (7) as 

 𝐹(𝑥) = ∑∞
𝑚,𝑘=0 𝜐𝑚,𝑘𝚷𝑚+𝑘+1(𝑥),                                                     (8) 

where  

Π𝛾(𝑥) = {1 − exp[1 − (1 + 𝜆 𝑥)
𝛼]}𝛾⏟                  

𝐺(𝑥,𝛼,𝜆)𝛾

 

 is the cdf of the exp-NH model with power parameter 𝛾. Equation (8) reveals that the OLNH cdf 

is a linear combination of exp-G cdf‘s. So, some mathematical properties of this family can be 

determined from those of the exp-G distribution. Equations (7) and (8) are the main results of 

this section.  

Equation (7) is easily obtained by the general result given by Silva et al. (2017) in their relation 

(19). Moreover, Equation (8) is easily obtained by the general result given by Silva et al. (2017) 

in their relation (20). 
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(a) (b) 

Fig. 1: Plots of the OLNH pdf (a) and OLNH hrf (b) for some parameter values. 

Figure 1. (a) shows that the OLNH distribution has various pdf shapes. Further, Fig. 1. (b) shows 

that the OLNH model produces flexible hazard rate shapes such as constant, increasing, 

decreasing and bathtub. These plots indicate that the OLNH model is very useful in fitting 

different data sets with various shapes. 

 

2.  Properties 

2.1  Moments and generating function 

The 𝑟th moment of 𝑋, say 𝜇𝑟
′ , follows from (7) as 

 𝜇𝑟
′ = 𝐸(𝑋𝑟) = ∑∞

𝑚,𝑘=0 ∑
𝛾−1
𝑗=0 ∑

𝑟
𝑖=0 𝜐𝑚,𝑘 𝛽𝑗,𝑖

(𝑚+𝑘+1)
Γ (

𝑖

𝛼
+ 1,1 + 𝑗),                        (9) 

where  𝛽𝑗,𝑖
(𝛾)
=

𝛾

𝜆𝑟

(−1)𝑟+𝑗−𝑖𝑒1+𝑗

(1+𝑗)
𝑖
𝛼
+1

(
𝛾 − 1
𝑗

) (
𝑟
𝑖
)  and  r > 0 integer. The 𝑛th central moment of 𝑋, say 

𝑀𝑛, is given by  

 𝑀𝑛 = 𝐸(𝑋 − 𝜇1
′ )
𝑛
= ∑𝑛𝑟=0 ∑

∞
𝑚,𝑘=0  𝜐𝑚,𝑘 (

𝑛
𝑟
) (−1)𝑟 (𝜇1

′ )
𝑟
𝜇𝑛−𝑟

′   

The skewness and kurtosis measures can be calculated from the ordinary moments using well-

known relationships. The mgf 𝑀𝑋(𝑡) = 𝐸(e
𝑡 𝑋) of 𝑋 can be derived using (7) as  

 𝑀𝑋(𝑡) = ∑
∞
𝑚,𝑘,𝑟=0 ∑

𝛾−1
𝑗=0 ∑

𝑟
𝑖=0  𝜐𝑚,𝑘

𝑡𝑟

𝑟!
 𝛽𝑗,𝑖
(𝑚+𝑘+1)

Γ (
𝑖

𝛼
+ 1,1 + 𝑗). 

For more details about the properties Exp NH see Lemonte (2013, p.155).  
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2.2  Incomplete moments 

The main applications of the first incomplete moment refer to the mean deviations and the 

Bonferroni and Lorenz curves. These curves are very useful in economics, reliability, 

demography, insurance and medicine. The 𝑟 th incomplete moment, say 𝐼𝑟(𝑡) , of 𝑋  can be 

expressed using (7) as  

𝐼𝑟(𝑡) = ∫
𝑡

−∞
𝑥𝑟𝑓(𝑥)𝑑𝑥, 

then 

 𝐼𝑟(𝑡) = ∑
∞
𝑚,𝑘=0 ∑

𝛾−1
𝑗=0 ∑

𝑟
𝑖=0 𝜐𝑚,𝑘𝛽𝑗,𝑖

(𝑚+𝑘+1)
Γ (

𝑖

𝛼
+ 1, (1 + 𝑗)(1 + 𝜆 𝑡)𝛼).          (10) 

 

2.3  moment of residual life and reversed residual life 

The 𝑟 th moment of the residual life, say 𝑧𝑟(𝑡) = 𝐸[(𝑋 − 𝑡)
𝑟|𝑋 > 𝑡], 𝑟 = 1,2, … , uniquely 

determines 𝐹(𝑥). The 𝑟th moment of the residual life of 𝑋 is given by 𝑧𝑟(𝑡) =
1

1−𝐹(𝑡)
 ∫

∞

𝑡
(𝑥 −

𝑡)𝑟𝑑𝐹(𝑥). Therefore 

 𝑧𝑟(𝑡) =
1

1−𝐹(𝑡)
∑∞
𝑚,𝑘=0 ∑

𝛾−1
𝑗=0 ∑

𝑟
𝑖=0 𝜐𝑚,𝑘

∗ 𝛽𝑗,𝑖
(𝑚+𝑘+1)

Γ (
𝑖

𝛼
+ 1, (1 + 𝑗)(1 + 𝜆 𝑡)𝛼), 

where 𝜐𝑚,𝑘
∗ = 𝜐𝑚,𝑘 ∑

𝑛
ℎ=0 (

𝑛
ℎ
) (−𝑡)𝑛−ℎ . Another interesting function is the mean residual life 

(MRL) function or the life expectation at age 𝑡 defined by 𝑧1(𝑡) = 𝐸[(𝑋 − 𝑡)|𝑋 > 𝑡], which 

represents the expected additional life length for a unit which is alive at age 𝑡. The MRL of 𝑋 

can be obtained by setting 𝑟 = 1 in the last equation. 

The 𝑟th moment of the reversed residual life, say 𝑍𝑟(𝑡) = 𝐸[(𝑡 − 𝑋)
𝑟|𝑋 ≤ 𝑡], for 𝑡 > 0 and 𝑟 =

1,2, …,  uniquely determines 𝐹(𝑥) . We have 𝑍𝑟(𝑡) =
1

𝐹(𝑡)
∫
𝑡

0
(𝑡 − 𝑥)𝑟𝑑𝐹(𝑥) . Then, the 𝑟 th 

moment of the reversed residual life of 𝑋 becomes  

 𝑍𝑟(𝑡) =
1

𝐹(𝑡)
∑∞
𝑚,𝑘=0 ∑

𝛾−1
𝑗=0 ∑

𝑟
𝑖=0 𝜐𝑚,𝑘

∗∗ 𝛽𝑗,𝑖
(𝑚+𝑘+1)

Γ (
𝑖

𝛼
+ 1, (1 + 𝑗)(1 + 𝜆 𝑡)𝛼), 

where 𝜐𝑘+1
∗∗ = 𝜐𝑚,𝑘 ∑

𝑛
ℎ=0 (−1)

ℎ  (
𝑛
ℎ
) 𝑡𝑛−ℎ. The mean inactivity time (MIT), also called the mean 

reversed residual life function, is given by 𝑍1(𝑡) = 𝐸[(𝑡 − 𝑋)|𝑋 ≤ 𝑡] , and it represents the 

waiting time elapsed since the failure of an item on condition that this failure had occurred in 

(0, 𝑡). The MIT of the ONH-G family can be obtained easily by setting 𝑟 = 1 in the above 

equation. For more details see Navarro et al. (1998). 
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2.4  Order statistics and quantile spread order 

Suppose 𝑋1, … , 𝑋𝑛  is a random sample from an OLNH model. Let 𝑋𝑖:𝑛  denote the 𝑖 th order 

statistic. The pdf of 𝑋𝑖:𝑛 can be expressed as  

 𝑓𝑖:𝑛(𝑥) =
𝑓(𝑥)

𝐵(𝑖,𝑛−𝑖+1)
 𝐹(𝑥)𝑖−1[1 − 𝐹(𝑥)]𝑛−𝑖,                                        (11) 

we can write the density function of 𝑋𝑖:𝑛 in (11) as  

 𝑓𝑖:𝑛(𝑥) = ∑
∞
𝑚,𝑝=0 ∑

𝑘+𝑛−𝑖
𝑗=0 𝜐𝑗,𝑚,𝑝 𝜋𝑗+𝑚+𝑝(𝑥),                                        (12) 

Where 

𝜐𝑗,𝑚,𝑝 =
𝑎𝑗+𝑚+2 (

𝑗 + 𝑚 + 𝑝
𝑗 + 𝑚

)∑𝑛−1𝑘=0 (−1)
𝑘+𝑚 (

𝑘 + 𝑛 − 𝑖
𝑗

) (
𝑖 − 1
𝑘

)

𝐵(𝑖, 𝑛 − 𝑖 + 1)𝑚! (1 + 𝑎)𝑗+1(𝑗 + 𝑚 + 𝑝 + 1)
. 

Equation (12) is the main result of this section, it reveals that the pdf of the OLNH order 

statistics is a linear combination of exp-G density functions. So, several mathematical quantities 

of the OLNH order statistic such as ordinary, incomplete and factorial moments, mean deviations 

and several others can be determined from those quantities of the exp-G distribution. The 𝑝th 

moment of 𝑋𝑖:𝑛 is given by  

 𝐸(𝑋𝑖:𝑛
𝑝
) = ∑∞

𝑚,𝑝=0 ∑
𝑘+𝑛−𝑖
𝑗=0 ∑𝑝𝑤=0 ∑

𝑟
𝑙=0 𝜐𝑗,𝑚,𝑝 𝛽𝑤,𝑙

(𝑗+𝑚+𝑝)
Γ (

𝑙

𝛼
+ 1,1 + 𝑤).                        (13) 

 

3  Characterizations 

This section deals with various characterizations of OLNH distribution. These characterizations 

are presented in two directions: (𝑖) based on a truncated moment and (𝑖𝑖) in terms of the hazard 

function. It should be noted that characterization (𝑖) can be employed also when the 𝑐𝑑𝑓  does 

not have a closed form. We present our characterizations  (𝑖) and (𝑖𝑖)  in two subsections. 

3.1  Characterizations based on a truncated moment 

Our first characterization employs a version of a theorem due to Glanzel (1987), see Theorem 1 

of Appendix A .The result, however, holds also when the interval 𝐻  is not closed since the 

condition of Theorem 1 is on the interior of 𝐻 .  We like to mention that this kind of 

characterization based on a truncated moment is stable in the sense of weak convergence (see, 

Glanzel 1990).  
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Proposition 3.1. Let 𝑋:Ω → (0,∞)  be a continuous random variable and let 𝑞(𝑥) =

exp {−𝑎
1−𝑒1−(1+𝜆𝑥)

𝛼

𝑒1−(1+𝜆𝑥)
𝛼 } for 𝑥 > 0. The random variable 𝑋  belongs to the family (5) if and only if 

the function 𝜂 defined in Theorem 1 has the form 

 𝜂(𝑥) =
1

2
exp {−𝑎

1−𝑒1−(1+𝜆𝑥)
𝛼

𝑒1−(1+𝜆𝑥)
𝛼 } ,    𝑥 > 0. 

Proof. Let  𝑋  be a random variable with 𝑝𝑑𝑓 (5), then 

 (1 − 𝐹(𝑥))𝐸[𝑞(𝑋)|𝑋 ≥ 𝑥] =
1

2(1+𝑎)
(
𝑎+exp[1−(1+𝜆𝑥)𝛼]

exp[1−(1+𝜆𝑥)𝛼]
)× 

 exp {−2𝑎
1−exp[1−(1+𝜆 𝑥)𝛼]

exp[1−(1+𝜆 𝑥)𝛼]
}, 

and hence 

 𝜂(𝑥) = 𝐸[𝑞(𝑋)|𝑋 ≥ 𝑥] =
1

2
exp {−𝑎

1−exp[1−(1+𝜆 𝑥)𝛼]

exp[1−(1+𝜆 𝑥)𝛼]
} ,    𝑥 > 0, 

and finally 

 𝜂(𝑥) − 𝑞(𝑥) = −
1

2
exp {−𝑎

1−exp[1−(1+𝜆 𝑥)𝛼]

exp[1−(1+𝜆 𝑥)𝛼]
} < 0𝑓𝑜𝑟  𝑥 > 0. 

Conversely, if 𝜂 is given as above, then 

 𝑠 ′(𝑥) =
𝜂′(𝑥)

𝜂(𝑥)−𝑞(𝑥)
= 𝑎𝛼𝜆(1 + 𝜆𝑥)𝛼−1, 𝑥 > 0, 

and hence 

 𝑠(𝑥) = 𝑎(1 + 𝜆𝑥)𝛼, 𝑥 > 0. 

Now, according to Theorem 1,   𝑋  has density (5).  

Corollary 3.1.  Let 𝑋:Ω → (0,∞)  be a continuous random variable. Then, 𝑋  has 𝑝𝑑𝑓 (5) if and 

only if there exist functions 𝑞 and 𝜂 defined in Theorem 1 satisfying the differential equation 

 
𝜂′(𝑥)

𝜂(𝑥)−𝑔(𝑥)
= 𝑎𝛼𝜆(1 + 𝜆𝑥)𝛼−1, 𝑥 > 0. 

The general solution of the differential equation in Corollary 3.1 is 

 𝜂(𝑥) = exp {𝑎
1−exp[1−(1+𝜆 𝑥)𝛼]

exp[1−(1+𝜆 𝑥)𝛼]
} 

 × [−∫ 𝑎𝛼𝜆(1 + 𝜆𝑥)𝛼−1exp {−𝑎
1−exp[1−(1+𝜆 𝑥)𝛼]

exp[1−(1+𝜆 𝑥)𝛼]
} 𝑞(𝑥)𝑑𝑥 + 𝐷], 

 where 𝐷 is a constant. Note that a set of functions satisfying the above differential equation is 

given in Proposition 3.1 with 𝐷 = 0. 

3.2  Characterization in terms of the hazard function 
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It is known that the hazard function, ℎ𝐹 , of a twice differentiable distribution function, 𝐹 , 

satisfies the first order differential equation 

 
𝑓′(𝑥)

𝑓(𝑥)
=
ℎ𝐹

′ (𝑥)

ℎ𝐹(𝑥)
− ℎ𝐹(𝑥). 

 For many univariate continuous distributions, this is the only characterization available in terms 

of the hazard function. The following characterization establishes a non-trivial characterization 

of OLNH in terms of the hazard function which is not of the above trivial form.  

Proposition 3.2.  Let 𝑋:Ω → (0,∞) be a continuous random variable. Then, 𝑋  has   𝑝𝑑𝑓  (5) if 

and only if its hazard function ℎ𝐹(𝑥) satisfies the differential equation 

 ℎ𝐹
′ (𝑥) −

𝜆(𝛼−1)

1+𝜆𝑥
ℎ𝐹(𝑥) = −

𝑎2𝛼2𝜆2(1+𝜆𝑥)2(𝛼−1){𝑎+2exp[1+(1+𝜆 𝑥)𝛼]}

𝑒1+(1+𝜆𝑥)
𝛼
[𝑎+exp[1−(1+𝜆 𝑥)𝛼]]

2 , 𝑥 > 0, 

with the initial condition  ℎ𝐹(0) =
𝑎2𝛼𝜆

1+𝑎
.  

Proof.  If  𝑋  has 𝑝𝑑𝑓  (5), then clearly the above differential equation holds.  Now, if the 

differential equation holds, then 

 
𝑑

𝑑𝑥
{(1 + 𝜆𝑥)−(𝛼−1)ℎ𝐹(𝑥)} = 𝑎

2𝛼𝜆
𝑑

𝑑𝑥
[(

𝑎exp[1 − (1 + 𝜆𝑥)𝛼]

+exp{2[1 − (1 + 𝜆𝑥)𝛼]}
)
−1

] 

or 

 ℎ𝐹(𝑥) =
𝑎2𝛼𝜆(1+𝜆𝑥)𝛼−1

𝑎exp[1−(1+𝜆𝑥)𝛼]+exp{2[1−(1+𝜆𝑥)𝛼]}
, 𝑥 > 0, 

which is the hazard function of (5). 

for characterizations of other well-known continuous distributions based on the hazard function, 

the reader should refer to Hamedani (2004) and Hamedani and Ahsanullah (2005). 

 

4.  Estimation 

Subection 4.1 gives procedures for maximum likelihood estimation of the OLNH distribution. 

Subection 4.2 assesses the performance of the maximum likelihood estimators (MLEs) in terms 

of biases, mean squared errors, coverage probabilities and coverage lengths by means of a 

simulation study. Subection 4.3 gives procedures for maximum likelihood estimation in the 

presence of censored data. 

4.1  maximum likelihood estimation 

We consider the estimation of the unknown parameters of the OLNH model from complete 

samples only by maximum likelihood method. The MLEs of the parameters of the OLNH 
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(𝑎, 𝛼, 𝛽) model is now discussed. Let 𝑥1, … , 𝑥𝑛 be a random sample from this distribution with 

parameter vector 𝚿 = (𝑎, 𝛼, 𝛽, )T. The log-likelihood function for 𝚿, say ℓ(𝚿), is given by 

 ℓ(𝚿) = 2𝑛log(𝑎) + 𝑛log(𝛼) + 𝑛log(𝜆) − 𝑛log(1 + 𝑎) 

+(𝛼 − 1)∑

𝑛

𝑖=0

log(1 + 𝜆 𝑥𝑖) − 2∑

𝑛

𝑖=0

[1 − (1 + 𝜆 𝑥𝑖)
𝛼] 

−𝑎∑𝑛𝑖=0 ({exp[(1 + 𝜆 𝑥𝑖)
𝛼 − 1]} − 1).                                                          (14) 

The last equation can be maximized either by using the different programs like R (optim 

function), SAS (PROC NLMIXED) or by solving the nonlinear likelihood equations obtained by 

differentiating (14). The score vector elements, 𝐔(𝚿) = (
∂

∂𝑎
 ,
∂

∂𝛼
 ,
∂

∂𝜆
 )T, are given in Appendix B. 

We can obtain the estimates of the unknown parameters by setting the score vector to zero, 

𝐔(�̂�) = 𝟎. Solving these equations simultaneously gives the MLEs �̂�, �̂� and �̂�. For the OLNH 

distribution, all the second order derivatives exist. The interval estimation of the model 

parameters requires the 3×3 observed information matrix   𝐽(𝚿) = {𝐽𝑖𝑗} for 𝑖, 𝑗 = 𝑎, 𝛼, 𝜆. 

 

The multivariate normal 𝑁3(0, 𝐽(�̂�)
−1) distribution, under standard regularity conditions, can be 

used to provide approximate confidence intervals for the unknown parameters, where 𝐽(�̂�) is the 

total observed information matrix evaluated at �̂�. Then, approximate 100(1 − 𝛿)% confidence 

intervals for 𝑎, 𝛼 and 𝜆 can be determined by: �̂� ± 𝑧𝛿/2√𝐽𝑎𝑎,  �̂� ± 𝑧𝛿/2√𝐽𝛼𝛼   and  �̂� ± 𝑧𝛿/2√𝐽𝜆𝜆, 

where 𝑧𝛿/2 is the upper 𝛿𝑡ℎ percentile of the standard normal distribution.   

4.2  Simulation studies 

This Subsection assesses the performance of the maximum likelihood estimators (MLEs) in 

terms of biases, mean squared errors, coverage probabilities and coverage lengths by means of 

a simulation study ". But We didn't give coverage probability and coverage lengths. We only 

gave empirical means, sd, biases, and mean squared errors. 

In this subsection, we perform two simulation studies using the OLNH distribution to see the 

performance of MLE’s of this distributions. All results were obtained using optim routine in the 

R programme. We generate 1,000 samples of sizes 20, 50, 100, 200, 300 and 500 from OLNH 

distribution with 𝛼  =1.5, 𝜆 =0.5 and a=2. Secondly, we also generate  1000 samples of size 

n=20,21,…,100 from OLNH with 𝛼 =0.25, 𝜆 =5 and a=10. The random number procedure is 
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obtained by using the inversion method of its cdf. We also compute the biases and mean squared 

errors (MSE) of the MLEs with 

𝐵𝑖𝑎�̂�ℎ =
1

1000
∑1000𝑖=1 (ℎ̂𝑖 − ℎ),  

and 

 𝑀𝑆�̂�ℎ =
1

1000
∑1000𝑖=1 (ℎ̂𝑖 − ℎ)

2, 

respectively, h = 𝛼, 𝜆  and a.  The results of the simulation are reported in Table 1 and Figure 2. 

From this Table and Figure 2, we observe that when the sample size increases, the empirical 

means come close to true values whereas sd, biases and MSEs decrease in all cases, as expected. 

 

Table 1. Empirical means, sd, bias and mean squared errors 

n Parameter Mean SD Bias MSE 

 𝛼 1.4431 0.4408 0.0554 0.1299 

20 𝜆 0.5873 0.1962 0.0873 0.0456 

 𝑎 1.8015 0.6781 0.6434 0.3919 

 𝛼 1.5276 0.2667 0.0276 0.0709 

50 𝜆 0.5392 0.0948 0.0392 0.0095 

 𝑎 1.9122 0.4660 0.4503 0.2141 

 𝛼 1.4891 0.2483 -0.0201 0.0616 

100 𝜆 0.5286 0.0809 0.0286 0.0072 

 𝑎 2.0807 0.3530 -0.1427 0.1506 

 𝛼 1.5124 0.1988 0.0124 0.0386 

200 𝜆 0.5262 0.0614 0.0122 0.0037 

 𝑎 2.0742 0.2444 0.2278 0.0637 

 𝛼 1.4912 0.1378 0.0088 0.0189 

300 𝜆 0.5170 0.0397 0.0094 0.0016 

 𝑎 1.9960 0.2249 0.2064 0.0502 

 𝛼 1.4988 0.1019 -0.0011 0.0103 

500 𝜆 0.5057 0.0374 0.0058 0.0014 

 𝑎 1.9970 0.1676 -0.2060 0.0280 
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Figure 2: Plots of the empirical mean, sd, biases and MSE of alpha, lambda and a versus n. 

4.3  Multi-censored maximum likelihood estimation 

Often with lifetime data, we encounter censored observations. There are different forms of 

censoring: type I censoring, type II censoring, etc. Here, we consider the general case of multi-

censored data: there are 𝑚  subjects of which 𝑚0  are known to have failed at the times 

𝑥1, . . . , 𝑥𝑚0 . 𝑚1 are known to have failed in the interval [𝑠𝑗−1, 𝑠𝑗], 𝑗 = 1, . . . , 𝑚1. 𝑚2 survived to a 

time 𝑟𝑗, 𝑗 = 1, . . . , 𝑚2 but not observed any longer. Note that 𝑚 = 𝑚0 +𝑚1 +𝑚2 and that type I 

censoring and type II censoring are contained as particular cases of multi-censoring. The log-

likelihood function for 𝚿 is 

ℓ𝑚(𝚿) = 2𝑚0log(𝑎) +𝑚0log(𝛼) + 𝑚0log(𝜆) −𝑚0log(1 + 𝑎) 

+(𝛼 − 1)∑

𝑚0

𝑖=0

log(1 + 𝜆 𝑥𝑖) − 2∑

𝑚0

𝑖=0

[1 − (1 + 𝜆 𝑥𝑖)
𝛼] +∑

𝑚2

𝑖=0

log {
𝑎 + 𝜃𝑟𝑖
(1 + 𝑎)𝜃𝑟𝑖

exp [−𝑎
1 − 𝜃𝑟𝑖
𝜃𝑟𝑖

]}

− 𝑎∑

𝑚0

𝑖=0

({exp[(1 + 𝜆 𝑥𝑖)
𝛼 − 1]} − 1) 
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+∑

𝑚1

𝑖=0

log

(

 
 
{1 −

𝑎 + 𝜃𝑠𝑖
(1 + 𝑎)𝜃𝑠𝑖

exp [−𝑎
1 − 𝜃𝑠𝑖
𝜃𝑠𝑖

]}

−{1 −
𝑎 + 𝜃𝑠𝑖−1
(1 + 𝑎)𝜃𝑠𝑖−1

exp [−𝑎
1 − 𝜃𝑠𝑖−1
𝜃𝑠𝑖−1

]}
)

 
 
. 

The normal equations are given in Appendix C. 

 

5.  Data analysis 

In this section, we present an application based on the real data set to show the flexibility of the 

OLNH distribution. We compare OLNH with Gamma-NH (GNH) (Ortega et al., 2015), 

Marshall-Olkin-NH (MONH) (Lemonte et al., 2016), exponentiated-NH (ENH)(Lemonte, 2013) 

and beta-NH (BNH)(Dias et al., 2017), generalized Lindley (GL) (Zakerzadeh and Dolati, 2009), 

extended Lindley (EL) (Bakouch et al., 2012) and power Lindley (PL) (Ghitany et al,. 2013) 

distributions. The model selection is applied using the estimated log-likelihood (ℓ̂)  , 

Kolmogorov-Smirnov (K-S) statistics, Akaike information criterion (AIC), Consistent Akaike 

information criteria (CAIC), Bayesian information criterion (BIC), and Hannan-Quinn 

information criterion (HQIC). AIC, CAIC, BIC and HQIC. 

 𝐴𝐼𝐶 = −2ℓ̂+ 2𝑝  , 𝐶𝐴𝐼𝐶 = −2ℓ̂+ 2𝑝𝑛/(𝑛 − 𝑝 − 1), 𝐵𝐼𝐶 = −2ℓ̂+ 𝑝log𝑛 

and  

 𝐻𝑄𝐼𝐶 = −2ℓ̂+ 2𝑝log(log𝑛), 

where 𝑝 is the number of the estimated model parameters and n is sample size. When searching 

the best fit among others to data, the distribution with the smallest AIC, CAIC, BIC, HQIC and 

K-S values and the biggest log-likelihood and p values of the K-S statistics is chosen. All 

calculations are obtained by maxLik routine in R programme. The data consist of 72 

exceedances for the years 1958–1984, rounded to one decimal place (Choulakian and Stephens, 

2001): 1.7, 2.2, 14.4, 1.1, 0.4, 20.6, 5.3, 0.7, 1.9, 13.0, 12.0, 9.3, 1.4, 18.7, 8.5, 25.5, 11.6, 14.1, 

22.1, 1.1, 2.5, 14.4, 1.7, 37.6, 0.6, 2.2, 39.0, 0.3, 15.0, 11.0, 7.3, 22.9, 1.7, 0.1, 1.1, 0.6, 9.0, 1.7, 

7.0, 20.1, 0.4, 2.8, 14.1, 9.9, 10.4, 10.7, 30.0, 3.6, 5.6, 30.8, 13.3, 4.2, 25.5, 3.4, 11.9, 21.5, 27.6, 

36.4, 2.7, 64.0, 1.5, 2.5, 27.4, 1.0, 27.1, 20.2, 16.8, 5.3, 9.7, 27.5, 2.5, 27.0. This data also has 

been analyzed by Lemonte (2013) for the ENH distribution. In the applications, the information 

about the hazard shape can help in selecting a particular model. For this aim, a device called the 
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total time on test (TTT) plot (Aarset, 1987) is useful. The TTT plot is obtained by plotting 𝑇 (
𝑖

𝑛
) 

against 
𝑖

𝑛
, where 

𝑇 (
𝑖

𝑛
) =

∑𝑖𝑖=1 𝑦𝑗:𝑛 + (𝑛 − 𝑟)𝑦𝑗:𝑛

∑𝑖𝑖=1 𝑦𝑗:𝑛
 

and  𝑖 = 1, . . . , 𝑛 and 𝑦𝑗:𝑛 are the order statistics of the sampleIt is convex shape for decreasing 

hazards and concave shape for increasing hazards. The TTT plot for the exceedances of flood 

peaks data in Figure 2 agree with a bathtub-shaped failure rate function. We also, analyzed the 

ordinary NH distribution with this data. For ordinary NH distribution, we obtained K-S statistics 

and its p-values as 0.1244 and 0.2153 respectively. The other results of this application are listed 

in Table 2. These results show that the OLNH distribution has the lowest AIC, CAIC, BIC, 

HQIC and K-S values and has the biggest estimated log-likelihood and p-value of the K-S 

statistics among all the fitted models. So it could be chosen as the best model under these 

criteria.and p-value of the K-S statistics among all the fitted models. So it could be chosen as the 

best model under these criteria. 

Table 2. The application results of the exceedances of flood peaks data (and the corresponding 

standard deviations (sd) in parentheses) 

Model 
alpha 

(sd) 

lambda 

(sd) 

a 

(sd) 

b 

(sd) 
loglike AIC CAIC BIC HQIC 

K-S 

(p-value) 

OLNH 
0.2519 

(0.0520) 

1.8065 

(3.3549) 

0.7293 

(0.6059) 

- 
-250.5885 507.1770 507.5300 514.0070 509.8961 

0.1009 

(0.4565) 

GNH 
1.9299 

(1.7591) 

0.0242 

(0.0312) 

0.7286 

(0.1385) 

- 
-250.9172 507.8344 508.1874 514.6644 510.5535 

0.1065 

(0.3880) 

MONH 
23.7701 

(5.5053) 

0.0011 

(0.0003) 

0.2660 

(0.0895) 

- 
-251.0874 508.1747 508.5277 515.0047 510.8938 

0.1074 

(0.3771) 

ENH 
1.7126 

(1.2607) 

0.0309 

(0.0330) 

0.7289 

(0.1404) 

- 
-250.9246 507.8492 508.2021 514.6792 510.5682 

0.1067 

(0.3859) 

BNH 
0.6396 

(0.8227) 

0.0003 

(0.0004) 

0.8381 

(0.1215) 

316.0285 

(4.2194) 
-251.3564 510.7129 511.3099 519.8195 514.3382 

0.1044 

(0.4127) 

GL 
0.7874 

(0.1532) 

0.0875 

(0.0204) 

0.0342 

(0.0537) 

- 
-251.1690 508.3379 508.6909 515.1679 511.0570 

0.6173 

(0.0000) 

EL 
0.3684 

(0.5725) 

0.1129 

(0.0551) 

0.8607 

(0.0961) 

- 
-251.3664 508.7327 509.0857 515.5627 511.4518 

0.1037 

(0.4214) 

PL 
0.6999 

(0.0570) 
- 

0.3385 

(0.0558) 

- 
-252.2218 508.4436 508.6175 512.9969 510.2563 

0.1050 

(0.4050) 
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Finally, we plot the estimated pdf, cdf and hrf of the OLNH for the exceedances of flood peaks 

data with Figure 4. Clearly, the OLNH distribution provides a closer fit to the empirical pdf and 

cdf. Also, from this figures, we have a bathtub-shaped failure rate function for the exceedances 

of flood peaks data, which are in accordance with TTT plot. 

 

Fig. 3: TTT plot of the exceedances of flood peaks data 



878 

HAITHAM M. YOUSOF, MUSTAFA Ç. KORKMAZ AND G. G. HAMEDANI 

 

Fig. 4: Estimated pdf (top), cdf (left) and hrf (right) of the OLNH for the exceedances of flood 

peaks data 

6.   Conclusions 

In this article, we introduce a new three-parameter model called Odd Lindley-Nadarajah-

Haghighi (OLNH) model which extends the Nadarajah-Haghighi (N-H) model. The OLNH 

density function can be expressed as a straightforward linear mixture of  exponentiated 

Nadarajah-Haghighi density. We derive explicit expressions for some of its statistical and 

mathematical quantities including the ordinary moments, generating function, incomplete 

moments, order statistics, moment of residual life and reversed residual life. Some useful 

characterizations are presented. Maximum likelihood method is used to estimate the model 
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parameters. Simulation results to assess the performance of the maximum likelihood estimators 

are discussed in case of uncensored data. The censored maximum likelihood estimation is 

presented in the general case of the multi-censored data. We demonstrate empirically the 

importance and flexibility of the new model in modeling real data set. We hope that the proposed 

distribution will attract wider applications in areas such as economics (income inequality), 

survival and lifetime data, engineering, hydrology, meteorology and others. As a future work we 

will consider the bivariate and the multivariate extensions of  the OLNH distribution. 
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Appendix A 

Theorem 1. Let (Ω, ℱ, 𝐏) be a given probability space and let  𝐻 = [𝑑, 𝑒] be an interval for some  𝑑 < 𝑒  (𝑑 =

−∞, 𝑒 = ∞  mightaswellbeallowed). Let 𝑋:Ω → 𝐻  be a continuous random variable with the distribution function 

𝐹 and let 𝑞 be a real function defined on 𝐻 such that 

 𝐄[𝑞(𝑋)|𝑋 ≥ 𝑥] = 𝜂(𝑥),    𝑥 ∈ 𝐻, 

is defined with some real function 𝜂.  Assume that 𝑞 ∈ 𝐶1(𝐻), 𝜉 ∈ 𝐶2(𝐻) and 𝐹 is twice continuously differentiable 

and strictly monotone function on the set 𝐻.  Finally, assume that the equation 𝜂 = 𝑞 has no real solution in the 

interior of 𝐻. Then 𝐹 is uniquely determined by the functions   𝑞 and 𝜂 , particularly 

 𝐹(𝑥) = ∫
𝑥

𝑎
𝐶 |

𝜂′(𝑢)

𝜂(𝑢)−𝑞(𝑢)
| exp(−𝑠(𝑢))𝑑𝑢, 

where the function 𝑠 is  a solution of the differential equation 𝑠 ′ =
𝜂′

𝜂−𝑞
 and 𝐶 is the normalization constant, such that 

∫
𝐻
𝑑𝐹 = 1. 

Appendix B 

∂ℓ(𝚿)

∂𝑎
=
2𝑛

𝑎
−

𝑛

1 + 𝑎
−∑

𝑛

𝑖=0
({exp[(1 + 𝜆 𝑥𝑖)

𝛼 − 1]} − 1), 

∂ℓ(𝚿)

∂𝛼
=
𝑛

𝛼
+∑

𝑛

𝑖=0
log(1 + 𝜆 𝑥𝑖) +∑

𝑛

𝑖=0

2 − 𝑎exp[(1 + 𝜆 𝑥𝑖)
𝛼 − 1]

(1 + 𝜆 𝑥𝑖)
−𝛼[log(1 + 𝜆 𝑥𝑖)]

−1
 

and 

∂ℓ(𝚿)

∂𝜆
=
𝑛

𝜆
+ (𝛼 − 1)∑

𝑛

𝑖=0

𝑥𝑖
1 + 𝜆 𝑥𝑖

+ 𝛼∑
𝑛

𝑖=0

𝑥𝑖{2 − 𝑎exp[(1 + 𝜆 𝑥𝑖)
𝛼 − 1]}

(1 + 𝜆 𝑥𝑖)
1−𝛼

. 

Appendix C 

∂ℓ𝑚(𝚿)

∂𝑎
=∑

𝑚2

𝑖=0
𝐴(𝑎)(𝑟𝑖) [

𝑎 + 𝜃𝑟𝑖
(1 + 𝑎)𝜃𝑟𝑖

]

−1

exp [𝑎
1 − 𝜃𝑟𝑖
𝜃𝑟𝑖

] +
2𝑚0

𝑎
−

𝑚0

1 + 𝑎
−∑

𝑚0

𝑖=0
({exp[(1 + 𝜆 𝑥𝑖)

𝛼 − 1]} − 1) 

+∑
𝑚1

𝑖=0

{
 
 
 
 

 
 
 
 

[𝐴(𝑎)(𝑠𝑖) − 𝐴
(𝑎)(𝑠𝑖−1)]

[
 
 
 
 {1 −

𝑎 + 𝜃𝑠𝑖
(1 + 𝑎)𝜃𝑠𝑖

exp [−𝑎
1 − 𝜃𝑠𝑖
𝜃𝑠𝑖

]}

− {1 −
𝑎 + 𝜃𝑠𝑖−1
(1 + 𝑎)𝜃𝑠𝑖−1

exp [−𝑎
1 − 𝜃𝑠𝑖−1
𝜃𝑠𝑖−1

]}
]
 
 
 
 

}
 
 
 
 

 
 
 
 

, 
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∂ℓ𝑚(𝚿)

∂𝛼
=∑

𝑚2

𝑖=0
𝐵(𝛼)(𝑟𝑖) [

𝑎 + 𝜃𝑟𝑖
(1 + 𝑎)𝜃𝑟𝑖

]

−1

exp [𝑎
1 − 𝜃𝑟𝑖
𝜃𝑟𝑖

] +
𝑚0

𝛼
+∑

𝑚0

𝑖=0
log(1 + 𝜆 𝑥𝑖)

+∑
𝑚0

𝑖=0

2 − 𝑎exp[(1 + 𝜆 𝑥𝑖)
𝛼 − 1]

(1 + 𝜆 𝑥𝑖)
−𝛼[log(1 + 𝜆 𝑥𝑖)]

−1
 

+∑
𝑚1

𝑖=0

{
 
 
 
 

 
 
 
 

[𝐵(𝛼)(𝑠𝑖) − 𝐵
(𝛼)(𝑠𝑖−1)]

[
 
 
 
 {1 −

𝑎 + 𝜃𝑠𝑖
(1 + 𝑎)𝜃𝑠𝑖

exp [−𝑎
1 − 𝜃𝑠𝑖
𝜃𝑠𝑖

]}

− {1 −
𝑎 + 𝜃𝑠𝑖−1
(1 + 𝑎)𝜃𝑠𝑖−1

exp [−𝑎
1 − 𝜃𝑠𝑖−1
𝜃𝑠𝑖−1

]}
]
 
 
 
 

}
 
 
 
 

 
 
 
 

, 

∂ℓ𝑚(𝚿)

∂𝜆
=∑

𝑚2

𝑖=0
𝐶(𝜆)(𝑟𝑖) [

𝑎 + 𝜃𝑟𝑖
(1 + 𝑎)𝜃𝑟𝑖

]

−1

exp [𝑎
1 − 𝜃𝑟𝑖
𝜃𝑟𝑖

] +
𝑚0

𝜆
+ (𝛼 − 1)∑

𝑚0

𝑖=0

𝑥𝑖
1 + 𝜆 𝑥𝑖

+ 𝛼∑
𝑚0

𝑖=0

𝑥𝑖{2 − 𝑎exp[(1 + 𝜆 𝑥𝑖)
𝛼 − 1]}

(1 + 𝜆 𝑥𝑖)
1−𝛼

 

+∑
𝑚1

𝑖=0

{
 
 
 
 

 
 
 
 

[𝐶(𝜆)(𝑠𝑖) − 𝐶
(𝜆)(𝑠𝑖−1)]

[
 
 
 
 {1 −

𝑎 + 𝜃𝑠𝑖
(1 + 𝑎)𝜃𝑠𝑖

exp [−𝑎
1 − 𝜃𝑠𝑖
𝜃𝑠𝑖

]}

− {1 −
𝑎 + 𝜃𝑠𝑖−1
(1 + 𝑎)𝜃𝑠𝑖−1

exp [−𝑎
1 − 𝜃𝑠𝑖−1
𝜃𝑠𝑖−1

]}
]
 
 
 
 

}
 
 
 
 

 
 
 
 

 

where 

 𝐴(𝑎)(𝑠𝑖) =
(
{𝑎+𝜃𝑠𝑖

}{exp[(1+𝜆 𝑠𝑖)
𝛼−1]−1}

(1+𝑎)𝜃𝑠𝑖
−

𝑎{exp[1−(1+𝜆𝑠𝑖)
𝛼]−1}

(1+𝑎)2exp{2[1−(1+𝜆 𝑠𝑖)
𝛼]}
)

exp[𝑎{exp[(1+𝜆𝑠𝑖)
𝛼−1]−1}]

, 

𝐵(𝛼)(𝑠𝑖) =

(

(1 + 𝜆𝑠𝑖)
𝛼log(1 + 𝜆𝑠𝑖)exp[1 − (1 + 𝜆𝑠𝑖)

𝛼]
[(1 + 𝑎)exp(𝑎{exp[(1 + 𝜆 𝑠𝑖)

𝛼 − 1] − 1} − (1 + 𝜆𝑠𝑖)
𝛼 + 1)]−1

+
(1 + 𝑎)exp(𝑎{exp[(1 + 𝜆𝑠𝑖)

𝛼 − 1] − 1} − (1 + 𝜆𝑠𝑖)
𝛼 + 1)log(1 + 𝜆𝑠𝑖)

{𝑎 + exp[1 − (1 + 𝜆𝑠𝑖)
𝛼]}−1{𝑎exp[(1 + 𝜆𝑠𝑖)

𝛼 − 1]  − 1}−1(1 + 𝜆𝑠𝑖)
−𝛼

)

[(1 + 𝑎)exp(𝑎{exp[(1 + 𝜆𝑠𝑖)
𝛼 − 1] − 1} − (1 + 𝜆𝑠𝑖)

𝛼 + 1)]2
, 

𝐶(𝜆)(𝑠𝑖) = −
(

  
 

𝛼𝑠𝑖 ((1 + 𝑎){𝑎 + 𝜃𝑠𝑖} − (1 + 𝑎)𝜃𝑠𝑖)

{(1 + 𝑎)𝜃𝑠𝑖}
2
(1 + 𝜆𝑠𝑖)

1−𝛼exp[(1 + 𝜆 𝑠𝑖)
𝛼 − 1]

−
𝑎𝛼𝑠𝑖(1 + 𝜆𝑠𝑖)

𝛼−1{𝑎 + 𝜃𝑠𝑖}

(1 + 𝑎)𝜃𝑠𝑖[exp[(1 + 𝜆𝑠𝑖)
𝛼 − 1] − 1]−1 )

  
 

exp(−𝑎{exp[(1 + 𝜆 𝑠𝑖)
𝛼 − 1] − 1})

, 

𝐴(𝑎)(𝑠𝑖−1) =

(
{𝑎 + exp[1 − (1 + 𝜆𝑠𝑖−1)

𝛼]}{exp[(1 + 𝜆𝑠𝑖−1)
𝛼 − 1] − 1}

(1 + 𝑎)𝜃𝑠𝑖−1
−

𝑎{exp[1 − (1 + 𝜆𝑠𝑖−1)
𝛼] − 1}

(1 + 𝑎)2exp{2[1 − (1 + 𝜆𝑠𝑖−1)
𝛼]}
)

exp[𝑎{exp[(1 + 𝜆𝑠𝑖−1)
𝛼 − 1] − 1}]

, 
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𝐵(𝛼)(𝑠𝑖−1) =
(

 
 

(1 + 𝜆 𝑠𝑖−1)
𝛼log(1 + 𝜆 𝑠𝑖−1)𝜃𝑠𝑖−1

[(1 + 𝑎)exp(𝑎{exp[(1 + 𝜆 𝑠𝑖−1)
𝛼 − 1] − 1} − (1 + 𝜆 𝑠𝑖−1)

𝛼 + 1)]−1

+
(1 + 𝑎)exp(𝑎{exp[(1 + 𝜆 𝑠𝑖−1)

𝛼 − 1] − 1} − (1 + 𝜆 𝑠𝑖−1)
𝛼 + 1)log(1 + 𝜆 𝑠𝑖−1)

{𝑎 + 𝜃𝑠𝑖−1}
−1
{𝑎exp[(1 + 𝜆 𝑠𝑖−1)

𝛼 − 1] − 1}−1(1 + 𝜆 𝑠𝑖−1)
−𝛼

)

 
 

[(1 + 𝑎)exp(𝑎{exp[(1 + 𝜆 𝑠𝑖−1)
𝛼 − 1] − 1} − (1 + 𝜆 𝑠𝑖−1)

𝛼 + 1)]2
, 

𝐶(𝜆)(𝑠𝑖−1) = −
(

  
 

𝛼𝑠𝑖−1 ((1 + 𝑎){𝑎 + 𝜃𝑠𝑖−1} − (1 + 𝑎)𝜃𝑠𝑖−1)

{(1 + 𝑎)𝜃𝑠𝑖−1}
2
(1 + 𝜆𝑠𝑖)

1−𝛼exp[(1 + 𝜆 𝑠𝑖−1)
𝛼 − 1]

−
𝑎𝛼𝑠𝑖−1(1 + 𝜆𝑠𝑖−1)

𝛼−1{𝑎 + 𝜃𝑠𝑖−1}

(1 + 𝑎)𝜃𝑠𝑖−1{exp[(1 + 𝜆 𝑠𝑖−1)
𝛼 − 1] − 1}−1 )

  
 

exp(−𝑎{exp[(1 + 𝜆 𝑠𝑖−1)
𝛼 − 1] − 1})

, 

𝐴(𝑎)(𝑟𝑖) = −
(
{𝑎 + exp[1 − (1 + 𝜆𝑟𝑖)

𝛼]}{exp[(1 + 𝜆𝑟𝑖)
𝛼 − 1] − 1}

(1 + 𝑎)exp[1 − (1 + 𝜆𝑟𝑖)
𝛼]

−
𝑎{exp[1 − (1 + 𝜆𝑟𝑖)

𝛼] − 1}
(1 + 𝑎)2exp{2[1 − (1 + 𝜆𝑟𝑖)

𝛼]}
)

exp[𝑎{exp[(1 + 𝜆𝑟𝑖)
𝛼 − 1] − 1}]

, 

𝐵(𝛼)(𝑟𝑖) = −
(

 
 

(1+𝜆 𝑟𝑖)
𝛼log(1+𝜆 𝑠𝑖)exp[1−(1+𝜆𝑟𝑖)

𝛼]

[(1+𝑎)exp(𝑎{exp[(1+𝜆 𝑟𝑖)
𝛼−1]−1}−(1+𝜆𝑟𝑖)

𝛼+1)]
−1

+
(1+𝑎)exp(𝑎{exp[(1+𝜆𝑟𝑖)

𝛼−1]−1}−(1+𝜆𝑟𝑖)
𝛼+1)log(1+𝜆𝑟𝑖)

{𝑎+exp[1−(1+𝜆𝑟𝑖)
𝛼]}

−1
{𝑎exp[(1+𝜆𝑟𝑖)

𝛼−1]  −1}
−1
(1+𝜆𝑟𝑖)

−𝛼
)

 
 

[(1+𝑎)exp(𝑎{exp[(1+𝜆𝑟𝑖)
𝛼−1]−1}−(1+𝜆𝑟𝑖)

𝛼+1)]2
 , 

𝐶(𝜆)(𝑟𝑖) =
(

 

𝛼𝑟𝑖((1 + 𝑎){𝑎 + exp[1 − (1 + 𝜆𝑟𝑖)
𝛼]} − (1 + 𝑎)exp[1 − (1 + 𝜆𝑟𝑖)

𝛼])
{(1 + 𝑎)exp[1 − (1 + 𝜆𝑟𝑖)

𝛼]}2(1 + 𝜆𝑟𝑖)
1−𝛼exp[(1 + 𝜆𝑟𝑖)

𝛼 − 1]

−
𝑎𝛼𝑟𝑖(1 + 𝜆𝑟𝑖)

𝛼−1{𝑎 + exp[1 − (1 + 𝜆𝑟𝑖)
𝛼]}

(1 + 𝑎)exp[1 − (1 + 𝜆𝑟𝑖)
𝛼]{exp[(1 + 𝜆𝑟𝑖)

𝛼 − 1] − 1}−1 )

 

exp(−𝑎{exp[(1 + 𝜆𝑟𝑖)
𝛼 − 1] − 1})

 

and 

𝜃• = exp[1 − (1 + 𝜆 •)
𝛼], 

 


