
Available online at http://scik.org

J. Math. Comput. Sci. 7 (2017), No. 6, 1006-1021

https://doi.org/10.28919/jmcs/3483

ISSN: 1927-5307

A NEW RESULT ON REVERSE ORDER LAWS FOR {1,2,3}-INVERSE OF A
TWO-OPERATOR PRODUCT

HAIYAN ZHANG1,∗, YUEJUAN SUN1, WEIYAN YU2

1School of mathematics and statistics, Shangqiu Normal University, Shangqiu 476000, China

2School of mathematics and statistics, Hainan Normal University, Haikou 571158, China

Copyright c© 2017 Zhang, Sun and Yu. This is an open access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this note, reverse order laws for {1,2,3}-inverse of a two-operator product is mainly investigated by

making full use of block-operator matrix technique. First, an example is given, which demonstrates there is a gap

in the main result in [X. J. Liu, S. X. Wu, D. S. Cvetković-Ilić. New results on reverse order law for {1,2,3}- and

{1,2,4}-inverses of bounded operators. Mathematics of Computation, 2013, 82(283): 1597-1607]. Next, The new

necessary and sufficient conditions for B{1,2, i}A{1,2, i} ⊆ (AB){1,2, i}(i ∈ {3,4}) are presented respectively,

when all ranges R(A), R(B) and R(AB) are closed. Which will fill up the gap in the above paper.
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1. Introduction

Throughout this paper, let H , K and L be separable Hilbert spaces and B(K ,H ) be the set

of all bounded linear operators from K into H and abbreviate B(K ,H ) to B(H ) if K =
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H . If A ∈B(H ,K ), write N(A) and R(A) for the null space and the range of A, respectively.

For an operator A ∈ B(H ,K ), a generalized inverse of A is an operator G ∈ B(K ,H )

which satisfies some of the following four equations, which is said to be the Moore-Penrose

conditions:

(1)AGA = A, (2)GAG = G, (3)(AG)∗ = AG, (4) (GA)∗ = GA.

Let A{i, j, · · · , l} denote the set of operators G∈B(K ,H ) which satisfy equation (i),( j), · · · ,(l)

from among the above equations. An operator G∈ A{i, j, · · · , l} is called an {i, j, · · · , l}-inverse

of A, and also denoted by A(i j···l). The unique {1,2,3,4}-inverse of A is denoted by A+, which

is called the Moore-Penrose inverse of A. As is well known, A is Moore-Penrose invertible if

and only if R(A) is closed.

Since 1960s, considerable attention has been paid to the reverse order law for generalized

inverses of multiple-matrix and multiple-operator products. It is a classical result of Gre-

ville in [9] that (AB)+ = B+A+ if and only if R(A∗AB) ⊆ R(B) and R(BB∗A∗) ⊆ R(A∗) for

any complex matrices A and B. This result was extended to linear bounded operators on

Hilbert spaces by Bouldin [2] and Izumino [10]. In the next decades, reverse order laws

for other types generalized inverses are studied, for example, {1,3}-inverse in [8], {1,2,3}-

inverse in[13], [11] and [17], group inverse in [5]. And many interesting results have been

obtained, see[1-18]. In particular, reverse order laws for {1,2,3}- and {1,2,4}-inverses were

considered on matrix algebra by Xiong and Zheng [17] who obtained the equivalent condi-

tion for B{1,2, i}A{1,2, i} ⊆ (AB){1,2, i}(i ∈ {3,4}). 2011, Liu and Yang [11] shown that

B{1,2, i}A{1,2, i}⊆ (AB){1,2, i}(i∈ {3,4}) and B{1,2, i}A{1,2, i}= (AB){1,2, i}(i∈ {3,4})

were equivalent when A,B are matrices. Continuing to use the same space decomposition

method in [15], X. J. Liu, S. X. Wu and D. S. Cvetkovic-Ilic gave the following result in [12],

Theorem 1.1. ([12]) Let H ,K and L be Hilbert spaces and let A ∈ B(H ,K ), B ∈

B(L ,H ) be such that R(A),R(B),R(AB) are closed and AB 6= 0. Then the following state-

ments are equivalent:

(i)B{1,2,3}A{1,2,3} ⊆ (AB){1,2,3}.

(ii)R(B) = R(A∗AB)⊕ (R(B)∩N(A)),R(AB) = R(A).

But, it is regretful that there is a gap in the above result.
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Example 1.1. Let

A =


1 0 0

0 0 1

0 0 0

and B =


1 0

0 0

0 0

 .

By direct computation, we have

AB =


1 0

0 0

0 0

 6= 0,

(AB)(123) =

 1 0 0

x21 0 0

 , B(123)A(123) =

 1 0 0

y21 0 0

 ,

where x21,y21 are arbitrary. It is clearly that B{1,2,3}A{1,2,3} = (AB){1,2,3}, but R(A) 6=

R(AB).

The main result in [18] could fill up the gap in Theorem 1.1. In this paper, we shall give a new

result about the reverse order law for {1,2,3}- and {1,2,4}-reverses by the relationship of the

range conclusion. In section 2, we shall give some preliminaries. Some necessary and sufficient

conditions for an operator G ∈ B(K ,H ) to be in A{1,2,3} and A{1,2,4} are pointed. In

section 3, we will derive a new sufficient and necessary conditions for B{1,2, i}A{1,2, i} ⊆

(AB){1,2, i}(i ∈ {3,4}) respectively, when R(A), R(B), R(AB) are closed. And also our result

will fill up the gap in Theorem 1.1.

2. Preliminaries

In this section, we mainly introduce some notations and lemmas. Let A ∈ B(H ,K ) with

closed range. Then under the orthogonal decompositions H = R(A∗)⊕N(A) and K = R(A)⊕

N(A∗) respectively, A has the matrix form

A =

 A1 0

0 0

 :

 R(A∗)

N(A)

→
 R(A)

N(A∗)

 , (2.1)



REVERSE ORDER LAWS FOR {1,2,3}-INVERSE OF A TWO-OPERATOR PRODUCT 1009

where A1 ∈B(R(A∗),R(A)) is invertible. The Moore-Penrose inverse A+ of A has the matrix

form as follows

A+ =

 A−1
1 0

0 0

 :

 R(A)

N(A∗)

→
 R(A∗)

N(A)

 .

The {1,3}, {1,2,3}- inverses also have similarly matrix forms.

Lemma 2.1.([12]) Let A ∈B(H ,K ) with closed range and the matrix form (2.1). Then

A(13) and A(123) have the matrix form

A(13) =

 A−1
1 0

G3 G4

 :

 R(A)

N(A∗)

→
 R(A∗)

N(A)

 (2.2)

and

A(123) =

 A−1
1 0

G3 0

 :

 R(A)

N(A∗)

→
 R(A∗)

N(A)

 , (2.3)

with respect to the orthogonal decompositions K = R(A)⊕N(A∗) and H = R(A∗)⊕N(A)

respectively, for any G3 ∈B(R(A),N(A)) and G4 ∈B(N(A∗),N(A)).

Lemma 2.2.([18]) Let A ∈B(H ,K ) with closed range. If A has the matrix decomposition

A =

 A1 A2

0 0

 :

 H1

H2

→
 K1

K2

 (2.4)

under the orthogonal decompositions H = H1⊕H2 and K = K1⊕K2 respectively, then

there exist G1 ∈B(K1,H1) and G3 ∈B(K1,H2) such that the A(123) has the form

A(123) =

 G1 0

G3 0

 :

 K1

K2

→
 H1

H2

 . (2.5)

Lemma 2.3.([18] Let A ∈B(H ,K ) with closed range. If A has the matrix form

A =


A1 A2 0

0 A3 0

0 0 0

 :


H1

H2

H3

→


K1

K2

K3

 ,
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with respect to the orthogonal decompositions H = H1⊕H2⊕H3 and K = K1⊕K2⊕K3

respectively, such that A1 is invertible and A3 is surjective, then there are some operators G ji ∈

B(K i,H j), i, j = 1,2, satisfy 

R(G21)⊆ N(A3),

G22 ∈ A3{1},

G12 =−A−1
1 A2G22,

G11 = A−1
1 −A−1

1 A2G21,

(2.6)

such that A(123) has the matrix form

A(123) =


G11 G12 0

G21 G22 0

G31 G32 0

 :


K1

K2

K3

→


H1

H2

H3


for any G31 ∈B(K 1,H3) and G32 ∈B(K 2,H3).

In [10], the authors have given the necessary and sufficient conditions for G ∈ A{1,2,3} and

G ∈ A{1,2,4} for any matrix A. Now, we generalize these results to an operator on an infinite

dimensional Hilbert space.

Lemma 2.4. Let A ∈B(H ,K ) and G ∈B(K ,H ). If A has closed range, then

(1) G ∈ A{1,2,3} if and only if A∗AG = A∗ and R(G∗) = R(A).

(2) G ∈ A{1,2,4} if and only if GAA∗ = A∗ and R(G) = R(A∗).

Proof. Note that G ∈ A{1,2,4} if and only if G∗ ∈ A∗{1,2,3}. It is sufficient to show one of

the two statements holds. We next show the statement (1) holds for A with closed range. Since

R(A) is closed, A has the matrix form as the formula (2.1). So

A∗ =

 A∗1 0

0 0

 :

 R(A)

N(A∗)

→
 R(A∗)

N(A)

 .

For G ∈ B(K ,H ), if G ∈ A{1,2,3}, then G has the matrix form as the formula (2.3) by

Lemma 2.1. Thus

G∗ =

 (A−1
1 )∗ G∗3

0 0

 :

 R(A∗)

N(A)

→
 R(A)

N(A∗)

 .
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It follows that R(G∗) = (A−1
1 )∗R(A∗1)+G∗3N(A) = R(A) and

A∗AG =

 A∗1 0

0 0

 A1 0

0 0

 A−1
1 0

G3 0

=

 A∗1 0

0 0

= A∗.

Conversely, let G ∈B(K ,H ) satisfies A∗AG = A∗ and R(G∗) = R(A). We next show G ∈

A{1,2,3}.

Since A∗AG = A∗, we have G∗A∗AG = (AG)∗AG = (AG)∗. Hence (AG)∗ = (AG)∗∗ = AG and

AGA = G∗A∗A = A∗∗ = A. The Moore-Penrose conditions (3) and (1) hold. Thus, from Lemma

2.1, G has the matrix form as the formula (2.2):

G =

 A−1
1 0

G3 G4

 :

 R(A)

N(A∗)

→
 R(A∗)

N(A)

 .

and then

G∗ =

 (A−1
1 )∗ G∗3

0 G∗4

 :

 R(A∗)

N(A)

→
 R(A)

N(A∗)

 .

Because R(G∗) = R(A), by a simple calculation G4 = 0 and the Moore-Penrose condition (2)

holds. Therefore G ∈ A{1,2,3}. The proof is complete.

The proof of Theorem 2.4 implies the following result.

Corollary 2.5. Let A ∈B(H ,K ) and G ∈B(K ,H ). If A has closed range, then

(1) G ∈ A{1,3} if and only if A∗AG = A∗.

(2) G ∈ A{1,4} if and only if GAA∗ = A∗.

3. Reverse order law for {1,2,3}- and {1,2,4}-inverses

In this section, we shall give our main result. Reverse order laws for {1,2,3}-inverse and

{1,2,4}-inverse have been considered on matrix algebra in [11], [17] and on C∗-algebra in [4].

Xiong and Zheng [17] obtained the equivalent condition for B{1,2, i}A{1,2, i}⊆ (AB){1,2, i}(i∈

{3,4}). And another equivalent conditions of above inclusions were given under conditions of

operators A,B,AB and A−ABB+ are regular in [4], which equivalent to the rang of A,B,AB and
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A−ABB+ are closed since A is regular if and only if A+ exists. Here, the sufficient and neces-

sary conditions for B{1,2, i}A{1,2, i} ⊆ (AB){1,2, i}(i∈ {3,4}) will be presented respectively,

when R(A), R(B) and R(AB) are closed. And the range of A−ABB+ not necessarily closed.

Theorem 3.1. Let A ∈B(H ,K ) and B ∈B(L ,H ) such that all ranges R(A), R(B)

and R(AB) are closed. If B{1,2,3}A{1,2,3}⊆ (AB){1,2,3}, then R(A∗AB) =R(B) or R(A∗)⊆

R(B) holds.

Proof. Case 1, AB = 0. Next we prove A = 0 or B = 0.

Suppose that A 6= 0 and B 6= 0, then A and B have the matrix forms as follows,

A =

 A11 0 0

0 0 0

 :


R(A∗)

R(B)

N(A)	R(B)

→
 R(A)

N(A∗)

 , (3.1)

B =


0 0

B21 0

0 0

 :

 R(B∗)

N(B)

→


R(A∗)

R(B)

N(A)	R(B)

 . (3.2)

By Lemma2.1, we have the {1,2,3}-inverses of A and B have the matrix forms,

A(123) =


A−1

11 0

G21 0

G31 0

 :

 R(A)

N(A∗)

→


R(A∗)

R(B)

N(A)	R(B)

 ,

B(123) =

 0 F12 0

0 B−1
21 0

 :


R(A∗)

R(B)

N(A)	R(B)

→
 R(B∗)

N(B)

 ,

where G21 ∈B(R(A),R(B)),G31 ∈B(R(A),N(A)	R(B)),F21 ∈B(R(B),R(B∗)) are arbitrary.

Hence

B(123)A(123) =

 F12G21 0

B−1
21 G21 0

 :

 R(A)

N(A∗)

→
 R(B∗)

N(B)

 .
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From B{1,2,3}A{1,2,3} ⊆ (AB){1,2,3}, it is easy to get B−1
21 G21 = 0, so G21 = 0 since B 6= 0.

But G21 is arbitrary by Lemma2.1, then A = 0. It is a contradiction with the assumption. Hence

A = 0 or B = 0 in this case. It is natural to get that the result holds.

Case 2, AB 6= 0.

Let H = R(B)⊕N(B∗) and K = R(B∗)⊕N(B) respectively, and take any G ∈ A{1,2,3}

and F ∈ B{1,2,3}. Then B and F as well as A and G are of the matrix forms as follows from

Lemma 2.1, 2.2 and formulae (2.3) and (2.5).

B =

 B1 0

0 0

 :

 R(B∗)

N(B)

→
 R(B)

N(B∗)


and

F =

 B−1
1 0

F3 0

 :

 R(B)

N(B∗)

→
 R(B∗)

N(B)

 , (3.1)

A =

 A1 A2

0 0

 :

 R(B)

N(B∗)

→
 R(A)

N(A∗)


and

G =

 G1 0

G3 0

 :

 R(A)

N(A∗)

→
 R(B)

N(B∗)

 . (3.2)

We firstly claim that FG ∈ (AB){1,2,3} if and only if G1 ∈ A1{1,3} and G∗1R(B) = R(AB).

In fact,

AB =

 A1B1 0

0 0

 :

 R(B∗)

N(B)

→
 R(A)

N(A∗)

 ,

B∗A∗ =

 B∗1A∗1 0

0 0

 :

 R(A)

N(A∗)

→
 R(B∗)

N(B)


and

FG =

 B−1
1 G1 0

F3G1 0

 :

 R(A)

N(A∗)

→
 R(B∗)

N(B)

 .



1014 HAIYAN ZHANG, YUEJUAN SUN, WEIYAN YU

Therefore,

B∗A∗ABFG =

 B∗1A∗1 0

0 0

 A1B1 0

0 0

 B−1
1 G1 0

F3G1 0

=

 B∗1A∗1A1G1 0

0 0

 .

This means that

B∗A∗ABFG = B∗A∗ if and only if A∗1A1G1 = A∗1.

It follows that

B∗A∗ABFG = B∗A∗ if and only if G1 ∈ A1{1,3} (3.3)

from Corollary 2.5. On the other hand,

(FG)∗ =

 G∗1(B
−1
1 )∗ G∗1F∗3

0 0

 :

 R(B∗)

N(B)

→
 R(A)

N(A∗)

 .

Then

R((FG)∗) = G∗1(B
−1
1 )∗R(B)+G∗1F∗3 N(B) = G∗1R(B).

Thus,

R((FG)∗) = R(AB) if and only if G∗1R(B) = R(AB). (3.4)

It follows that FG ∈ AB{1,2,3} if and only if

G1 ∈ A1{1,3} and G∗1R(B) = R(AB)

from Lemma 2.4 and formulae (3.3) and (3.4).

Moreover, if we set



H1 = R(B)	 (R(B)∩N(A))

H2 = N(B∗)	 (N(B∗)∩N(A))

H3 = R(B)∩N(A)

H4 = N(B∗)∩N(A)

and


K1 = R(AB)

K2 = R(A)	R(AB)

K3 = N(A∗)

(3.5)



REVERSE ORDER LAWS FOR {1,2,3}-INVERSE OF A TWO-OPERATOR PRODUCT 1015

respectively, then it is known that H = H1⊕H2⊕H3⊕H4 and K = K1⊕K2⊕K3. In

particular, it is elementary that A is of the matrix form

A =


A11 A12 0 0

0 A22 0 0

0 0 0 0

 :


H1

H2

H3

H4

→


K1

K2

K3

 , (3.6)

such that A11 is invertible and A22 is surjective. Then there are some operators G ji ∈B(K i,H j)(i=

1,2,3, j = 1,2,3,4) satisfying 

R(G21)⊆ N(A22)

G22 ∈ A22{1},

G12 =−A−1
11 A12G22

G11 = A−1
11 −A−1

11 A12G21

(3.7)

such that G has the matrix form

G =


G11 G12 0

G21 G22 0

G31 G32 0

G41 G42 0

 :


K1

K2

K3

→


H1

H2

H3

H4

 (3.8)

from Lemma 2.3. We note that all of G31,G32,G41 and G42 are arbitrary. From the matrix forms

(3.6) and (3.8), we have

A1 =

 A11 0

0 0

 :

 H1

H3

→
 K1

K2

 (3.9)

and

G1 =

 G11 G12

G31 G32

 :

 K1

K2

→
 H1

H3

 . (3.10)

If K2 = {0}, then R(A) = R(AB) and A22 = 0. In this case, it is immediate that

A1 =
(

A11 0
)

:

 H1

H3

→K1
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and

G1 =

 G11

G31

 :
(

K1

)
→

 H1

H3


from the formulae (3.9) and (3.10). Since B{1,2,3}A{1,2,3}⊆AB{1,2,3}, FG∈ (AB){1,2,3}.

So G1 ∈ A1{1,3} and G∗1R(B) = R(AB) from the claim above. Thus G11 = A−1
11 and A12G21 = 0

by the formula (3.7). Because of the arbitrary of G in A{1,2,3}, A12 = 0 and hence A∗12 = 0. Ob-

serving the matrix form (3.6) of A, we deduce that R(A∗AB) = R(B)	(R(B)∩N(A)). Therefore

R(A∗) = R(A∗AB)⊆ R(B) since R(A) = R(AB).

If K2 6= {0}, then A22 is invertible. In fact, it is known that A22 is surjective from (3.6).

If N(A22) 6= {0}, then A12 6= 0. Otherwise, N(A22)⊆ N(A)∩H2. This is a contradiction since

N(A) orthogonal to H2. It is also known that N(A12)∩N(A22)= {0} by the definition of H2. On

the other hand, there exists nonzero G21 ∈B(K1,H2) such that A22G21 = 0 by the assumption

that N(A22) 6= {0}. Therefore A12G21 6= 0. Combining above G21 with (3.7), an operator G ∈

A{1,2,3} can be defined with the property A12G21 6= 0. However if B{1,2,3}A{1,2,3} ⊆

AB{1,2,3}, then for any F ∈ B{1,2,3} and G ∈ A{1,2,3} with the matrix forms (3.1) and

(3.2), we have that G1 ∈ A1{1,3} according to the claim above. This implies G11 = A−1
11 and

G12 = 0 in (3.9) and (3.10). It follows from (3.7) that both A12G22 = 0 and A12G21 = 0, a

contradiction. Therefore, A22 is invertible and A12 = 0. Moreover,

A∗ =


A∗11 0 0

0 A∗22 0

0 0 0

0 0 0

 :


K1

K2

K3

→


H1

H2

H3

H4

 .

Therefore R(A∗AB) = R(B)	 (R(B)∩N(A)). Meanwhile,

G∗1 =

 (A−1
11 )
∗ G∗31

0 G∗32

 :

 H1

H3

→
 K1

K2

 .

Hence H3 = 0, that is, R(B)∩N(A) = {0} since G∗1R(B) = R(AB) for any G32 ∈B(K2,H3).

Hence R(A∗AB) = R(B). The proof is complete.
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Theorem 3.2. Let A∈B(H ,K ) and B∈B(K ,H ) such that all ranges R(A), R(B) and

R(AB) are closed. If R(A∗AB)=R(B) or R(A∗)⊆R(B), then (AB){1,2,3}⊆B{1,2,3}A{1,2,3}.

Proof if AB = 0, by the discussion for AB = 0 in the proof of Theorem 3.1, we can get

the result holds. So assume that AB 6= 0 and denote Hi(i = 1,2,3,4),K j( j = 1,2,3) as in

(3.5). If R(A∗) ⊆ R(B), then R(A) = R(AA∗) = R(AB) and R(A∗AB) = R(A∗A) = R(A∗) =

R(B)	 (R(B)∩N(A)). So H2 = {0}, K2 = {0}, A12 = 0 and A22 = 0. Then A has the matrix

form as follows,

A =

 A11 0 0

0 0 0

 :


H1

H3

H4

→
 K1

K3

 , (3.11)

Let J2 = B+H3 and J1 = R(B∗)	J2. B has the following matrix form,

B =


B11 0 0

B21 B22 0

0 0 0

 :


J1

J2

N(B)

→


H1

H3

H4

 , (3.12)

which B11 and B22 invertible. According to Lemma 2.1, {1,2,3}-inverse A(123) and B(123) of A

and B has the matrix forms,

A(123) =


A−1

11 0

G31 0

G41 0

 :

 K1

K3

→


H1

H3

H4

 ,

B(123) =


B−1

11 0 0

−B−1
22 B21B−1

11 B−1
22 0

F31 F32 0

 :


H1

H3

H4

→


J1

J2

N(B)

 ,

which G31,G41,F31,F32 are arbitrary. This follows that

B(123)A(123) =


B−1

11 A−1
11 0

−B−1
22 B21B−1

11 A−1
11 +B−1

22 G31 0

F31A−1
11 +F32G31 0

 :


J1

J2

N(B)

→


H1

H3

H4

 , (3.13)
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Combining formulae (3.11) and (3.12), we have

AB =

 A11B11 0 0

0 0 0

 :

 K1

K3

→


H1

H3

H4

 ,

Using Lemma 2.1 again, we get that

(AB)(123) =


B−1

11 A−1
11 0

M21 0

M31 0

 :


J1

J2

N(B)

→


H1

H3

H4

 , (3.14)

where M21,M31 are arbitrary. It follows from formulae (3.13) and (3.14) that B{1,2,3}A{1,2,3}⊆

(AB){1,2,3}.

If R(A∗AB) = R(B), R(B) ⊆ R(A∗) and N(A) ⊆ N(B∗) hold. So H1 = R(B) and H3 = {0}.

Hence A has the matrix form

A =


A11 A12 0

0 A22 0

0 0 0

 :


H1

H2

H4

→


K1

K2

K3

 , (3.15)

with respect to the orthogonal decompositions H = H1⊕H2⊕H4 and K = K1⊕K2, re-

spectively, such that A11 and A22 are invertible. B has the matrix form

B =


B11 0

0 0

0 0

 :

 R(B∗)

N(B)

→


H1

H3

H4

 , (3.16)

with respect to the orthogonal decompositions K = R(B∗)⊕N(B) and H = H1⊕H2⊕H4,

respectively, such that B11 is invertible. By formulae (3.15) and (3.16), it is easy to get that

AB =


A11B1 0

0 0

0 0

 :

 R(B∗)

N(B)

→


K1

K2

K3

 ,
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Thus

A∗AB =


A∗11A11B11 0

A∗12A11B11 0

0 0

 :

 R(B∗)

N(B)

→


H1

H2

H4

 ,

We obtain A∗12A11B11 = 0 since R(A∗AB) = R(B), and so A12 = 0. Using Lemma 2.1, {1,2,3}-

inverses A(123) and B(123) of A and B have matrix forms

A(123) =


A−1

11 0 0

0 A−1
22 0

G41 G42 0

 :


K1

K2

K3

→


H1

H2

H4

 ,

B(123) =

 B−1
11 0 0

F21 0 0

 :


H1

H2

H4

→
 R(B∗)

N(B)

 ,

(AB)(123) =

 B−1
11 A−1

11 0 0

M21 0 0

 :


K1

K2

K3

→
 R(B∗)

N(B)

 , (3.17)

respectively, which G41,G42,F21,M21 are arbitrary. So

B(123)A(123) =

 B−1
11 A−1

11 0 0

F21A−1
11 0 0

 :


K1

K2

K3

→
 R(B∗)

N(B)

 . (3.18)

Comparing the formula (3.17) with the formula (3.18), B{1,2,3}A{1,2,3} ⊆ (AB){1,2,3}

holds since the arbitrariness of F21,M21. The proof is completed.

Combining Theorem 3.1 with Theorem 3.2, we give our main results,

Corollary 3.3. Let A ∈B(H ,K ) and B ∈B(K ,H ) such that all ranges R(A), R(B) and

R(AB) are closed. Then the following statements are equivalent,

(1) B{1,2,3}A{1,2,3} ⊆ (AB){1,2,3};

(2) R(A∗AB) = R(B) or R(A∗)⊆ R(B).
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From the relationship of {1,2,3}-inverse and {1,2,4}-inverse, we can obtain the following

result without proof.

Corollary 3.4. Let A ∈B(H ,K ) and B ∈B(K ,H ). If R(A), R(B), R(AB) are closed,

then the following statements are equivalent,

(1) B{1,2,4}A{1,2,4} ⊆ (AB){1,2,4};

(2) R(B)⊆ R(A∗) or R(BB∗A∗) = R(A∗).
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[4] D.S. Cvetković-Ilić, R. Harte, Reverse oerder law in C∗-algebras, Linear Algebra Appl. 434(5)(2011), 1388-

1394.

[5] C. Y. Deng, Reverse order law for the group inverses, J.Math.Anal.Appl. 382(2011)663-671.
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[8] D.S. Djordjević. New conditions for the reverse order laws for {1,3} and {1,4}-generalized inverses. Electron

J. Linear Al., 23(2012), 231-241.

[9] T.N.E. Greville, Note on the generalized inverse of a matrix product, SIAM Rev. 8(1966), 518-521.

[10] S. Izumino, The product of operators with closed range and an extension of the reverse order law, Tohoku

Math. J. 34(1982), 43-52.



REVERSE ORDER LAWS FOR {1,2,3}-INVERSE OF A TWO-OPERATOR PRODUCT 1021

[11] X. F. Liu, H. Yang, A note on the reverse order laws for {1,2,3}- and {1,2,4}-inverses of multiple matrix

products, Electron. J. Linear Algebra, 22(2011), 620-629.

[12] X. J. Liu, S. X. Wu, D. S. Cvetkovic-Ilic. New results on reverse order law for {1,2,3}- and {1,2,4}-inverses

of bounded operators. Math. Comput., 82(283)(2013) 1597-1607.
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