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1. Introduction

Conjuctive grammar (CG), intoduced by Alexander Okhotin in [7]. Conjuctive grammar

is a context-free grammar augmented with an explicit set-theoretic intersection operation. In

particular, in [7] Okhotin defined a sub-family of conjunctive grammar called linear conjunc-

tive grammar (LCG). LCG is an interesting sub-family of CG as they have especially efficient

parsing algorithem, see[11], making them very appealing from a computational standpoint. In

addition, many of the interesting language generated by conjunctive grammar can in fact be
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generated by linear conjunctive grammar.

The theory of fuzzy set was introduced by L.A.Zadeh in 1965 [9]. The notion of a different

type of fuzzy grammars (Type 0, Type 1, Type 2, Type 3) defined by E.T.Lee and L.A.Zadeh

in 1969 [2] is a natural generalization of the definition of formal grammars [8]. Fuzzy gram-

mars on Boolean lattices (B-fuzzy grammar), N-fold fuzzy gramma and L-fuzzy grammar are

newly defined by M.Mizumoto, J.Toyoda and K.Tanaka in 1975, 1973 and 1975 [4,5,3]. The

mathematical formulation of a fuzzy automata was first proposed by W.G.Wee in 1967 [10].

J.N.Mordension and D.S.Malik gave a detailed account of fuzzy automata and languages in

their book 2002 [6]. Recently, R.Pathrakumar and M.Rajasekar said fuzzy conjunctive gram-

mar in 2017 [1].

This paper is organized as follows. In section 2 we introduced some notations and definition

about FCG and FLCG. It also presents some example for the explaining the concepts. In section

3 we established the main result of this paper, the family of fuzzy linear conjunctive grammar

closure under complement. Also, we study the family of FLCL closure under union, intersec-

tion and quotient.

2. Preliminaries

We first recall the different notions and introduced some definitions used in this article.

An alphabet Σ is a finite set of symbols. A word or string over Σ is a finite sequence of

symbols from Σ. The empty word is denoted by ε . Let |w| denote the length of the word w; so

|ε|= 0, and for all w ∈ Σ+: if w = ax with a ∈ Σ and x ∈ Σ∗, then |w|= 1+ |x|.

In formally, a fuzzy grammar may be viewed as a set of rules for generating the elements

of a fuzzy set. More concretely, a fuzzy grammar, or simply a grammar, is a quadruple G =

(V,Σ,P,S) in which V is a finite set of non-terminal symbol, Σ is a finite set of terminal symbols

disjoint from V , S ∈ V is the designated start symbols, P is a set of fuzzy productions. More

specifically, the elements of P are expressions of the form α
r→ β , where α,β ∈ (V ∪Σ)∗ and

r ∈ (0,1].

Definition 2.1. A Grammar G is defined as the quadruple G = (V,Σ,P,S),where

• V = {A,B, . . . ,Z} is a finite set of non-terminal symbol (Variables)
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• Σ = {a,b, . . . ,z} is a finite set of terminal symbols disjoint from V

• S ∈V is the designated start symbols

• P is a set of productions.

Definition 2.2. A fuzzy language, µ(L), is a fuzzy set in Σ∗. Thus, µ(L) is a set of ordered

pairs µ(L) = {(w,r)}, where, w ∈ Σ∗, r ∈ [0,1].

Definition 2.3. Let µ(L1) and µ(L2) be two fuzzy languages in Σ∗. The union , intersection

and concatenation of µ(L1) and µ(L2) is defined as follows

• µ(L1)∪µ(L2) = max{µ(L1),µ(L2)} or simply defined by µ(L1)∪µ(L2) = µ(L1)∨µ(L2)

• µ(L1)∩µ(L2) = min{µ(L1),µ(L2)} or simply defined by µ(L1)∩µ(L2) = µ(L1)∧µ(L2)

• µ(L1.L2) = min{µ(L1),µ(L2)} or simply defined by µ(L1.L2) = µ(L1)∧µ(L2).

Note 2.4. Let G = (V,Σ,P,S) be a fuzzy grammar,then

• A fuzzy language µ(L) is generated by the fuzzy grammar µ(L,G)

• If α1, . . . ,α1 are string in (V ∪Σ)∗ and

α1
r1=⇒ α2

r2=⇒, . . . ,αm−1
rm=⇒ αm

where, r1, . . . ,rm ∈ [0,1], then α1 is said to derive αm in grammar G, or ,equivalentelly, αm is

derivable from α1 in grammar G. This is expressed by α1
rm=⇒G. The expression

α1
r2=⇒ α2

r2=⇒, . . . ,αm−1
rm=⇒ αm

will be referred to as a derivation chain from α1 to αm.

Definition 2.5. A fuzzy context-free grammar (FCFG) is a quadruple G = (V,Σ,P,S), where

• V is a finite set of non-terminal symbol (Variables)

• Σ is a finite set of terminal symbols disjoint from V

• S ∈V is the designated start symbols

• P is a set of fuzzy production of the form A r→ α , where A ∈V , α ∈ (V ∪Σ)∗ and r ∈ (0,1].

Definition 2.6. A fuzzy conjunctive grammar (FCG) is a quadruple G = (V,Σ,P,S), where

• V is a finite set of non-terminal symbol (Variables)

• Σ is a finite set of terminal symbols disjoint from V

• S ∈V is the designated start symbols

• P is a finite set of fuzzy rules of the form
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A r→G (α1/r1& . . .&αn/rn), where A∈V , αi ∈ (V ∪Σ)∗ and r =min{r1, . . . ,rn} for i= 1,2, . . . ,n.

If n = 1 we write it as A r→ α1 and call it an ordinary fuzzy rule. Otherwise, the rule is called

proper fuzzy conjunctive.

Definition 2.7. Any element B,C ,D ,ε is a conjunctive formulas over V ∪Σ∪{(,),&} are

defined by the following recursion.

• The empty string ε is a conjunctive formula.

• Every symbol in V ∪Σ is a conjunctive formula.

• If B and C are conjunctive formulas, then BC is a conjunctive formula.

• If B1, . . . ,Bn are conjunctive formulas, then (B1& . . .&Bn) is a conjunctive formula.

Definition 2.8. Let G = (V,Σ,P,S) be a fuzzy grammar, B be a formula. The fuzzy language

generated by B is a set of all string over Σ derivable from B:

µ(L,B) = max min{(w,r)/w ∈ Σ
∗,B

r
=⇒

∗
G w}.

The fuzzy language gerated by the fuzzy grammar is a set of all string over Σ derivable from its

start symbol: µ(L,G) = µ(LG,S). The maximum is taken over all derivation chains from S to

w.

A fuzzy language µ(L) is called fuzzy conjunctive, if it is generated by some fuzzy conjunctive

grammar.

Definition 2.9. A fuzzy conjunctive grammar G = (V,Σ,P,S) is said to be fuzzy linear, if each

rule in P is of the form

A
rl→ u1B1v1/rl1& . . .&umBmvm/rlm , (ui,vi ∈ Σ∗,Bi ∈V ),rl = min{rl1, . . . ,rlm}

A
rw→ w, (w ∈ Σ∗).

Definition 2.10. A fuzzy conjunctive grammar G = (V,Σ,P,S) is said to be fuzzy linear normal,

if each rule in P is of the form

A
rBC→ bB1/rbB1& . . .&bBm/rbBm&C1c/rC1c& . . .&Cnc/rCnc, (m+n≥ 1 : Bi,C j ∈V ;b,c ∈ Σ),

rBC = min{rbB1, . . . ,rbBm,rC1c, . . . ,rCnc}

A ra→ a, (a ∈ Σ)

A
rε→ ε .
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Examples 1.11. A fuzzy linear conjunctive grammar G = (V,Σ,P,S) for the languiage µ(L) =

{(wcw,r) : w ∈ {a,b}∗}, where

V = {S,A,B,C,D,E,F, I,J,K,M,N,R}

Σ = {a,b,c} and

P consists of the following derivation rules;

S 0.001−→ Da/0.001&aA/0.03&aK/0.4

S 0.002−→ Db/0.002&aA/0.003&aK/0.4

S 0.003−→ Ea/0.003&bB/0.04&bK/0.7

S 0.01−→ Eb/0.01&bB/0.04&bK/0.7

S 0.02−→ c

C 0.001−→ Da

C 0.002−→ Db

C 0.003−→ Ea

C 0.01−→ Eb

C 0.02−→ c

D 1−→ aC

E 1−→ bC

K 0.03−→ aA/0.03&aK/0.4

K 0.04−→ bB/0.04&bK/0.7

K 0.05−→ cR

K 0.05−→ c
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A 0.06−→ aI

A 0.007−→ aJ

A 0.008−→ bI

A 0.009−→ bJ

A 0.1−→ Fa

I 1−→ Aa

J 1−→ Ab

B 0.2−→ aM

B 0.3−→ aN

B 0.4−→ bM

B 0.5−→ bN

B 0.6−→ Fb

M 1−→ Ba

N 1−→ Bb

R 0.7−→ aR

R 0.8−→ bR

R 0.7−→ a

R 0.8−→ b

F 1−→ cR

F 0.9−→ c
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For example, the word abcab can be derived as follows

S
0.002
=⇒∗ Db/0.002&aA/0.003&aK/0.4
0.04
=⇒∗ aCb/1&abJ/0.009&a(bB/0.04&bK/0.7)
0.04
=⇒∗ aCb/1&abJ/0.009&abB/0.04&abK/0.7
0.003
=⇒∗ aEab/0.003&abAb/1&abFb/0.6&abcR/0.05

0.1
=⇒∗ abCab/1&abFab/0.1&abcRb/1&abcaR/0.7
0.02
=⇒∗ abcab/0.02&abcab/0.9&abcab/0.7&abcab/0.8

S
r=0.002
=⇒∗ abcab&abcab&abcab&abcab

where, r = min{0.002,0.04,0.04,0.003,0.1,0.02}= 0.002.

Therefore, (abcab,0.002) ∈ µ(L,G).

3. Some Closure Properties of Fuzzy Linear Conjunctive Grammar

In this section we give constructive proofs that the family of fuzzy linear conjunctive language

is closed under union, intersection, complement, and quotient.

Theorem 3.1. The family of fuzzy linear conjunctive languages is closed under union.

Proof. Let µ(L1,G1) and µ(L2,G2) be two fuzzy linear conjunctive languages generated by the

fuzzy linear conjunctive grammmars G1 = (V1,Σ1,P1,S1) and G1 = (V1,Σ1,P1,S1) respectively.

We can assume that V1 and V2 as well as P1 and P2 are disjoint. The language µ(L,G) generated

by the fuzzy linear conjunctive grammar G = (V1 ∪V2 ∪{S},Σ1 ∪Σ2,P,S), where S /∈ V1 ∪V2

and P = P1 ∪P2 ∪{S
1→ S1,S

1→ S2}. Now, we prove µ(L,G) = µ(L1,G1)∨ µ(L2,G2). Let

(w,r) ∈ µ(L,G), then it is either,S 1
=⇒

∗
S1

r
=⇒

∗
w, S 1

=⇒
∗

S2
r1=⇒
∗

w or S 1
=⇒

∗
S2

r
=⇒

∗
w,

S 1
=⇒

∗
S1

r2=⇒
∗

w. Both the case (w,r) ∈ µ(L,G1)∨µ(L,G2). Hence

µ(L,G)≤ µ(L1,G1)∨µ(L2,G2) (1)

Conversely, let (w,r) ∈ µ(L1,G1)∨ µ(L2,G2), then (w,r) is in either µ(L1,G1) or µ(L1,G1).

Suppose (w,r) ∈ µ(L1,G1), then S1
r

=⇒
∗

w is the derivation, if (w,r) ∈ µ(L2,G2), then S2
r

=⇒
∗
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w is the derivation.

By construction of G, S 1
=⇒

∗
S1

r
=⇒

∗
w or S 1

=⇒
∗

S2
r

=⇒
∗

w, then (w,r) ∈ µ(L,G). Hence

µ(L1,G1)∨µ(L2,G2)≤ µ(L,G) (2)

From (1) and (2) we get

µ(L,G) = µ(L1,G1)∨µ(L2,G2)

This completes the proof.

Theorem 3.2. The family of fuzzy linear conjunctive languages is closed under intersection.

Proof. Let µ(L1,G1) and µ(L2,G2) be two fuzzy linear conjunctive languages generated by the

fuzzy linear conjunctive grammmars G1 = (V1,Σ1,P1,S1) and G1 = (V1,Σ1,P1,S1) respectively.

We can assume that V1 and V2 as well as P1 and P2 are disjoint. The languages µ(L,G) generated

by the fuzzy linear conjunctive grammar G = (V1∪V2∪{S},Σ1∪Σ2,P,S),

where S /∈ V1∪V2 and P = P1∪P2∪{S
rS→ S1/rS1&S/rS2}, rS = min{rS1,rS2}. Now, we prove

µ(L,G)= µ(L1,G1)∧µ(L2,G2). Let (w,r)∈ µ(L,G), then S
rS=⇒
∗

S1&S2
r

=⇒
∗

w/r1&w/r2
r

=⇒
∗

w is the derivation, where r = min{r1,r2}. Since (w,r1) ∈ µ(L1,G1) and (w,r2) ∈ µ(L2,G2),

then (w,r) ∈ µ(L1,G1)∧µ(L2,G2). Hance

µ(L,G)≤ µ(L1,G1)∧µ(L2,G2) (3)

Conversely, let (w,r1) ∈ µ(L1,G1), then S1
r1=⇒ w is the derivation and let (w,r2) ∈ µ(L2,G2),

then S2
rS2=⇒ w is the derivation. By construction of G, S

rS=⇒
∗

S1&S2
r

=⇒
∗

w/r1&w/r2
r

=⇒
∗

w,

then (w,r) ∈ µ(L,G), where r = min{r1,r2}. Hance

µ(L1,G1)∧µ(L2,G2)≤ µ(L,G) (4)

From (3) and (4) we get

µ(L,G) = µ(L1,G1)∧µ(L2,G2).

This completes the proof.

Theorem 3.3. The family of fuzzy linear conjunctive languages is closed under the comple-

ment.
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Proof. Let grammar G = (V,Σ,P,S) be the fuzzy linear conjunctive normal form. We construct

the following fuzzy linear conjunctive grammar G′.

Let G′ = (VX ∪VY ∪VZ ∪VM ∪VN ∪VW ,Σ,P′,S′), where

VX = {X¬A/A ∈V}

VY = {Y¬A r→α1&...&αm
/A r→ α1& . . .&αm}

VZ = {Z¬a/a ∈ Σ}∪{Z¬ε}

VM = {M¬aΣ+/a ∈ Σ}

VN = {N¬Σ+a/a ∈ Σ}

VW = {W}

S′ = X¬S

For each rule A r→ α1& . . .&αm ∈ P, the non terminal Y¬A r→α1&...&αm
generate those and only

those string that are not generated by this rule in the original grammar with membership values

1. For each terminal symbol a ∈ Σ, the nonterminal Z¬a generate all string but the string a with

membership 1, while Z¬ε generate Σ+ with membership 1, the non terminal M¬aΣ+ generate all

strings except those in a.Σ+ with membership 1. Similarly, N¬Σ+a generate all strings except

those that at the same time end with a and are atleast two symbols long with membership 1.

Finally, the non terminal W generates Σ∗ with membership 1.

Let us construct rules for P′

(i). For each production

A
rBC→ bB1/rB1& . . .&bBm/rBm&C1c/rC1& . . .&Cnc/rCn in P (m+n≥ 1),

where, rBC = min{rB1, . . . ,rBn,rC1, . . . ,rCn}, there is a rules

X¬A
1−rBC→ bX¬B1/1− rB1& . . .&bX¬Bm/1− rBm&X¬C1c/1− rC1& . . .&X¬Cnc/1− rCn in P′

where, 1− rBC = max{1− rB1, . . . ,1− rBm ,1− rC1, . . . ,1− rCn} and

Y
¬A

rBC→ bB1&...&bBm&C1c&...&Cnc
1→M¬b∑

+ in P′ (i f m > 0) (5)

Y
¬A

rBC→ bB1&...&bBm&C1c&...&Cnc
1→ N¬∑

+ c in P′ (i f n > 0) (6)

Y
¬A

rBC→ bB1&...&bBm&C1c&...&Cnc
1→ bX¬Bi in P′ (∀ i ∈ 1, . . . ,m) (7)
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Y
¬A

rBC→ bB1&...&bBm&C1c&...&Cnc
1→ X¬C jc in P′ (∀ j ∈ 1, . . . ,m) (8)

(ii). For each production A
rα1→ α1, . . . ,A

rαm→ αm in P

there is a rule X¬A
1−rα→ X¬α1/1− rα1& . . .&X¬αm/1− rαm in P′

where, 1− rα = max{1− rα1, . . . ,1− rαm} and

X¬A
1→ Y
¬A

rα1→α1
& . . .&Y

¬A
rαm→ αm

in P′ (9)

(iii). For each production A ra→ a in P

there is a rules X¬A
1−ra→ a and

Y¬A
ra→a

1→ Z¬a in P′ (10)

(iv). For each production S
rε→ ε in P

there is a rules X¬S
1−rε→ X¬ε and

Y¬S
rε→ε

1→ Z¬ε in P′ (11)

(v). For each non terminal A ∈V of the grammar G, if there are no rules for A in P, then P′

contains the following single rule for X¬A;

X¬A
1→W (12)

Now, we will show that for every non terminal A ∈V , then µ(LG′ ,X¬A) = 1−µ(LG,A).

We prove the above result in two cases. First we consider the case µ(LG,A) contains element

which has non-zero membership and second the case having elements which has zero member-

ship.

Case 1 [Non-zero membership]: Since grammar G= (V,Σ,P,S) is the fuzzy linear conjunctive

normal form. Then the derivation rule as
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A
rBC=⇒
∗

bB1/rB1& . . .&bBm/rBm&C1c/rC1& . . .&Cnc/rCn

rβγ

=⇒
∗

bβ1/rβ1& . . .&bβm/rβm&γ1c/rγ1& . . .&γnc/rγn

.

.

.

rw=⇒
∗

w/rw1& . . .&w/rwn

A r
=⇒

∗
w

Where, r =min{rBC,rβγ , . . . ,rw}, b,c∈Σ∗, B1, . . . ,Bm,C1, . . . ,Cn ∈V and β1, . . . ,βm,γ1, . . . ,γn ∈

(V ∪Σ)∗. Hence, (w,r) ∈ µ(LG,A).

By the construction of (i)

X¬A
1−rBC=⇒

∗
bX¬B1/1− rB1& . . .&bX¬Bm/1− rBm&X¬C1c/1− rC1& . . .&X¬Cnc/1− rCn

1−rβγ

=⇒
∗

bX¬β1/1− rβ1& . . .&bX¬βm/1− rβm&X¬γ1c/1− rγ1& . . .&X¬γnc/1− rγn

.

.

.

1−rw=⇒
∗

w/1− rw1& . . .&w/1− rwn

X¬A
1−r
=⇒

∗
w

Where, 1−r = max{1−rBC,1−rβγ , . . . ,1−rw}, b,c∈ Σ∗, X¬B1 , . . . ,X¬Bm,X¬C1 , . . . ,X¬Cn ∈VX

and X¬β1, . . . ,X¬βm,X¬γ1, . . . ,X¬γn ∈ (VX ∪Σ)∗. Hence, (w,1− r) ∈ µ(LG′,A).

Case 2 [For zero membership]: In this case our aim is to prove that, if (w,0) ∈ µ(LG,A), then

(w,1)∈ µ(LG′,X¬A) by using induction hypothesis on length n of string w; ie.(w,0)∈ µ(LG,A),

it implies that (w,0) /∈ µ(LG′,A), which means that (w,1) ∈ µ(LG′,A).

Basis n = 1: Let w = a (or) w = ε and let (w,0) ∈ µ(LG,A), then it’s corresponding production

is
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A 0→ w /∈ P. This means that all rules for A are either of the form

A 0→ bB1& . . .&bBm&C1c& . . .&Cnc ∈ P (13)

(or)

A 0→ u(u ∈ {ε}∪Σ) (14)

For each rule of the form (13) the corresponding nonterminal Y
¬A 0→bB1&...&bBm&C1c&...&Cnc

has

atleast one rules (5) and (6) and consequently generates (w,1). The same holds in respect to

each rule of the form (14), if u = a ∈ Σ, then the nonterminal Y¬A
ra→a has rule (10), which can

generate any string except a, and consequently the string (w,1). Similarly,if u = ε and A = S,

then the nonterminal Y¬S
rε→ε

has rule (11) that generate anything except ε and thus (w,1).

As we have shown, for any rule A 0→ w /∈ P for A ∈ V , the corresponding nonterminal Y
¬A 0→α

generate (w,1). Now, if there is atleast one rule for A in P, then every conjunct of rule (9) for

the nonterminal X¬A generate (w,1) and thus (w,1) ∈ µ(LG′,X¬A); if there are no rules for A in

P,then (w,1) can be derived from X¬A using rule (12).

Induction step n≥ 2: Let n≥ 2 and A
0(n)
=⇒ w. Then

A
0(n−2)
=⇒ bxc

0(2)
=⇒ w, where b,c ∈ ∑ and x ∈ Σ+, the string (w,0) ∈ µ(LG,A) if and only if there

is some rule

A 0→ bB1& . . .&bBm&C1c& . . .&Cnc ∈ P (m+n≥ 1) (15)

such that there exist derivations

Bi
0

=⇒G · · ·
0

=⇒G xc (∀1≤ i≤ m) (16)

C j
0

=⇒G · · ·
0

=⇒G bx (∀1≤ j ≤ n) (17)

By induction hypothesis, (16) holds if and only if for some rule (15)

(xc,0) /∈ µ(LG′,X¬Bi) or (xc,1) ∈ µ(LG′,X¬Bi) (18)

(bx,0) /∈ µ(LG′,X¬C j) or (bx,1) ∈ µ(LG′ ,X¬C j) (19)

If we assume the rule (18,19) then none of the rules (5,6,7,8) is not derive (w = bxc,0). If

(18,19) is untrue then (xc,1) ∈ µ(LG′,X¬Bi) for some i and (bx,1) ∈ µ(LG′,X¬C j) for some j
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and hence by one of the rules

Y
¬A 0→bB1&...&bBm&C1c&...&Cnc

1→ bX¬Bi

Y
¬A 0→bB1&...&bBm&C1c&...&Cnc

1→ X¬C jc

the non terminal Y
¬A 0→bB1&...&bBm&C1c&...&Cnc

derives (w,1). Therefore (w,0) ∈ µ(LG,A) if and

only if (w,0) /∈ µ(L′G,X¬A), that is (w,1) ∈ µ(LG,X¬A).

This completes the proof.

Definition 3.4. Right and left fuzzy quotient is defined as follows

µ(L1/L2) = µ(L1.L−1
2 ) = {(u,ru)/(uv,ruv) ∈ µ(L1) and (v,rv) ∈ µ(L2)}

ru > ruv, i f ruv = rv

ru = ruv, i f ruv < rv

and

µ(L2/L1) = µ(L−1
1 .L2) = {(v,rv)/(uv,ruv) ∈ µ(L1) and (u,ru) ∈ µ(L2)}

rv > ruv, i f ruv = ru

rv = ruv, i f ruv < ru

where ru,rv and ruv ∈ (0,1].

Theorem 3.5. Let µ(L) be any fuzzy linear conjunctive languages over Σ and for any terminal

d ∈ Σ. Then prove that, the languages µ(L/d) and µ(d/L) are fuzzy linear conjunctive.

Proof. The argument is again a direct construction. Let G = (V,Σ,P,S) be an arbitrary fuzzy

conjunctive grammar in the fuzzy linear normal form, let d ∈ Σ. We construct a fuzzy grammar

for the fuzzy languages µ(L/d) (fuzzy right quotient) and µ(d/L) (fuzzy left quotient). Let

V ′ = {A′/A ∈ V} be a copy of V . Define a new fuzzy grammar G′ = (V ∪V ′,Σ,P∪P′,S′),

where P′ consists of the following rules:

i. For each production A
rBC→ bB1& . . .&bBm&C1c& . . .&Cnc ∈ P (m+ n ≥ 1), such that c = d,
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and then there is a rule

A′
rB′C→ bB′1& . . .&bB′m&C1& . . .&Cn ∈ P′ (20)

Where rBC ≤ rB′C.

ii. For each production A ra→ a in P, such that a = d, and then there is a rule A′ 1→ ε in P′.

Claim 1: For each nonterminal A ∈ V , µ(LG,A) = µ(LG′,A). Every derivation valied in G is

valied in G′ as well, and thus µ(LG,A) ≤ µ(LG′,A). On the other hand,the bodies of rules for

nonterminal form V in the grammar G′ do not contain any nonterminal not in V ′, and therfore

each valid derivation from A ∈V in G′ is also valid in G and thus µ(LG′,A)≤ µ(LG,A).

Claim 2: For each nonterminal A ∈V , µ(LG′,A′)≤ µ{(LG,A)/d}. Let w ∈ Σ∗ and (w,rB′C) ∈

µ(LG′,A′) we shall prove that (w,rB′C) ∈ µ{(LG,A)/d}, it is enough to prove that (wd,rBC) ∈

µ(LG,A). Now, we using induction on length l of the derivation w.

Basis l = 2: A′ r
=⇒

′
G (w)

rw=⇒
′
G w. This implies that w = ε and A′ 1→ ε ∈ P′. By the construction

of P′, A ra→ d ∈ P and therefore (wd = εd = d,ra) ∈ µ{(LG,A)/d}, ra ≤ 1.

Induction step l ≥ 2: Let (w,rB′C) be derivable from A′. Then the derivation begins with an

application of a rule of type (20) and thus is of the form

A′
rB′C=⇒G′ bB′1& . . .&bB′m&C1& . . .&Cn

rC′=⇒G′ · · ·
rw=⇒G′ w& . . .&w

rw=⇒G′ w ∈ P′ (21)

Where rB′C = min{r′C, . . . ,rw}. Let (w = au,rB′C), it follows from (21) that a = b, (u,rB′i
) is

derivable from each B′i in less than l steps and (w,rC j) ∈ µ(L′G,C j) for all j.

iii. By the induction hypothesis, (ud,rBi) ∈ µ(LG,Bi) and (wd = bud,rbBi) ∈ µ(LG,bBi)

for all i.

iv. By claim 1, (w,rC j) ∈ µ(LG,C j) this implies that (wd = wc,rCc j) ∈ µ(LG,C jc) for all j.

v. By the construction of P′, then rule (20) implies that A
rBC→ bB1& . . .&bBm&C1c& . . .&Cnc ∈

P, where rBC = min{rbBi,rCc j}. Together, these (iii, iv, v) three results allow to derive the string

(wd,rBC) ∈ µ(LG,A) and therefore (w,rB′C) ∈ µ{(LG,A)/d}, where rBC ≤ rB′C. Hence,

µ(LG′,A
′)≤ µ(LG,A)/d (22)

Claim 3: For each nonterminal A ∈ V , then we prove that µ{(LG,A)/d} ≤ µ(LG′,A′). Let

(w,rB′C) ∈ µ{(LG,A)/d}, then (wd,rBC) ∈ µ(LG,A), we shall prove that (w,rB′C) ∈ µ(LG′,A′);
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the argument is an induction on the length of w.

Basis |w|= 0: Let w= ε and thus (wd = εd = d,ra)∈ µ(LG,A), then A ra→ d ∈ P. Consequently

A′ 1→ ε ∈ P′, and (w = ε,1) ∈ µ(LG′ ,A′), where ra ≤ 1.

Induction step |w| ≥ 1: Let (wd,rBC) ∈ µ(LG,A), then there exists a derivation

A
rBC→G bB1& . . .&bBm&C1c& . . .&Cnc ∈ P, such that d = c (23)

Now, w = bu, d = c and (ud,rBi) ∈ µ(LG,Bi) for all i and (w,rC j) ∈ µ(LG,C j) for all j.

vi. By the induction hypothesis, (u,rB′i
) ∈ µ(LG′,B′i) and (w = bu,rbB′i

) ∈ µ(LG,bB′i), for all i.

vii. By claim 1, (w,rC j) ∈ µ(LG′,C j).

viii.Since rule (23) is in P, then the rule of the form (20) must be in P′.

Now, A′
rB′C=⇒G bB′1& . . .&bB′m&C1& . . .&Cn

rC′=⇒G · · ·
rw=⇒G w& . . .&w

rw=⇒G w. Hence (w,rB′C)∈

µ(LG′,A′).

µ{(LG,A)/d} ≤ µ(LG′,A
′) (24)

From (22) and (24), µ(LG′,A′) = µ{(LG,A)/d}.

This completes the proof.
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