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Abstract. In this paper we have investigated chaos synchronization between the two non- identical fractional

order hyperchaotic systems using feedback control technique.The hyperchaotic system introduced by Xin and Ling

has been synchronized with the Lü like hyperchaotic system.The analytical conditions for the synchronization of

this pair of different fractional order hyperchaotic systems are derived by using Laplace transform. Numerical

simulations are carried out using Matlab to show the effectiveness of the method.
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1. Introduction

Chaotic systems are characterized by their sensitive dependence on initial conditions.Chaos

synchronization has attracted a great deal of attention since the seminal work by Pecora and
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Carroll [1] in which they established a chaos synchronization scheme for two identical chaotic

systems with different initial conditions.

As fractional order chaotic behaviour has a wide range of applications in image processing,

secure communication, information encrypion, etc.[2-5]. Therefore, synchronization of frac-

tional order chaotic systems gained a lot of attention due to its importance in applications in bi-

ology [6], economics [7], physics [8] etc.Some of the approaches which have been presented to

achieve chaos synchronization in fractional order chaotic systems are adaptive control method

[9-11], sliding mode control method [12-13], linear and non-linear feedback control method

[14-16], active control method [17], PC control [18], backstepping control method [19], etc.

Recently, the study of dynamics of fractional-order chaotic systems has received interest of

many researchers. Yu and Li in [20] used Laplace transformation theory and variational itera-

tion method to study Rössler system, Wu, Lu and Shen discussed the synchronization of a new

fractional- order hyperchaotic system via active control [21], Wang, Yu and Diao in [22] stud-

ied the hybrid projective synchronization between fractional-order chaotic systems of different

dimensions, Sahab and Ziabari [23] analyzed the chaos between two different hyperchaotic

systems by generalized backstepping method, S.T. Mohammad and H. Mohammad in [24] pro-

posed a controller based on active sliding mode theory to synchronize the chaotic fractional

order systems, Zhang and Lu introduced a new type of hybrid synchronization called full state

hybrid lag projective synchronization and applied it to the Rössler system and the hyperchaotic

Lorenz system to verify their results numerically [25]. A. Ouannas in [26] studied the Q-S syn-

chronization of chaotic dynamical systems in continuous-time, Boutefnouchet, Taghvafard and

Erjaee in their paper [27] discussed the phase synchronization in coupled chaotic systems.

This paper is organized as follows: in section 2, the fractional order derivative and its approxi-

mation is given. In section 3, the synchronization between the two non-identical fractional-order

hyperchaotic systems using feedback control method is discussed. Section 4 presentS the nu-

merical results to verify the effectiveness of the method. Finally, the conclusion is given in

section 5.
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2. Fractional order Derivative and its Approximation

Fractional calculus is a generalization of integration and differentiation to a non-integer-order

integro-differential operator aDq
t defined by

aDq
t =


dq

dtq if R(q)> 0

1 if R(q) = 0∫ t
a (dτ)−q if R(q)< 0

where q is the fractional order which can be a complex number,R(q) denotes the real part of

q and a < t, where a is the fixed lower terminal and t is the moving upper terminal.

There are two commonly used definitions for fractional derivatives [28], they are Grunward

-Letnikov definition and Riemann- Liouville definition. The Riemann- Liouville definition is

given by

Dqx(t) =
dη

dtη
Jη−qx(t), q > 0

where η is the first integer that is not less than q , Jβ is the β - order Riemann- Liouville

integral operator defined as follows:

Jβ f (t) =
1

Γ(β )

∫ t

0
f (t)(t− τ)β−1 dτ

where Γ(.) is the Gamma function, 0 < β ≤ 1.

The Laplace transform of the Riemann- Liouville fractional derivative is given by

L
{

dq f (t)
dtq

}
= sqL{ f (t)}−

n−1

∑
k=0

sk
[

dq−1−k f (t)
dtq−1−k

]
t=0

where L means the Laplace transform and s is a complex variable.Assuming the initial condi-

tions to be zero, the above equation reduces to

L
{

dq f (t)
dtq

}
= sqL{ f (t)}

Thus the fractional integral operator of order ”q” can be represented by the transfer function

F(s) = 1
sq in the frequency domain.
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The standard definitions of fractional order calculus do not allow direct implemetation of the

fractional operators in time- domain simulations. An efficient method to circumvent this prob-

lem is to approximate fractional operators by using standard integer- order operators.In [29], an

effective algorithm is developed to approximate fractional order transfer functions, which has

been adopted in [30-32] and has sufficient accuracy for time domain implementations. In table

1 of [30], approximations for 1
sq with q from 0.1 to 0.9 in steps 0.1 were given with errors of

approximately 2dB.We will use these approximations in the simulations.

3. Synchronization between the new fractional order hyperchaotic system
and Lü like fractional order hyperchaotic system.

In this section, our goal is to achieve synchronization between the new fractional order hy-

perchaotic system and Lü like fractional order hyperchaotic system. The drive and response

systems are given as follows:

As a drive system, consider a fractional order hyperchaotic system proposed by Xin and Ling

in [33]

dqx1
dtq = a1(x2− x1)+ x4,

dqx2
dtq = b1x1 + x1x3− x4,

dqx3
dtq =−c1x3−d1x2

1,

dqx4
dtq = c1x1


(1)

where (x1,x2,x3,x4) ∈R4 and a1,b1,c1,d1 are real parameters. When a1 = 10,b1 = 40,c1 =

2.5,d1 = 4 the system exhibits a hyperchaotic nature.The trajectories of the drive system are

shown in figure 1. As a response system, consider the Lü like fractional order hyperchaotic

system [14] given by
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FIGURE 1. Phase Potraits of New fractional order hyperchaotic Dynmical sys-

tem in (a) the x1−x2−x3 space , (b) the x1−x2−x4 space , (c) the x1−x3−x4

space and (d) the x2− x3− x4 space.

dqy1
dtq = a2(y2− y1)+ y4 +u1,

dqy2
dtq = c2y1− y1y3 +u2,

dqy3
dtq = y1y2−b2y3 +u3,

dqy4
dtq =−y1y3 +d2y4 +u4


(2)

where (y1,y2,y3,y4) ∈ R4, u1,u2,u3 and u4 are the linear or nonlinear control functions to be

determined and a2,b2,c2,d2 are real parameters of the system. When a2 = 10,b2 = 8
3 ,c2 =

28,d2 = 1.3, the four Lyapunov exponents calculated with the help of Wolf Algorthm of the

system are L1 = 0.7340,L2 = 0.2492,L3 = 0,L4 = −11.3437. Since the system possesses t-

wo positive lyapunov exponents, it exhibits a hyperchaotic nature. The phase potraits of the

response system is shown in fig.2.
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FIGURE 2. Phase Potraits of Lü like fractional order hyperchaotic Dynamical

system in (a) the y1−y2−y3 space , (b) the y1−y2−y4 space , (c) the y1−y3−

y4 space and (d) the y2− y3− y4 space.

Define the error functions as

e1 = y1− x1,

e2 = y2− x2,

e3 = y3− x3,

e4 = y4− x4


(3)

Subtracting (1) from (2) and using (3), we get

dqe1
dtq = a2(e2− e1)+ e4 +(a2−a1)(x2− x1)+u1,

dqe2
dtq = (b2 + c2)e1− y1e3− y1(2x3 +b1)+ x3e1 + c2x1 + x4 +u2,

dqe3
dtq = y1y2−b2e3 +(c1−b2)x3 +d1x2

1 +u3,

dqe4
dtq =−y1y3 +d2e4 +d2x4− c1x1 +u4


(4)
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Choosing the control functions ui, i = 1,2,3,4 as

u1 =−a2e2− e4 +(a1−a2)(x2− x1)− k1e1,

u2 =−(b2 + c2)e1 + y1(2x3 +b1)+ y1e3− x3e1− c2x1− x4− k2e2,

u3 =−y1y2 +(b2− c1)x3−d1x2
1,

u4 = y1y3−d2x4 + c1x1− k4e4


(5)

the error system (4) reduces to

dqe1
dtq =−(a2 + k1)e1,

dqe2
dtq =−k2e2,

dqe3
dtq =−b2e3,

dqe4
dtq = (d2− k4)e4


(6)

where k1,k2,k4 ≥ 0 are real parameters.

Taking Laplace transform [34] on both sides of equation (6) and letting Ei(s) = L{ei(t)}, i =

1,2,3,4 and using

L
{

dqei

dtq

}
= sqEi(s)− sq−1ei(0), i = 1,2,3,4

we get

sqE1(s)− sq−1e1(0) =−(a2 + k1)E1(s),

sqE2(s)− sq−1e2(0) =−k2E2(s),

sqE3(s)− sq−1e3(0) =−b2E3(s),

sqE4(s)− sq−1e4(0) = (d2− k4)E4(s)


(7)

If E1(s),E2(s),E3(s) and E4(s) are bounded and d2− k4 6= 0 then the drive and response

systems will be synchronized with suitable choice of k1,k2 and k4. Rewriting (7), we have
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E1(s) =
sq−1e1(0)
sq+a2+k1

,

E2(s) =
sq−1e2(0)

sq+k2
,

E3(s) =
sq−1e3(0)

sq+b2
,

E4(s) =
sq−1e4(0)
sq−d2+k4


(8)

We know that the Final value theorem of the Laplace transform is described as [34]

ei,ss = lim
t→∞

ei(t) = lim
s→0

sEi(s)

Applying the above method to Ei(s) , we get

lim
t→∞

e1(t) = lim
s→0

sE1(s)

= lim
s→0

e1(0)

1+ a2+k1
sq

= 0

lim
t→∞

e2(t) = lim
s→0

sE2(s)

= lim
s→0

e2(0)

1+ k2
sq

= 0

lim
t→∞

e3(t) = lim
s→0

sE3(s)

= lim
s→0

e3(0)

1+ b2
sq

= 0
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lim
t→∞

e4(t) = lim
s→0

sE4(s)

= lim
s→0

e4(0)

1+ k4−d2
sq

= 0

Since E1(s),E2(s),E3(s),E4(s) are bounded and d2− k4 6= 0 , there exists a η > 0(owing

to attractiveness of the attractor (1) and (2)) such that |xi(t)| ≤ η < ∞ and |yi(t)| ≤ η < ∞ ,

i = 1,2,3,4.

Therefore, limt→∞ei(t) = 0 ∀ i = 1,2,3,4, which implies that the synchronization between

the drive and the response systems (1) and (2) is achieved.

4. Numerical simulations

Based on the scheme discussed above, the systems (1) and (2) are integrated numerically

with fractional order q = 0.95 and the initial conditions [x1(0),x2(0),x3(0),x4(0)] = [1,2,3,4]

and [y1(0),y2(0),y3(0),y4(0)] = [10,−15,−10,11] respectively. Therefore the initial condition-

s for the error system are [e1(0),e2(0),e3(0),e4(0)] = [9,−17,−13,7].The chaotic tracjectories

of the drive and response systems before and after the controllers are applied are shown in

figures (3) and (4) respectively. It can be seen from figure 4 that the trajectories of the drive

and response systems aymptotically synchronize and that from figure 5 that the error system

converges to zero which shows that the systems (1) and (2) are synchronized.
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FIGURE 3. The chaotic tracjectories of the drive and response system before the

controllers are applied.

5. Conclusion

Chaos synchronization between two fractional order hyperchaotic systems has been studied

using feedback control technique for a short interval of time. The hyperchaotic system intro-

duced by Xin and Ling has been used to drive the Lü like hyperchaotic system. Numerical

simulations are carried out to show the effectiveness of the method.
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FIGURE 4. The chaotic tracjectories of the drive and response system after the

controllers are applied.
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FIGURE 5. Error functions comparison of four state variables versus the time t.
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