RAINBOW NUMBERS FOR SMALL CYCLES

BIHONG LV ${ }^{1}$, KECAI YE ${ }^{1, *}$, HUAPING WANG ${ }^{2}$
${ }^{1}$ Department of Mathematics, Zhejiang Normal University, Jinhua 321004, P.R. China
${ }^{2}$ Department of Mathematics, Jiangxi Normal University, Nanchang 330022, P.R. China

Copyright (c) 2018 Lv, Ye and Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The rainbow number $r b(G, H)$ is the minimum number k such that any k-edge-coloring of G contains a rainbow copy of H. In this paper, we determine the rainbow numbers of small cycles in the complete split graph and maximal outerplanar graph.

Keywords: rainbow number; rainbow cycle; complete split graph; planar graph.
2010 AMS Subject Classification: 05C55, 05C70, 05D10.

1. Introduction

An edge-colored graph is called rainbow if all of its edges have distinct colors. For two graphs G and H, the anti-Ramsey number $\operatorname{ar}(G, H)$, introduced by Erdős et al. [3], is the maximum number of colors in an edge-coloring of G with no rainbow copy of H. The rainbow number $r b(G, H)$ is the minimum number k such that any k-edge-coloring of G contains a rainbow copy of H. Clearly, we have $r b(G, H)=\operatorname{ar}(G, H)+1$.
*Corresponding author
E-mail address: kecaiye@126.com
Received December 29, 2017

In this paper, we consider the rainbow number of cycles. Erdős et al. [3] posed a conjecture on the anti-Ramsey number for cycles in complete graphs, which was later proved by Montellano et al. [8]. Axenovich et al. [1] determine the anti-Ramsey number of cycles in complete bipartite graphs. Jin et al. gave the anti-Ramsey numbers for graphs with independent cycles in [6]. Recently, the authors [5,7] present bounds for the rainbow number of cycles in plane triangulations. Note that the complete split graph contains the complete graph as a subclass. Gorgol et al. [4] determined the rainbow number of C_{3} and C_{3}^{+}, a triangle with a pendant edge, in complete split graphs. In this paper, we determine the rainbow numbers of small cycles in complete split graphs and planar graphs.

2. Preliminaries

Let K_{n}, C_{n}, P_{n} be a complete graph, a cycle, a path on n vertices respectively. For a set S, we denote by $|S|$ the cardinality of S. We define that a $u v$-path is a path with first vertex u and last vertex v. For two graphs $G=(V(G), E(G))$ and $H=(V(H), E(H))$, the join of G and H is defined to be the graph by $G \cup H=(V(G) \cup V(H), E(G) \cup E(H))$. The sum of G and H, denoted by $G+H$, is defined to be the graph $G \cup H+\{u v: u \in V(G), v \in V(H)\}$. A complete split graph $K_{n}+\bar{K}_{s}$ is the sum of a complete graph K_{n} and an empty graph \bar{K}_{s}. Denote by \mathscr{M}_{n} the class of all the maximal outerplanar graphs of order n. For two disjoint subsets $R, T \subseteq V(G)$, denote by $E_{G}[R, T]$ the set of all the edges between R and T in G. We use $G[R]$ to denote the subgraph induced by R in G when $R \subseteq V(G)$ or $R \subseteq E(G)$. Let c be an edge-coloring of G. We use $c(W)$ to denote the set of colors of $W \subseteq E(G)$. When $W=\{e\}$, we use $c(e)$ for short. A connected graph that has no cut vertices is called a block. A block of a graph is a subgraph that is a block and is maximal with respect to this property.

We need the following results:
Lemma 2.1. [5] Let C_{k} with $k \geq 4$ be a rainbow cycle in an edge-colored graph G. If $G\left[V\left(C_{k}\right)\right]$ has a chord e, then there exists a rainbow cycle containing e in G of length smaller than k.
Lemma 2.2. [2] If the graph G does not contain any even cycles, then each block of G is either a K_{1} or a K_{2} or an odd cycle.

3. Main results

Theorem 3.1. If $n \geq 3$, then $\operatorname{rb}\left(\mathscr{M}_{n}, C_{3}\right)=n$.
Proof. First, we construct a maximal outerplanar graph $M_{n} \in \mathscr{M}_{n}$ for all $n \geq 3$ and its edge coloring with $n-1$ colors that does not contain any rainbow C_{3}.

Given a 2-edge-colored K_{3}, we construct a sequence of quadrangulations Q_{r} on $r \geq 3$ vertices starting with $Q_{3} \cong K_{3}$. From Q_{r} we construct Q_{r+1} by choosing the outerface, inseting a new vertex in it and making it adjacent to two vertices of an arbitrary edge on the boundary of Q_{r}, all these two edges are colored with a new color. Then, we get Q_{r+1}. So Q_{r+1} has $r+1$ vertices, $2(r+1)-3$ edges, r faces and r colors.

In this way, we obtain a maximal outerplanar graph M_{n} whose edges are colored with $n-$ 1 colors. Finally, we observe that M_{n} does not contain any rainbow C_{3}, which proves that $r b\left(\mathscr{M}_{n}, C_{3}\right) \geq n$.

Now, we prove $r b\left(\mathscr{M}_{n}, C_{3}\right) \leq n$.
Let $M_{n} \in \mathscr{M}_{n}$. Color all the edges of M_{n} by n colors. Suppose that M_{n} does not contain any rainbow C_{3}. Let G be a rainbow spanning subgraph of M_{n} with $|E(G)|=n$. Since $|E(G)|=n$ and $|V(G)|=n, G$ contains a rainbow cycle C_{k} for some $k \geq 3$. If $k=3$, then we obtain a rainbow C_{3} in M_{n}, a contradiction. So we have $k \geq 4$. Since M_{n} is a maximal outerplanar graph, G has a cycle $\widetilde{C} \cong C_{k}$ (for some $k \geq 4$) with no inner vertices. Clearly, $M_{n}[\widetilde{C}]$ is a maximal outerplanar graph. Let v be a vertex with degree 2 in $M_{n}[\widetilde{C}]$ and u, w be two neighbors of v. Then there is a path $u v w$ on \widetilde{C} with $u w \in E\left(M_{n}\right)$. Since M_{n} does not contain any rainbow C_{3}, by Lemma 2.1, the cycle $\widetilde{C}-\{v\}+u w$ is a rainbow cycle of order $k-1$ in M_{n}. In any case we obtain a shorter rainbow cycle. Hence there is a rainbow C_{3} in M_{n}, a contradiction. This proves that $r b\left(\mathscr{M}_{n}, C_{3}\right) \leq n$.

The proof is completed.
Theorem 3.2. If $n+s \geq 4$ and $n \geq 2$, then

$$
r b\left(K_{n}+\bar{K}_{s}, C_{4}\right)= \begin{cases}n+s+\left\lfloor\frac{n+s}{3}\right\rfloor, & \text { if } n \geq 2 s \\ n+\left\lfloor\frac{n}{2}\right\rfloor+s, & \text { if } 2 \leq n<2 s\end{cases}
$$

Proof. Let $N=V\left(K_{n}\right), S=V\left(K_{s}\right)$,

$$
r= \begin{cases}n+s+\left\lfloor\frac{n+s}{3}\right\rfloor, & \text { if } n \geq 2 s \\ \\ n+\left\lfloor\frac{n}{2}\right\rfloor+s, & \text { if } 2 \leq n<2 s\end{cases}
$$

First, we present a $(r-1)$-edge-coloring of $K_{n}+\bar{K}_{s}$ which does not contain any rainbow C_{4} as follows.

Take a set of maximum number of vertex disjoint triangles, denoted by $D_{1}, D_{2}, \cdots, D_{t}$, in $K_{n}+\bar{K}_{s}$ and denote by $\left\{D_{t+1}, \cdots, D_{n+s-2 t}\right\}$ the set of the remaining vertices. Color all the triangles by distinct colors. Then lexically color the edges between D_{i} and D_{j} by the color j for $i<j$.

Clearly, $t=\left\lfloor\frac{n+s}{3}\right\rfloor$ for $n \geq 2 s$ and $t=\left\lfloor\frac{n}{2}\right\rfloor$ for $2 \leq n<2 s$. So we can find that the coloring constructed above contains exactly $r-1$ colors, which proves $r b\left(K_{n}+\bar{K}_{s}, C_{4}\right) \geq r$.

Now we prove the upper bound $r b\left(K_{n}+\bar{K}_{s}, C_{4}\right) \leq r$. Given a r-edge-coloring of $K_{n}+\bar{K}_{s}$, we need to show that $K_{n}+\bar{K}_{s}$ contains a rainbow C_{4}. By the contradiction, assume that $K_{n}+\bar{K}_{s}$ does not contain any rainbow C_{4}.

Claim 1. For any C_{k} of $K_{n}+\bar{K}_{s}, k \geq 5, C_{k}$ contains a path of order four, say uvwx, such that $u x \in E\left(K_{n}+\bar{K}_{s}\right)$.

Proof. Let $P=u_{1} u_{2} u_{3} u_{4}$ be a path on the cycle C_{k}. If $u_{1} \in N$ or $u_{4} \in N$, then the result holds clearly. So we have $u_{1}, u_{4} \in S$. Let u_{5} be another neighbour of u_{1} on the cycle C_{k}. Then $u_{5} \in N$. Hence $u_{5} u_{3} \in E\left(K_{n}+\bar{K}_{s}\right)$ and the path $u_{5} u_{1} u_{2} u_{3}$ is a path as desired.

Claim 2. If $K_{n}+\bar{K}_{s}$ contains a rainbow even cycle $C_{2 a+4}$ for $a \geq 1$, then it contains a rainbow cycle of order $2 a+2$.

Proof. Let $C_{2 a+4}$ be a rainbow cycle in $K_{n}+\bar{K}_{s}$. By Claim 1, there is a path $P=u v w x$ on $C_{4+2 a}$ with $u x \in E\left(K_{n}+\bar{K}_{s}\right)$. Since $K_{n}+\bar{K}_{s}$ does not contain any rainbow C_{4}, by Lemma 2.1, we have that $C_{2 a+4}-\{v, w\}+u x$ is a rainbow cycle of order $2 a+2$ in $K_{n}+\bar{K}_{s}$.

From Claim 2, we have that $K_{n}+\bar{K}_{s}$ does not contain any rainbow even cycle.

Claim 3. Let C, C^{\prime} be two distinct rainbow triangles in $K_{n}+\bar{K}_{s}$. If $V(C) \cap V\left(C^{\prime}\right) \neq \emptyset$ and all the edges of $C \cup C^{\prime}$ are colored by distinct colors, then $K_{n}+\bar{K}_{s}$ contains a rainbow C_{4}.

Proof. First, we consider that $\left|V(C) \cap V\left(C^{\prime}\right)\right|=2$. Let $C=u_{1} u_{2} u_{3} u_{1}$ and $C^{\prime}=u_{2} u_{3} u_{4} u_{2}$. It is easy to see that $u_{1} u_{2} u_{3} u_{4} u_{1}$ is a rainbow C_{4} in $K_{n}+\bar{K}_{s}$.

Next, we consider that $\left|V(C) \cap V\left(C^{\prime}\right)\right|=1$. Let $C=u_{1} u_{2} u_{3} u_{1}$ and $C^{\prime}=u_{3} u_{4} u_{5} u_{3}$. In the graph $K_{n}+\bar{K}_{s}$, every C_{3} has at least two vertices in N. Let $u_{1}, u_{4} \in N$. Then $u_{1} u_{4} \in E\left(K_{n}+\bar{K}_{s}\right)$. Since the cycle $u_{1} u_{3} u_{5} u_{4} u_{1}$ is a C_{4} in $K_{n}+\bar{K}_{s}$ and $K_{n}+\bar{K}_{s}$ does not contain any rainbow C_{4}, we have $c\left(u_{1} u_{4}\right) \in c\left(\left\{u_{1} u_{3}, u_{3} u_{5}, u_{4} u_{5}\right\}\right)$. Then the cycle $u_{1} u_{2} u_{3} u_{4} u_{1}$ is a rainbow C_{4} in $K_{n}+\bar{K}_{s}$.

Let G be a rainbow spanning subgraph of $K_{n}+\bar{K}_{s}$ with $|E(G)|=r$. Then G does not contain any even cycle.

Claim 4. Let C, C^{\prime} be two distinct odd cycles in G. Then $V(C) \cap V\left(C^{\prime}\right)=\emptyset$.
Proof. Since G does not contain any even cycle, by Lemma 2.2, each block of G is a K_{1} or a K_{2} or an odd cycle. Suppose that $V(C) \cap V\left(C^{\prime}\right) \neq \emptyset$.

First, we consider that $\left|V(C) \cap V\left(C^{\prime}\right)\right| \geq 2$. Since C and C^{\prime} are two cycles, it is easy to see that $C \cup C^{\prime}$ does not contain any cut vertices. Then there is a block B of G containing $C \cup C^{\prime}$. So B is not a K_{1} or a K_{2} or an odd cycle, a contradiction.

Now we consider that $\left|V(C) \cap V\left(C^{\prime}\right)\right|=1$. If C and C^{\prime} are triangles, then by Claim 3, there is a rainbow C_{4} in $K_{n}+\bar{K}_{s}$, a contradiction. Next, we distinguish the following 2 cases to complete the proof.

Case 1. C is a triangle, C^{\prime} is not a triangle or C is not a triangle, C^{\prime} is a triangle.
Without loss of generality, we only consider that C is a triangle and C^{\prime} is not a triangle. Let $V(C) \cap V\left(C^{\prime}\right)=\left\{u_{1}\right\}$. Since G does not contain any rainbow even cycle, we have $\left|E\left(C^{\prime}\right)\right| \geq 5$.

If $u_{1} \in N$, then we let $u_{1} u_{2} u_{3}$ be a path on C^{\prime}. Clearly, we have that $u_{1} u_{3} \in E\left(K_{n}+\bar{K}_{s}\right)$. Since C^{\prime} is an odd cycle and $u_{1} u_{2} u_{3}$ has length 2 , the cycle $C^{\prime}-\left\{u_{2}\right\}+u_{1} u_{3}$ is an even cycle and it is not rainbow. Then by Lemma 2.1, the cycle $u_{1} u_{2} u_{3} u_{1}$ is a rainbow triangle in $K_{n}+\bar{K}_{s}$ and we have $c\left(u_{1} u_{3}\right) \in c\left(E\left(C^{\prime}-u_{2}\right)\right)$. Note that C is also a rainbow triangle in G. Then it is easy to see that $c(E(C)) \cap c\left(E\left(u_{1} u_{2} u_{3} u_{1}\right)\right)=\emptyset$ and $V\left(u_{1} u_{2} u_{3} u_{1}\right) \cap V(C)=\left\{u_{1}\right\}$. Therefore, by Claim 3, there is a rainbow C_{4} in $K_{n}+\bar{K}_{s}$, a contradiction.

If $u_{1} \in S$, then let u_{4}, u_{5} be 2 neighbors of u_{1} in C^{\prime}. So we have that $u_{4}, u_{5} \in N$ and $u_{4} u_{5} \in$ $E\left(K_{n}+\bar{K}_{s}\right)$. Since C^{\prime} is an odd cycle and $\left|E\left(u_{4} u_{1} u_{5}\right)\right|=2$, the cycle $C^{\prime}-\left\{u_{1}\right\}+u_{4} u_{5}$ is an even cycle and it is not rainbow. By Lemma 2.1, the cycle $u_{4} u_{1} u_{5} u_{4}$ is a rainbow triangle in $K_{n}+\bar{K}_{s}$ and we have $c\left(u_{4} u_{5}\right) \in c\left(E\left(C^{\prime}-u_{1}\right)\right)$. Note that C is a rainbow triangle in G. Clearly, we have that all the edges of $C \cup u_{4} u_{1} u_{5} u_{4}$ are colored by distinct colors and $V\left(u_{4} u_{1} u_{5} u_{4}\right) \cap V(C)=\left\{u_{1}\right\}$. Thus, by Claim 3, there is a rainbow C_{4} in $K_{n}+\bar{K}_{s}$, a contradiction.

Case 2. C and C^{\prime} are not triangles.
Let $V(C) \cap V\left(C^{\prime}\right)=\left\{u_{1}\right\}$. Since G does not contain any rainbow even cycle, we have $\left|E\left(C^{\prime}\right)\right| \geq 5$ and $|E(C)| \geq 5$.

If $u_{1} \in N$, then let $u_{1} u_{2} u_{3}$ be a path on C and $u_{1} u_{4} u_{5}$ be a path on C^{\prime}. Clearly, we have $u_{1} u_{3}, u_{1} u_{5} \in E\left(K_{n}+\bar{K}_{s}\right)$. Because C is an odd cycle and the length of the path $u_{1} u_{2} u_{3}$ equals two, the cycle $C-\left\{u_{2}\right\}+u_{1} u_{3}$ is an even cycle and it is not rainbow. By Lemma 2.1, the cycle $u_{1} u_{2} u_{3} u_{1}$ is a rainbow triangle in $K_{n}+\bar{K}_{s}$ and we have $c\left(u_{1} u_{3}\right) \in c\left(E\left(C-u_{2}\right)\right)$. We also have C^{\prime} is an odd cycle and $\left|E\left(u_{1} u_{4} u_{5}\right)\right|=2$. Then $C^{\prime}-\left\{u_{4}\right\}+u_{1} u_{5}$ is an even cycle and it is not rainbow. By Lemma 2.1, the cycle $u_{1} u_{4} u_{5} u_{1}$ is also a rainbow triangle in $K_{n}+\bar{K}_{s}$ and we have $c\left(u_{1} u_{5}\right) \in c\left(E\left(C^{\prime}-u_{4}\right)\right)$. Now $K_{n}+\bar{K}_{s}$ contains two rainbow triangles $u_{1} u_{2} u_{3} u_{1}$ and $u_{1} u_{4} u_{5} u_{1}$ with $c\left(E\left(u_{1} u_{2} u_{3} u_{1}\right)\right) \cap c\left(E\left(u_{1} u_{4} u_{5} u_{1}\right)\right)=\emptyset$. By Claim 3, there is a rainbow C_{4} in $K_{n}+\bar{K}_{s}$, a contradiction.

If $u_{1} \in S$, then let u_{6}, u_{7} be 2 neighbors of u_{1} in C and u_{8}, u_{9} be 2 neighbors of u_{1} in C^{\prime}. Then we have $u_{6}, u_{8} \in N$ and $u_{6} u_{7}, u_{8} u_{9} \in E\left(K_{n}+\bar{K}_{s}\right)$. Since C is an odd cycle and the path $u_{6} u_{1} u_{7}$ has length 2 , the cycle $C-\left\{u_{1}\right\}+u_{6} u_{7}$ is an even cycle and it is not rainbow. Then by Lemma 2.1, the cycle $u_{1} u_{6} u_{7} u_{1}$ is a rainbow triangle in $K_{n}+\bar{K}_{s}$ and we have $c\left(u_{6} u_{7}\right) \in c\left(E\left(C-u_{1}\right)\right)$. We also have C^{\prime} is an odd cycle and $\left|E\left(u_{8} u_{1} u_{9}\right)\right|=2$. Then $C^{\prime}-\left\{u_{1}\right\}+u_{8} u_{9}$ is an even cycle and it is not rainbow. By Lemma 2.1, the cycle $u_{1} u_{8} u_{9} u_{1}$ is also a rainbow triangle in $K_{n}+\bar{K}_{s}$ and we have $c\left(u_{8} u_{9}\right) \in c\left(E\left(C^{\prime}-u_{1}\right)\right)$. So $K_{n}+\bar{K}_{s}$ contains two rainbow triangles $u_{1} u_{6} u_{7} u_{1}$ and $u_{1} u_{8} u_{9} u_{1}$ with $c\left(E\left(u_{1} u_{6} u_{7} u_{1}\right)\right) \cap c\left(E\left(u_{1} u_{8} u_{9} u_{1}\right)\right)=\emptyset$. By Claim 3, there is a rainbow C_{4} in $K_{n}+\bar{K}_{s}$, a contradiction.

This proves the Claim.

Let m be the number of odd cycles in G. Denote T by the graph obtained from G by deleting one edge in each odd cycle. Since G does not contain any even cycle, T does not contain any cycle. So $|E(T)| \leq n+s-1$. From Claim 4, we have $|E(G)|=|E(T)|+m \leq n+s+m-1$. It is easy to see that

$$
m \leq \begin{cases}\left\lfloor\frac{n+s}{3}\right\rfloor, & \text { if } n \geq 2 s \\ \left\lfloor\frac{n}{2}\right\rfloor, & \text { if } 2 \leq n<2 s\end{cases}
$$

So we have that $|E(G)| \leq r-1<r$, a contradiction to the fact that $|E(G)|=r$.
The proof is completed.

Conflict of Interests

The authors declare that there is no conflict of interests.

References

[1] M. Axenovich, T. Jiang, A. Kündgen, Bipartite anti-Ramsey numbers of cycles, J. Graph Theory 47 (1) (2004), 9-28.
[2] J.A. Bondy, U.S.R. Murty, Graph theory with applitions, Macmillan, London and Elsevier, New York, 1976.
[3] P. Erdős, M. Simonovits, V.T. Sós, Anti-Ramsey theorems, Colloq. Math. Soc. Janos Bolyai. Vol.10, Infinite and Finite Sets, Keszthely (Hungary), 1973, 657-665.
[4] I. Gorgol, Anti-Ramsey numbers in complete split graphs, Discrete Math. 339 (7) (2016), 1944-1949.
[5] M. Horňák, S. Jendrol', I. Schiermeyer, R. Sotk, Rainbow numbers for cycles in plane triangulations, J. Graph Theory 78 (4) (2015), 248-257.
[6] Z.M. Jin, X.L. Li, Anti-Ramsey numbers for graphs with independent cycles, Electron. J. Combin. 16 (1) (2009), Article ID R85.
[7] Y.X. Lan, Y.T. Shi, Z.X. Song, Planar anti-Ramsey numbers for paths and cycles, arXiv:1709.00970 [math.CO], 2017.
[8] J.J. Montellano-Ballesteros, V. Neumann-Lara, An anti-Ramsey theorem on cycles, Graphs Combin. 21 (3) (2005), 343-354.

