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Abstract. The rainbow number rb(G,H) is the minimum number k such that any k-edge-coloring of G contains a

rainbow copy of H. In this paper, we determine the rainbow numbers of small cycles in the complete split graph

and maximal outerplanar graph.
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1. Introduction

An edge-colored graph is called rainbow if all of its edges have distinct colors. For two graphs

G and H, the anti-Ramsey number ar(G,H), introduced by Erdős et al. [3], is the maximum

number of colors in an edge-coloring of G with no rainbow copy of H. The rainbow number

rb(G,H) is the minimum number k such that any k-edge-coloring of G contains a rainbow copy

of H. Clearly, we have rb(G,H) = ar(G,H)+1.
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In this paper, we consider the rainbow number of cycles. Erdős et al. [3] posed a conjecture on

the anti-Ramsey number for cycles in complete graphs, which was later proved by Montellano

et al. [8]. Axenovich et al. [1] determine the anti-Ramsey number of cycles in complete

bipartite graphs. Jin et al. gave the anti-Ramsey numbers for graphs with independent cycles

in [6]. Recently, the authors [5,7] present bounds for the rainbow number of cycles in plane

triangulations. Note that the complete split graph contains the complete graph as a subclass.

Gorgol et al. [4] determined the rainbow number of C3 and C+
3 , a triangle with a pendant edge,

in complete split graphs. In this paper, we determine the rainbow numbers of small cycles in

complete split graphs and planar graphs.

2. Preliminaries

Let Kn, Cn, Pn be a complete graph, a cycle, a path on n vertices respectively. For a set S,

we denote by |S| the cardinality of S. We define that a uv-path is a path with first vertex u and

last vertex v. For two graphs G = (V (G),E(G)) and H = (V (H),E(H)), the join of G and H

is defined to be the graph by G∪H = (V (G)∪V (H),E(G)∪E(H)). The sum of G and H,

denoted by G+H, is defined to be the graph G∪H +{uv : u ∈ V (G),v ∈ V (H)}. A complete

split graph Kn + K̄s is the sum of a complete graph Kn and an empty graph K̄s. Denote by Mn

the class of all the maximal outerplanar graphs of order n. For two disjoint subsets R,T ⊆V (G),

denote by EG[R,T ] the set of all the edges between R and T in G. We use G[R] to denote the

subgraph induced by R in G when R⊆V (G) or R⊆ E(G). Let c be an edge-coloring of G. We

use c(W ) to denote the set of colors of W ⊆ E(G). When W = {e}, we use c(e) for short. A

connected graph that has no cut vertices is called a block. A block of a graph is a subgraph that

is a block and is maximal with respect to this property.

We need the following results:

Lemma 2.1. [5] Let Ck with k ≥ 4 be a rainbow cycle in an edge-colored graph G. If G[V (Ck)]

has a chord e, then there exists a rainbow cycle containing e in G of length smaller than k.

Lemma 2.2. [2] If the graph G does not contain any even cycles, then each block of G is either

a K1 or a K2 or an odd cycle.
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3. Main results

Theorem 3.1. If n≥ 3, then rb(Mn,C3) = n.

Proof. First, we construct a maximal outerplanar graph Mn ∈Mn for all n ≥ 3 and its edge

coloring with n−1 colors that does not contain any rainbow C3.

Given a 2-edge-colored K3, we construct a sequence of quadrangulations Qr on r≥ 3 vertices

starting with Q3 ∼= K3. From Qr we construct Qr+1 by choosing the outerface, inseting a new

vertex in it and making it adjacent to two vertices of an arbitrary edge on the boundary of Qr,

all these two edges are colored with a new color. Then, we get Qr+1. So Qr+1 has r+1 vertices,

2(r+1)−3 edges, r faces and r colors.

In this way, we obtain a maximal outerplanar graph Mn whose edges are colored with n−

1 colors. Finally, we observe that Mn does not contain any rainbow C3, which proves that

rb(Mn,C3)≥ n.

Now, we prove rb(Mn,C3)≤ n.

Let Mn ∈Mn. Color all the edges of Mn by n colors. Suppose that Mn does not contain any

rainbow C3. Let G be a rainbow spanning subgraph of Mn with |E(G)| = n. Since |E(G)| = n

and |V (G)| = n, G contains a rainbow cycle Ck for some k ≥ 3. If k = 3, then we obtain a

rainbow C3 in Mn, a contradiction. So we have k≥ 4. Since Mn is a maximal outerplanar graph,

G has a cycle C̃ ∼= Ck (for some k ≥ 4) with no inner vertices. Clearly, Mn[C̃] is a maximal

outerplanar graph. Let v be a vertex with degree 2 in Mn[C̃] and u,w be two neighbors of v.

Then there is a path uvw on C̃ with uw ∈ E(Mn). Since Mn does not contain any rainbow C3,

by Lemma 2.1, the cycle C̃−{v}+uw is a rainbow cycle of order k−1 in Mn. In any case we

obtain a shorter rainbow cycle. Hence there is a rainbow C3 in Mn, a contradiction. This proves

that rb(Mn,C3)≤ n.

The proof is completed.

Theorem 3.2. If n+ s≥ 4 and n≥ 2, then

rb(Kn + K̄s,C4) =


n+ s+ bn+s

3 c, if n≥ 2s;

n+ bn
2c+ s, if 2≤ n < 2s.
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Proof. Let N =V (Kn), S =V (Ks),

r =


n+ s+ bn+s

3 c, if n≥ 2s;

n+ bn
2c+ s, if 2≤ n < 2s.

First, we present a (r−1)-edge-coloring of Kn + K̄s which does not contain any rainbow C4

as follows.

Take a set of maximum number of vertex disjoint triangles, denoted by D1,D2, · · · ,Dt , in

Kn + K̄s and denote by {Dt+1, · · · ,Dn+s−2t} the set of the remaining vertices. Color all the

triangles by distinct colors. Then lexically color the edges between Di and D j by the color j for

i < j.

Clearly, t = bn+s
3 c for n ≥ 2s and t = bn

2c for 2 ≤ n < 2s. So we can find that the coloring

constructed above contains exactly r−1 colors, which proves rb(Kn + K̄s,C4)≥ r.

Now we prove the upper bound rb(Kn + K̄s,C4)≤ r. Given a r-edge-coloring of Kn + K̄s, we

need to show that Kn + K̄s contains a rainbow C4. By the contradiction, assume that Kn + K̄s

does not contain any rainbow C4.

Claim 1. For any Ck of Kn + K̄s, k ≥ 5, Ck contains a path of order four, say uvwx, such that

ux ∈ E(Kn + K̄s).

Proof. Let P = u1u2u3u4 be a path on the cycle Ck. If u1 ∈ N or u4 ∈ N, then the result holds

clearly. So we have u1,u4 ∈ S. Let u5 be another neighbour of u1 on the cycle Ck. Then u5 ∈ N.

Hence u5u3 ∈ E(Kn + K̄s) and the path u5u1u2u3 is a path as desired.

Claim 2. If Kn + K̄s contains a rainbow even cycle C2a+4 for a≥ 1, then it contains a rainbow

cycle of order 2a+2.

Proof. Let C2a+4 be a rainbow cycle in Kn+ K̄s. By Claim 1, there is a path P = uvwx on C4+2a

with ux ∈ E(Kn + K̄s). Since Kn + K̄s does not contain any rainbow C4, by Lemma 2.1, we have

that C2a+4−{v,w}+ux is a rainbow cycle of order 2a+2 in Kn + K̄s.

From Claim 2, we have that Kn + K̄s does not contain any rainbow even cycle.
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Claim 3. Let C, C′ be two distinct rainbow triangles in Kn + K̄s. If V (C)∩V (C′) 6= /0 and all

the edges of C∪C′ are colored by distinct colors, then Kn + K̄s contains a rainbow C4.

Proof. First, we consider that |V (C)∩V (C′)| = 2. Let C = u1u2u3u1 and C′ = u2u3u4u2. It is

easy to see that u1u2u3u4u1 is a rainbow C4 in Kn + K̄s.

Next, we consider that |V (C)∩V (C′)| = 1. Let C = u1u2u3u1 and C′ = u3u4u5u3. In the

graph Kn + K̄s, every C3 has at least two vertices in N. Let u1,u4 ∈ N. Then u1u4 ∈ E(Kn + K̄s).

Since the cycle u1u3u5u4u1 is a C4 in Kn + K̄s and Kn + K̄s does not contain any rainbow C4, we

have c(u1u4) ∈ c({u1u3,u3u5,u4u5}). Then the cycle u1u2u3u4u1 is a rainbow C4 in Kn + K̄s.

Let G be a rainbow spanning subgraph of Kn + K̄s with |E(G)|= r. Then G does not contain

any even cycle.

Claim 4. Let C, C′ be two distinct odd cycles in G. Then V (C)∩V (C′) = /0.

Proof. Since G does not contain any even cycle, by Lemma 2.2, each block of G is a K1 or a K2

or an odd cycle. Suppose that V (C)∩V (C′) 6= /0.

First, we consider that |V (C)∩V (C′)| ≥ 2. Since C and C′ are two cycles, it is easy to see

that C∪C′ does not contain any cut vertices. Then there is a block B of G containing C∪C′. So

B is not a K1 or a K2 or an odd cycle, a contradiction.

Now we consider that |V (C)∩V (C′)|= 1. If C and C′ are triangles, then by Claim 3, there is

a rainbow C4 in Kn+ K̄s, a contradiction. Next, we distinguish the following 2 cases to complete

the proof.

Case 1. C is a triangle, C′ is not a triangle or C is not a triangle, C′ is a triangle.

Without loss of generality, we only consider that C is a triangle and C′ is not a triangle. Let

V (C)∩V (C′) = {u1}. Since G does not contain any rainbow even cycle, we have |E(C′)| ≥ 5.

If u1 ∈ N, then we let u1u2u3 be a path on C′. Clearly, we have that u1u3 ∈ E(Kn+ K̄s). Since

C′ is an odd cycle and u1u2u3 has length 2, the cycle C′−{u2}+u1u3 is an even cycle and it is

not rainbow. Then by Lemma 2.1, the cycle u1u2u3u1 is a rainbow triangle in Kn + K̄s and we

have c(u1u3) ∈ c(E(C′− u2)). Note that C is also a rainbow triangle in G. Then it is easy to

see that c(E(C))∩ c(E(u1u2u3u1)) = /0 and V (u1u2u3u1)∩V (C) = {u1}. Therefore, by Claim

3, there is a rainbow C4 in Kn + K̄s, a contradiction.
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If u1 ∈ S, then let u4,u5 be 2 neighbors of u1 in C′. So we have that u4,u5 ∈ N and u4u5 ∈

E(Kn+ K̄s). Since C′ is an odd cycle and |E(u4u1u5)|= 2, the cycle C′−{u1}+u4u5 is an even

cycle and it is not rainbow. By Lemma 2.1, the cycle u4u1u5u4 is a rainbow triangle in Kn + K̄s

and we have c(u4u5) ∈ c(E(C′−u1)). Note that C is a rainbow triangle in G. Clearly, we have

that all the edges of C∪u4u1u5u4 are colored by distinct colors and V (u4u1u5u4)∩V (C) = {u1}.

Thus, by Claim 3, there is a rainbow C4 in Kn + K̄s, a contradiction.

Case 2. C and C′ are not triangles.

Let V (C) ∩V (C′) = {u1}. Since G does not contain any rainbow even cycle, we have

|E(C′)| ≥ 5 and |E(C)| ≥ 5.

If u1 ∈ N, then let u1u2u3 be a path on C and u1u4u5 be a path on C′. Clearly, we have

u1u3,u1u5 ∈ E(Kn + K̄s). Because C is an odd cycle and the length of the path u1u2u3 equals

two, the cycle C−{u2}+u1u3 is an even cycle and it is not rainbow. By Lemma 2.1, the cycle

u1u2u3u1 is a rainbow triangle in Kn + K̄s and we have c(u1u3) ∈ c(E(C− u2)). We also have

C′ is an odd cycle and |E(u1u4u5)| = 2. Then C′−{u4}+ u1u5 is an even cycle and it is not

rainbow. By Lemma 2.1, the cycle u1u4u5u1 is also a rainbow triangle in Kn + K̄s and we have

c(u1u5) ∈ c(E(C′−u4)). Now Kn + K̄s contains two rainbow triangles u1u2u3u1 and u1u4u5u1

with c(E(u1u2u3u1))∩ c(E(u1u4u5u1)) = /0. By Claim 3, there is a rainbow C4 in Kn + K̄s, a

contradiction.

If u1 ∈ S, then let u6,u7 be 2 neighbors of u1 in C and u8,u9 be 2 neighbors of u1 in C′. Then

we have u6,u8 ∈ N and u6u7,u8u9 ∈ E(Kn + K̄s). Since C is an odd cycle and the path u6u1u7

has length 2, the cycle C−{u1}+u6u7 is an even cycle and it is not rainbow. Then by Lemma

2.1, the cycle u1u6u7u1 is a rainbow triangle in Kn + K̄s and we have c(u6u7) ∈ c(E(C− u1)).

We also have C′ is an odd cycle and |E(u8u1u9)| = 2. Then C′−{u1}+ u8u9 is an even cycle

and it is not rainbow. By Lemma 2.1, the cycle u1u8u9u1 is also a rainbow triangle in Kn + K̄s

and we have c(u8u9) ∈ c(E(C′−u1)). So Kn + K̄s contains two rainbow triangles u1u6u7u1 and

u1u8u9u1 with c(E(u1u6u7u1))∩ c(E(u1u8u9u1)) = /0. By Claim 3, there is a rainbow C4 in

Kn + K̄s, a contradiction.

This proves the Claim.
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Let m be the number of odd cycles in G. Denote T by the graph obtained from G by deleting

one edge in each odd cycle. Since G does not contain any even cycle, T does not contain any

cycle. So |E(T )| ≤ n+ s−1. From Claim 4, we have |E(G)|= |E(T )|+m≤ n+ s+m−1. It

is easy to see that

m≤


bn+s

3 c, if n≥ 2s;

bn
2c, if 2≤ n < 2s.

So we have that |E(G)| ≤ r−1 < r, a contradiction to the fact that |E(G)|= r.

The proof is completed.
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