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Abstract. In this paper, we consider a generalized set-valued mixed equilibrium problem (in short, GSMEP)

in real Hilbert space. Related to GSMEP, we consider a generalized Wiener-Hopf equation problem (in short,

GWHEP) and show an equivalence relation between them. Further, we give a fixed-point formulation of GWHEP

and construct an iterative algorithm for GWHEP. Furthermore, we extend the notion of stability given by Harder

and Hick [3] and prove the existence of a solution of GWHEP and discuss the convergence and stability analysis

of the iterative algorithm. Our results can be viewed as a refinement and improvement of some known results in

the literature.
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Equilibrium problems, as the important extension of variational inequalities, have been

widely studied in recent years. One of the most interesting and important problems in the theo-

ry of equilibrium problems is the development of an efficient and implementable iterative algo-

rithm. Various kinds of iterative schemes have been proposed for solving equilibrium problems

and variational inequalities, see for example [1-9,11-13,15]. In early 1990’s, Robinson [14]

and Shi [15] initially used Wiener-Hopf equation to study the variational inequalities. In 2002,

Moudafi [8] has studied the convergence analysis for a mixed equilibrium problem involving

single-valued mappings.

Recently, many authors given in [2,4-6,11,12,15] used various generalizations of Wiener-

Hopf equations to develop the iterative algorithms for solving various classes of variational

inequalities and mixed equilibrium problems involving single and set-valued mappings.

Inspired by the works given in [2,4-6,8,11,12,15], in this paper, we consider a generalized

set-valued mixed equilibrium problem (GSMEP) in real Hilbert space. Related to GSMEP,

we consider a generalized Wiener-Hopf equation problem (GWHEP) and show an equivalence

relation between them. Further, we give a fixed-point formulation of GWHEP and construct an

iterative algorithm for GWHEP. Furthermore, we extend the notion of stability given by Harder

and Hick [3] and prove the existence of a solution of GWHEP and discuss the convergence and

stability analysis of the iterative algorithm. By exploiting the technique of this paper, one can

generalize and improve the results given in [1-9,11-13,15].

2. Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,

respectively; let K be a nonempty, closed and convex subset of H and let CB(H) be the family

of all nonempty, closed and bounded subsets of H. The Hausdorff metric H (·, ·) on CB(H) is

defined by

H (A,B) = max
{

sup
x∈A

inf
y∈B

d(x,y), sup
y∈B

inf
x∈A

d(x,y)
}
, A,B ∈CB(H).

We need the following known concepts and results.
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Definition 2.1[6]. Let η : H×H→H be a mapping. A set-valued mapping M : H→ 2H is said

to be:

(i) s-strongly monotone if there exists a constant s > 0 such that

〈u− v,η(x,y)〉 ≥ s||x− y||2, ∀x,y ∈ H, u ∈M(x), v ∈M(y);

(ii) maximal strongly η-monotone if M is strongly η-monotone and (I +ρM)(H) = H for

any ρ > 0, where I stands for identity mapping.

Definition 2.2[8]. A mapping T : H → H is said to be γ-cocoercive if there exists a constant

γ > 0 such that

〈T (x)−T (y),x− y〉 ≥ γ||T x−Ty||2, ∀x,y ∈ H.

Definition 2.3[6]. A set-valued mapping T : H →CB(H) is said to be µ-H -Lipschitz contin-

uous if there exists a constant µ > 0 such that

H (T (x), T (y)) ≤ µ‖x− y‖, ∀x,y ∈ H.

Theorem 2.1[6,10]. (i) Let T : H→CB(H) be a set-valued mapping. Then for any given ε > 0

and for any given x,y ∈ H and u ∈ T (x), there exists v ∈ T (y) such that

‖u− v‖ ≤ (1+ ε) H (T (x),T (y));

(ii) If T : H→C(H), then the above inequality holds for ε = 0.

Definition 2.4[1]. A real valued bifunction F : K×K→ R is said to be:

(i) monotone if

F(x,y)+F(y,x)≤ 0, ∀x,y ∈ K;

(ii) strictly monotone if

F(x,y)+F(y,x)< 0, ∀x,y ∈ K with x 6= y;

(iii) α-strongly monotone if there exists a constant α > 0 such that

F(x,y)+F(y,x)≤−α||x− y||2, ∀x,y ∈ K;
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(iv) upper-hemicontinuous if

limsup
t→0

F(tz+(1− t)x,y)≤ F(x,y), ∀x,y,z ∈ K.

Theorem 2.2[1]. If the following conditions hold:

(i) F is monotone and upper hemicontinuous;

(ii) F(x, .) is convex and lower-semicontinuous for each x ∈ K;

(iii) There exists a compact subset B of H and there exists y0 ∈ B∩K such that F(x,y0)< 0

for each x ∈ K \B.

Then the set of solutions to the following equilibrium problem (in short, EP): Find x∗ ∈ K such

that

F(x∗,y)≥ 0, ∀y ∈ K, (2.1)

is nonempty, convex and compact.

Remark 2.1[1,8]. If F is strictly monotone, then the solution of EP (2.1) is unique.

Definition 2.5[3,13]. Let G : H → 2H be a set-valued mapping and x0 ∈ H. Assume that

xn+1 ∈ f (G,xn) defines an iteration procedure which yields a sequence of points {xn} in H.

Suppose that F(G) = {x ∈ H : x ∈ G(x)} 6= /0 and {xn} converges to some x ∈ G(x). Let {yn}

be an arbitrary sequence in H and εn = ‖yn+1− xn+1‖.

(i) If lim
n→∞

εn = 0 implies that lim
n→∞

yn = x, then the iteration procedure xn+1 ∈ f (G,xn) is

said to be G-stable.

(ii) If
∞

∑
n=0

εn < 0 implies that lim
n→∞

yn = x, then the iteration procedure xn+1 ∈ f (G,xn) is said

to be almost G-stable.

Remark 2.2. Definition 2.5 can be viewed as an extension of the concept of stability of the

iteration procedure given by Harder and Hick [3].

Theorem 2.3[5,6]. Let {an}, {bn} and {cn} be nonnegative real sequences satisfying

an+1 = (1−λn)an +λnbn + cn, ∀n≥ 0,

where
∞

∑
n=0

λn = ∞; {λn} ⊂ [0,1]; lim
n→∞

bn = 0 and
∞

∑
n=0

cn < ∞. Then lim
n→∞

an = 0.
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3. Formulation of the problems

Let g : K → K, η : H ×H → H, N : H ×H ×H → H be nonlinear mappings and F :

K×K → R be a bifunction such that F(x,x) = 0,∀x ∈ K. Let T,B,S : H → CB(H) be three

non-monotone set-valued mappings with non-compact values, then we consider the following

generalized set-valued mixed equilibrium problem (in short, GSMEP):

Find x ∈ K, u ∈ T (x), v ∈ B(x), w ∈ S(x) such that

F(g(x),y)+ 〈N(u,v,w),η(y,g(x))〉 ≥ 0, ∀y ∈ K. (3.1)

We remark that for appropriate choices of the mappings g,F,N,T,B,S, and the space H,

one can obtain many known classes of mixed equilibrium problems and variational inequalities

from GSMEP (3.1), see similar type of problems in [1-9,11-13,15].

We need the following concepts and results.

Definition 3.1[8,9]. For ρ > 0 and a given bifunction F, the associated Yosida approximation,

Fρ , over K and the corresponding regularized operator, AF
ρ , are defined as follows:

Fρ(x,y) =
〈 1

ρ
(x− JF

ρ (x)),η(y,x)
〉

and AF
ρ (x) =

1
ρ

(
x− JF

ρ (x)
)
, (3.2)

in which JF
ρ (x) ∈ K is the unique solution of

ρF(JF
ρ (x),y)+ 〈JF

ρ (x)− x,η
(
y,JF

ρ (x)
)
〉 ≥ 0, ∀y ∈ K. (3.3)

Remark 3.1. If F satisfies all conditions of Theorem 2.2 and Remark 2.1, and η is continuous

and affine then the problem (3.3) has an unique solution.

Remark 3.2. If K ≡ H and F(x,y) = sup
ξ∈M(x)

〈ξ ,η(y,x)〉, ∀x,y ∈ K, where M is a maximal

strongly η-monotone operator, then it directly yields

JF
ρ (x) = (I +ρM)−1(x) and AF

ρ (x) = Mρ(x),

where Mρ := 1
ρ
(I− (I +ρM)−1) is the Yosida approximation of M. In this case JF

ρ generalizes

the concept of resolvent mapping for single-valued maximal strongly monotone mapping given

in Li and Feng [7].
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Theorem 3.1[6]. Let the bifunction F : K×K → R be α-strongly monotone and satisfy the

conditions of Theorem 2.2, and let the mapping η : H×H → H be δ -strongly monotone and

τ-Lipschitz continuous with η(x,y) +η(y,x) = 0, ∀x,y ∈ H, then the mapping JF
ρ is τ

δ+ρα
-

Lipschitz continuous and AF
ρ is c-cocoercive for c = 1

max{1+( τ

δ+ρα
)2,2} .

Now, related to GSMEP (3.1), we consider the following generalized Wiener-Hopf equa-

tion problem (in short, GWHEP):

Find z ∈ H,x ∈ K,u ∈ T (x),v ∈ B(x),w ∈ S(x) such that

N(u,v,w)+AF
ρ (z) = 0 and g(x) = JF

ρ (z). (3.4)

Lemma 3.1. GSMEP (3.1) has a solution (x,u,v,w) with x ∈ K,u ∈ T (x),v ∈ B(x),w ∈ S(x) if

and only if (x,u,v,w) satisfies the relation

g(x) = JF
ρ [g(x)−ρN(u,v,w)].

Proof. The proof directly follows from the definition of JF
ρ given by (3.3).

4. Iterative algorithm

The following lemma, which will be used in the sequel, is an equivalence between the

solutions of GSMEP (3.1) and GWHEP (3.4).

Lemma 4.1. GSMEP (3.1) has a solution (x,u,v,w) with x ∈ K,u ∈ T (x),v ∈ B(x),w ∈ S(x) if

and only if GWHEP (3.4) has a solution (z,x,u,v,w) with z ∈ H, where

g(x) = JF
ρ (z) (4.1)

and

z = g(x)−ρN(u,v,w). (4.2)

Proof. The proof immediately follows from the definition of AF
ρ and Lemma 3.1.

The GWHEP (3.4) can be written as

AF
ρ (z) =−N(u,v,w),
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which implies that

z = JF
ρ (z)−ρN(u,v,w),

= g(x)−ρN(u,v,w), by (4.1).

Using this fixed point formulation, we construct the following iterative algorithm.

Iterative Algorithm 4.1. For a given z0 ∈ H, x0 ∈ K, u0 ∈ T (x0), v0 ∈ B(x0), w0 ∈ S(x0)

and g(x0) = JF
ρ (z0), using induction principle, we can compute an approximate solution

(zn,xn,un,vn,wn) given by the following iterative scheme:

g(xn) = JF
ρ (zn), (4.3)

un ∈ T (xn) : ||un+1−un|| ≤
(
1+(1+n)−1)H (T (xn+1),T (xn)), (4.4)

vn ∈ B(xn) : ||vn+1− vn|| ≤
(
1+(1+n)−1)H (B(xn+1),B(xn)), (4.5)

wn ∈ S(xn) : ||wn+1−wn|| ≤
(
1+(1+n)−1)H (S(xn+1),S(xn)), (4.6)

zn+1 = (1−λ )zn−λ
[
g(xn)−ρN(un,vn,wn)

]
, (4.7)

where n = 0,1,2, ...; ρ > 0 is a constant and 0 < λ < 1 is a relaxation parameter.

5. Existence of solution, convergence and stability analysis

We prove the existence of a solution of GWHEP (3.4) and discuss the convergence and

stability analysis of the Iterative Algorithm 4.1.

Theorem 5.1. Let K be a nonempty, closed and convex subset of H; let the mapping η : H×

H→ H be δ -strongly monotone and τ-Lipschitz continuous with η(x,y)+η(y,x) = 0, ∀x,y ∈

H; let the bifunction F : K×K → R be α-strongly monotone and satisfy the assumptions of

Theorem 2.2; let the mapping N : H×H×H→H be (σ1,σ2,σ3)-mixed Lipschitz continuous;

let the mappings T,B,S : H → CB(H) be µ1-H -Lipschitz continuous, µ2-H -Lipschitz and

µ3-H -Lipschitz continuous, respectively; let the mapping g : K→ K be γ-strongly monotone

and ξ -Lipschitz continuous. Suppose that there exists a constant ρ > 0 such that the following

conditions hlod:
τ

δ +ρα

[
1+

ρ e
b

]
< 1 ; (5.1)
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ξ >
√

2γ−1 ; τe < αb ; b > 0, (5.2)

where e :=(σ1µ1+σ2µ2+σ3µ3) and b := 1−
√

1−2γ +ξ 2. Then the sequences {zn},{xn},{un},{vn},{wn}

generated by Iterative Algorithm 4.1 strongly converge to z ∈ H,x ∈ K,u ∈ T (x),v ∈ B(x),w ∈

S(x), respectively, and (z,x,u,v,w) is a solution of GWHEP (3.4).

Proof. From Iterative Algorithm 4.1, we have

||zn+2− zn+1|| ≤ (1−λ )||zn+1− zn||+λ ||g(xn+1)−g(xn)||

+λρ||N(un+1,vn+1,wn+1)−N(un,vn,wn)||. (5.3)

Since N is (σ1,σ2,σ3)-mixed Lipschitz continuous; T is µ1-H -Lipschitz continuous; B is

µ2-H -Lipschitz continuous and S is µ3-H -Lipschitz continuous, we have

||N(un+1,vn+1,wn+1)−N(un,vn,wn)||

≤ σ1||un+1−un||+σ2||vn+1− vn||+σ3||wn+1−wn||

≤
(
1+(1+n)−1) [

σ1H (T (xn+1),T (xn))+σ2H (B(xn+1),B(xn))+σ3H (S(xn+1),S(xn))
]

≤
(
1+(1+n)−1) (σ1µ1 +σ2µ2 +σ3µ3)||xn+1− xn||. (5.4)

By using Theorem 3.1 and (4.3), we have

||g(xn+1)−g(xn)|| = ||JF
ρ (zn+1)− JF

ρ (zn)||

≤ τ

δ +ρα
||zn+1− zn||. (5.5)

Using γ-strongly monotonicity and ξ -Lipschitz continuity of g and (5.5), we have

||xn+1− xn||= ||xn+1− xn− (g(xn+1)−g(xn))+ JF
ρ (zn+1)− JF

ρ (zn)||

≤ ||xn+1− xn− (g(xn+1)−g(xn))||+
τ

δ +ρα
||zn+1− zn||

≤
√

1−2γ +ξ 2 ||xn+1− xn||+
τ

δ +ρα
||zn+1− zn||,

which implies that

||xn+1− xn|| ≤
τ

(1−
√

1−2γ +ξ 2) (δ +ρα)
||zn+1− zn||. (5.6)
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From (5.3)-(5.6), we have the following estimate:

||zn+2− zn+1|| ≤ (1−λ )||zn+1− zn||

+λ
τ

δ +ρα

[
1+

ρ(σ1µ1 +σ2µ2 +σ3µ3)(1+(1+n)−1)

(1−
√

1−2γ +ξ 2)

]
||zn+1− zn||

= (1−λ

(
1−θn)

)
||zn+1− zn||, (5.7)

where

θn :=
τ

δ +ρα

[
1+

ρ(σ1µ1 +σ2µ2 +σ3µ3)(1+(1+n)−1)

(1−
√

1−2γ +ξ 2)

]
.

Letting n→ ∞, we see that θn→ θ , where

θ :=
τ

δ +ρα

[
1+

ρ(σ1µ1 +σ2µ2 +σ3µ3)

(1−
√

1−2γ +ξ 2)

]
. (5.8)

Since θ < 1 by conditions (5.1), (5.2), then (1−λ
(
1−θn)

)
< 1 for sufficiently large n. It

follows from (5.7) that {zn} is Cauchy sequence and hence there is a z ∈ H such that zn→ z.

Similarly, by (5.6), we observe that xn→ x ∈ K as n→ ∞, since K is closed. Also, from (4.4)-

(4.6) and the Lipschitz continuity of T,B,S, we have un→ u, vn→ v and wn→ w in H.

Next, we claim that u ∈ T (x). Since un ∈ T (xn), we have

d(u,T (x)) ≤ ||u−un||+d(un,T (xn))+H (T (xn),T (x))

≤ ||u−un||+µ1||xn− x|| → 0 as n→ ∞.

Hence u∈ T (x), since T (x)∈CB(H). In similar way, we can observe that v∈ B(x) and w∈

S(x). Finally, continuity of N,T,B,S,g,JF
ρ , and Iterative Algorithm 4.1 ensure that (z,x,u,v,w)

is a solution of GWHEP (3.4).

Theorem 5.2(Stability). Let the mappings g,η ,F,N,T,B,S be same as in Theorem 5.1 and

conditions (5.1), (5.2) of Theorem 5.1 hold with e = (1+ε)(σ1µ1+σ2µ2+σ3µ3). Let {qn} be

any sequence in H and define {an} ⊂ [0,∞) by

g(yn) = JF
ρ (qn), (5.9)

un ∈ T (yn) : ||un+1−un|| ≤
(
1+(1+n)−1)H (T (yn+1),T (yn)), (5.10)

vn ∈ B(yn) : ||vn+1− vn|| ≤
(
1+(1+n)−1)H (B(yn+1),B(yn)), (5.11)
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wn ∈ S(yn) : ||wn+1−wn|| ≤
(
1+(1+n)−1)H (S(yn+1),S(yn)), (5.12)

an = ||qn+1− (1−λ )qn−λ [g(yn)−ρN(un,vn,wn)]||, (5.13)

where n = 0,1,2, ...; ρ > 0 is a constant and 0 < λ < 1 is a relaxation parameter. Then

lim
n→∞

(qn,yn,un,vn,wn) = (z,x,u,v,w) if and only if lim
n→∞

an = 0, where (z,x,u,v,w) is a solution

of GWHEP (3.4).

Proof. By Theorem 5.1, GWHEP (3.4) has a solution (z,x,u,v,w), that is,

z = (1−λ )z+λ [g(x)−ρN(u,v,w)].

Now, we assume that lim
n→∞

an = 0, we have

||qn+1−z|| ≤ ||(1−λ )qn+λ [g(yn)−ρN(un,vn,wn)]−z||

+||qn+1− (1−λ )qn−λ [g(yn)−ρN(un,vn,wn)]||

≤ (1−λ )||qn− z||+λ ||g(yn)−g(x)||+ρλ ||N(un,vn,wn)−N(u,v,w)||+an.

By Theorem 2.1 and Theorem 3.1, the preceding inequality reduces to

||qn+1− z|| ≤ (1−λ )||qn− z||+λ
τ

δ +ρα
||qn− z||

+λρ(1+ ε)
(
σ1H (T (yn),T (y))+σ2H (B(yn),B(y))+σ3H (S(yn),S(y))

)
≤ (1−λ )||qn−z||+λ

τ

δ +ρα
||qn−z||+λρ(1+ε)(σ1µ1+σ2µ2+σ3µ3)||yn−x||+an. (5.14)

Next, we estimate ||yn− x||:

||yn− x|| ≤ ||yn− x− (g(yn)−g(x))||+ ||JF
ρ (qn)− JF

ρ (z)||

≤
√

1−2γ +ξ 2 ||yn− x||+ τ

δ +ρα
||qn− z||.

It follows that

||yn− x|| ≤ τ

(1−
√

1−2γ +ξ 2)(δ +ρα)
||qn− z||. (5.15)

Hence, from (5.14) and (5.15), we have the following estimate:

||qn+1− z|| ≤
(
1−λ (1−θε)

)
||qn− z||+an, (5.16)

where θε := τ

δ+ρα

[
1+ ρ(1+ε)(σ1µ1+σ2µ2+σ3µ3)

(1−
√

1−2γ+ξ 2)

]
.
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Setting: bn = ||qn− z||; λn = λ (1−θε); βn =λ−1(1−θε)
−1an; γn = 0, ∀n.

By conditions (5.1), (5.2), it follows that θε < 1, and hence λn ∈ [0,1], ∀n and ∑λn =

∞. Since lim
n→∞

an = 0, then lim
n→∞

βn = 0. Hence, by Theorem 2.3 and (5.16), it follows that

bn → 0 as n→ 0, that is, qn → z as n→ ∞. Also, from (5.10)-(5.12), (5.15) and the Lips-

chitz continuity of N,T,B,S, we observe that yn→ x, un→ u, vn→ v and wn→ w as n→ ∞.

Thus, lim
n→∞

(qn,yn,un,vn,wn) = (z,x,u,v,w).

Conversely, assume that lim
n→∞

(qn,yn,un,vn,wn) = (z,x,u,v,w). Then (5.13) implies that

an ≤ ||qn+1− z||+ ||(1−λ )qn +λ [g(yn)−ρN(un,vn,wn)]− z||

≤ ||qn+1− z||+(1−λ )||qn− z||+λ ||g(yn)−g(x)||+ρλ ||N(un,vn,wn)−N(u,v,w)||

→ 0 as n→ ∞.

This completes the proof.

Remark 5.1. For ρ > 0, it is clear that γ ≤ ξ ; δ ≤ τ; ξ ≥
√

2γ−1 ; τe < αb, b > 0. Further,

θ ∈ (0,1) and conditions (5.1),(5.2) of Theorem 5.1 hold for some suitable values of constants,

for example,

(α = 4, γ = ξ = 1.5, δ = 1, τ = 1.5, ε = .1, σ1 = σ2 = σ3 = µ1 = µ2 = µ3 = .5, b = .5).
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