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Abstract. In this paper, we study pointwise slant submersions from Sasakian manifolds onto Riemannian mani-

folds. We found some results on such submersions from Sasakian manifolds onto Riemannian manifolds admitting

vertical and horizontal structure vector fields.
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1. Introduction

The theory of Riemannian submersions, started with the study of O’Neill [13] and Gray [9].

Watson [16] introduced the almost Hermitian submersions. These submersions were Riemann-

ian submersions between almost Riemannian manifolds. Submersions between Riemannian

manifolds equipped with an additional structure of almost contact type, firstly studied by Wat-

son [17] and Chinea [6] independently.
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On the other hand, submersions have been studied by several authors. There are so many

submersions. Some of submersions and related research papers are: slant submersions from al-

most Hermitian manifolds [14], Riemannian submersions from almost contact metric manifolds

[10], On quasi-slant submanifolds of an almost Hermitian manifolds [7], Slant submanifolds in

Sasakian manifolds [4], Pointwise slant submanifolds in almost Hermitian manifolds [5], Al-

most contact metric submersions [6], Riemannian submersions and related topics [8], Pointwise

slant submersions [11], Slant submanifolds in contact geometry [12], Pointwise slant submani-

folds in almost contact geometry [1], Pointwise slant submersions from Cosymplectic manifolds

[15] etc.

In this paper, we focused on pointwise slant submersions from Sasakian manifolds onto Rie-

mannian manifolds. This paper is organized as follows. We collect main notions and formulae

which are needed for this paper in second section. In section 3, we obtain some results of point-

wise slant submersions from Sasakian manifolds onto Riemannian manifolds admitting vertical

and horizontal structure vector fields.

2. Preliminaries

An m−dimensional Riemannian manifold M is said to be an almost contact metric manifold

if there exists on M a (1,1) tensor field φ , a vector field ξ , a 1−form η and a Riemannian metric

g such that

(1) φ
2 =−I +η⊗ξ ,φξ = 0,η ◦ξ = 0,

(2) η(X) = g(X ,ξ ),η(ξ ) = 1,

and

g(φX ,φY ) = g(X ,Y )−η(X)η(Y ),(3)

g(φX ,Y ) = −g(X ,φY ),

for any vector fileds X ,Y on M.
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Almost contact metric manifold is said to be contact metric manifold if dη = Φ, where

Φ(X ,Y ) = g(X ,φY ) is called the fundamental 2−form of M. On the other hand, almost contact

metric structure of M is said to be normal if [φ ,φ ](X ,Y ) =−2dη(X ,Y )ξ , for X ,Y on M, where

[φ ,φ ] denotes the Nijenhuis tensor of φ given by

[φ ,φ ](X ,Y ) = φ
2[X ,Y ]+ [φX ,φY ]−φ [φX ,Y ]−φ [X ,φY ].

A normal contact metric manifold is called a Sasakian manifold [3] if

(4) (∇X φ)Y = g(X ,Y )ξ −η(Y )X ,

for any vector fields X ,Y on M. Moreover for a Sasakian manifold the following equation

satisfies:

R(ξ ,X)Y = g(X ,Y )ξ −η(Y )X ,(5)

∇X ξ = −φX .

Let (M,gM) be an m−dimensional Riemannian manifold and (N,gN) be an n−dimensional

Riemannian manifold. Let F : (M,gM)→ (N,gN) be a C∞ map. We denote the kernel space of

F∗ by kerF∗ and consider the orthogonal complementary space H = (kerF∗)⊥ to kerF∗. Then

the tangent bundle of M has the following decomposition, T M = (kerF∗)⊕ (kerF∗)⊥.

We also denote the range of F∗ by rangeF∗ and consider the orthogonal complementary space

(rangeF∗)⊥ to rangeF∗ in the tangent bundle T N of N. Thus the tangent bundle T N of N has

the following decomposition, T N = (rangeF∗)⊕ (rangeF∗)⊥.

A Riemannian submersion F is a differentiable map from (M,gM) onto (N,gN) satisfying the

following conditions:

(i) F has the maximal rank,

(ii) The differential map F∗ preserves the lengths of horizontal vectors.

For each x ∈ N, F−1(x) is an (m− n) dimensional submanifold of M so called fiber. If a

vector field on M is always tangent (resp. horizontal) to fibres, then it is called vertical (rep.

horizontal). A vector field X on M is said to be basic if it is horizontal and F−related to a

vector field X∗ on N, i.e., F∗Xq = X∗F(q) for all q ∈M. We denote the projection morphisms on

the distributions kerF∗ and (kerF∗)⊥ by V and H respectively.
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A Riemannian submersion is characterized via O’Neill tensors T and A by the formulae

(6) TEF = H ∇V EV F +V ∇V EH F,

(7) AEF = V ∇H EH F +H ∇H EV F,

for arbitrary vector fields E and F on M, where ∇ is the Levi-Civita connection of (M,gM) [13].

Lemma 2.1. Let F : (M,gM)→ (N,gN) be Riemannian submersion between Riemannian man-

ifolds. If X and Y are basic vector fields on M, then

(i) gM(X ,Y ) = gN(X∗,Y∗)◦F,

(ii) the horizontal part [X ,Y ]H of [X ,Y ] is a basic vector field and corresponds to [X∗,Y∗] i.e.,

F∗([X ,Y ]H ) = [X∗,Y∗],

(iii) [V,X ] is vertical for any vector field V of kerF∗,

(iv) (∇M
X Y )H is vertical for any vector field corresponding to ∇N

X∗Y∗, where ∇M and ∇N are

the Riemannian connection on M and N, respectively.

On the other hand, from equations (6) and (7), we have

(8) ∇XY = TXY + ∇̂XY,

(9) ∇XV = H ∇XV +TXV,

(10) ∇V X = AV X +V ∇V X ,

(11) ∇VW = H ∇VW +AVW,

for any X ,Y ∈ Γ(kerF∗) and V,W ∈ Γ(kerF∗)⊥, where ∇̂XY = V ∇XY. Moreover, if V is basic

then H ∇XV = AV X .

On the other hand, for any E ∈ Γ(T M), it is seen that T is vertical TE = TV E and A is

horizontal AE = AH E .

The tensor fields T and A satisfy the equations:

(12) TXY = TY X ,

(13) AVW =−AWV =
1
2
V [V,W ],
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for any X ,Y ∈ Γ(kerF∗) and V,W ∈ Γ(kerF∗)⊥.

It can be easily seen that a Riemannian submersion F : (M,gM)→ (N,gN) has totally geo-

desic fibers if and only if T identically vanishes.

Now, we consider the notion of harmonic maps between Riemannian manifolds. Let (M,gM)

and (N,gN) be Riemannian manifolds and suppose that F is a C∞ mapping between them. Then

the differential F∗ of F can be considered as a section of the bundle Hom(T M,F−1T N)→M,

where F−1T N is the pullback bundle that has fibers (F−1T N)q =TF(q)N,q∈M. If Hom(T M,F−1T N)

has a connection ∇ induced from the Riemannian connection ∇M, then the second fundamental

form of F is given by

(14) (∇F∗)(X ,Y ) = ∇
F
X F∗Y −F∗(∇M

X Y ),

for any X ,Y ∈ Γ(T M), where ∇F is the pullback connection.

For a Riemannian submersion F , we can easily seen

(15) (∇F∗)(V,W ) = 0,

for all V,W ∈ Γ(kerF∗)⊥ [2].

3. Pointwise slant submersion from almost contact metric manifolds

Let F be a Riemannian submersion from a Sasakian manifold (M,φ ,ξ ,η ,gM) onto a Rie-

mannian manifold (N,gN). If for each q ∈M the angle θ(X) between φX and the space kerF∗

is independent of the choice of the non-zero vector field X ∈ Γ(kerF∗)−< ξ >, then F is called

a pointwise slant submersion. The angle θ is said to be slant function of the pointwise slant

submersion [11].

A pointwise slant submersion F is called slant if its slant function θ is independent of the

choice of the point on (M,φ ,ξ ,η ,gM). Then the constant angle θ is called the slant angle of the

slant submersion.

3.1. Pointwise slant submersion for ξ ∈ Γ(kerF∗)
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Let F be a Riemannian submersion from a Sasakian manifold (M,φ ,ξ ,η ,gM) onto a Rie-

mannian manifold (N,gN).

For X ∈ Γ(kerF∗), we get

(16) φX = ψX +ωX ,

where ψX and ωX are vertical and horizontal components of φX , respectively.

For V ∈ Γ(kerF∗)⊥, we have

(17) φV = BV +CV,

where BV and CV are vertical and horizontal components of φV, respectively

By using equations (3),(16) and (17), we get

(18) gM(ψX ,Y ) =−gM(X ,ψY ),

(19) gM(ωX ,V ) =−gM(X ,BV ),

for all X ,Y ∈ Γ(kerF∗) and V ∈ Γ(kerF∗)⊥.

Again the using equations (5),(8),(10),(16) and (17), we get

∇̂X ξ = ψX ,TX ξ =−ωX ,(20)

V ∇X ξ = −BX ,AX ξ =−CX ,

for all X ∈ Γ(kerF∗) and V ∈ Γ(kerF∗)⊥.

For X ,Y ∈ Γ(kerF∗), define

(21) (∇X ψ)Y = ∇̂X ψY −ψ∇̂XY,

and

(22) (∇X ω)Y = H ∇X ωY −ω∇̂XY,

where ∇ is the Levi-Civita connection on M. We say that the ω is parallel if

(23) (∇X ω)Y = 0.



460 SUSHIL KUMAR, RAJENDRA PRASAD

Lemma 3.1. Let (M,φ ,ξ ,η ,gM) be a Sasakian manifold and (N,gN) be a Riemannian mani-

fold. Let F : (M,φ ,ξ ,η ,gM)→ (N,gN) be a pointwise slant submersion. Then,

(24) (∇X ψ)Y = BTXY −TX ωY +R(ξ ,X)Y,

and

(25) (∇X ω)Y =CTXY −TX ψY,

for any X ,Y ∈ Γ(kerF∗).

Theorem 3.1. Let (M,φ ,ξ ,η ,gM) be a Sasakian manifold and (N,gN) be a Riemannain mani-

fold. Let F : (M,φ ,ξ ,η ,gM)→ (N,gN) be a map. The map F is pointwise slant submersion if

and only if

ψ
2 = cos2

θ(−I +η⊗ξ ).

Corollary 3.1. Let (M,φ ,ξ ,η ,gM) be a Sasakian manifold and (N,gN) be a Riemannian man-

ifold. Let F : (M,φ ,ξ ,η ,gM)→ (N,gN) be a pointwise slant submersion. Then,

gM(ψX ,ψY ) = cos2
θ(gM(X ,Y )−η(X)η(Y )),

gM(ωX ,ωY ) = sin2
θ(gM(X ,Y )−η(X)η(Y )),

for any X ,Y ∈ Γ(kerF∗).

Theorem 3.2. Let (M,φ ,ξ ,η ,gM) be a Sasakian manifold and (N,gN) be a Riemannian mani-

fold. Let F : (M,φ ,ξ ,η ,gM)→ (N,gN) be a pointwise slant submersion with slant function θ .

If ω is parallel, then

TψX ψX =−cos2
θTX(X−η(X)ψX),

for any X ∈ Γ(kerF∗).

Let F is a C∞ map between Riemannian manifolds (M,gM) and (N,gN), then the adjoint ∗F∗

map of F∗ is defined by

(26) gM(X ,∗F∗qY ) = gN(F∗qX ,Y ),

for any X ∈ TqM,Y ∈ TxN and q ∈M. For each q ∈M, Fh
∗ is a map characterized by

Fh
∗ : ((kerF∗)⊥(q),gM(q)(kerF∗)⊥(q))→ (rangeF∗(x),gNx(rangeF∗)(x)),
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denote the adjoint of Fh
∗ by ∗Fh

∗ . Let ∗F∗ be the adjoint of F∗ that is defined by F∗q : (TqM,gM)→

(TxN,gN).

Then the linear transformation (∗F∗)h : rangeF∗(x)→ (kerF∗)⊥(q), defined as (∗F∗)hY =∗

F∗Y, where Y ∈ Γ(rangeF∗),F(q) = x, is an isomorphism and (Fh
∗q)
−1 = (∗F∗q)h =∗ (Fh

∗q).

Theorem 3.3. Let (M,φ ,ξ ,η ,gM) be a Sasakian manifold and (N,gN) be a Riemannain man-

ifold. Let F : (M,φ ,ξ ,η ,gM)→ (N,gN) be a pointwise slant submersion with non-zero slant

function θ . Then the fibers are totally geodesic submanifolds in M if and only if

gN(∇
N
V ′F∗(ωX),F∗(ωY ))

= −sin2
θgM([X ,V ],Y )+ sin2θV (θ)gM(φX ,φY )+gM(AV ωψX ,Y )

−gM(AV ωX ,ψY )+ sin2
θη(X)gM(Y,BV )− cos2

θη(Y )gM(X ,BV )

−sin2
θη(∇V X)η(Y ),

for any X ,Y ∈ Γ(kerF∗) and V ∈ Γ(kerF∗)⊥, where V and V ′ are F−related vector fields and

∇N is the Riemannian connection on N.

Proof. For X ,Y ∈ Γ(kerF∗) and V ∈ Γ(kerF∗)⊥, using equations (3),(4),(8), (11),(16),(17)

and (14), theorem (3.1), we get

sin2
θgM(TXY,V )

= −sin2
θgM([X ,V ],Y )+ sin2θV (θ)gM(φX ,φY )+gM(AV ωψX ,Y )

−gN(∇
N
V /F∗(ωX),F∗(ωY ))−gM(AV ωX ,ψY )+ sin2

θη(X)gM(Y,BV )

−cos2
θη(X)gM(Y,BV )− sin2

θη(∇V X)η(Y )).

By considering the fibers as totally geodesic, we derive the formula given the hypothesis. Con-

versely, it can be directly verified. �

Theorem 3.4. Let (M,φ ,ξ ,η ,gM) be a Sasakian manifold and (N,gN) be a Riemannain man-

ifold. Let F : (M,φ ,ξ ,η ,gM)→ (N,gN) be a pointwise slant submersion with non-zero slant
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function θ . Then totally geodesic map if and only if

gN(∇
N
V ′F∗(ωX),F∗(ωY ))

= −sin2
θgM([X ,V ],Y )+ sin2θV (θ)gM(φX ,φY )+gM(AV ωψX ,Y )

−gM(AV ωX ,ψY )+ sin2
θη(X)gM(Y,BV )− cos2

θη(Y )gM(X ,BV )

−sin2
θη(∇V X)η(Y ),

and

gM(AV ωV,BW ) = gN(∇
F
V F∗(ωψX),F∗(W ))−gN(∇

F
V F∗(ωX),F∗(CW ))

−sin2
θη(X)gM(V,CW ),

for any X ,Y ∈ Γ(kerF∗) and V,W ∈ Γ(kerF∗)⊥, where V and V ′ are F−related vector fields and

∇F is the pullback connection along F .

Proof. By definition, it follows that F is totally geodesic if and only if (∇F∗)(X ,Y ) = 0, for any

X ,Y ∈ Γ(T M).

From theorem (3.3), we obtain the first equation. On the other hand, for any X ,Y ∈ Γ(kerF∗)

and V,W ∈ Γ(kerF∗)⊥, using equations (3),(4),(10),(11),(16),(17) and (14) theorem (3.1),

we obtain

sin2
θgN((∇F∗)(V,X),F∗(W )) = gN(∇

F
V F∗ωX ,F∗W )−gN(∇

F
V F∗ωX ,F∗CW )

−gM(AV ωX ,BW )− sin2
θη(X)gM(V,CW ).

Conversely it is easily proved. �

3.2. Pointwise slant submersions for ξ ∈ Γ((kerF∗)⊥)

In this section, we give the basic equations of pointwise slant submersion from a Sasakian

manifolds onto a Riemannian manifolds for ξ ∈ Γ(kerF∗)⊥.

From equations (1) and (2), we have

(27) φ
2X =−X ,
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and

(28) g(φX ,φY ) = g(X ,Y ),

for any X ,Y ∈ Γ(kerF∗). Moreover, from equations (9),(11),(5),(16) and (17), we get

(29) TX ξ =−ψX ,

(30) AV ξ =−BV,

and

(31) η(∇XY ) = 0,

for any X ,Y ∈ Γ(kerF∗) and V ∈ Γ(kerF∗)⊥.

Theorem 3.5. Let (M,φ ,ξ ,η ,gM) be a Sasakian manifold and (N,gN) be a Riemannain mani-

fold. Let F : (M,φ ,ξ ,η ,gM)→ (N,gN) be a map. The map F is pointwise slant submersion if

and only if

ψ
2 =−(cos2

θ)I.

Corollary 3.2. Let (M,φ ,ξ ,η ,gM) be a Sasakian manifold and (N,gN) be a Riemannain man-

ifold. Let F : (M,φ ,ξ ,η ,gM)→ (N,gN) be a pointwise slant submersion. Then,

gM(ψX ,ψY ) = cos2
θgM(X ,Y ),

gM(ωX ,ωY ) = sin2
θgM(X ,Y ),

for any X ,Y ∈ Γ(kerF∗).

Theorem 3.6. Let (M,φ ,ξ ,η ,gM) be a Sasakian manifold and (N,gN) be a Riemannain mani-

fold. Let F : (M,φ ,ξ ,η ,gM)→ (N,gN) be a pointwise slant submersion with slant function θ .

If ω is parellel, then

TψX ψX =−cos2
θTX X ,

for any X ∈ Γ(kerF∗).
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Theorem 3.7. Let (M,φ ,ξ ,η ,gM) be a Sasakian manifold and (N,gN) be a Riemannain man-

ifold. Let F : (M,φ ,ξ ,η ,gM)→ (N,gN) be a pointwise slant submersion with non-zero slant

function θ . Then the fibers are totally geodesic submanifolds in M if and only if

gN(∇
N
V ′F∗(ωX),F∗(ωY )) = −sin2

θgM([X ,V ],Y )+ sin2θV (θ)gM(X ,Y )

+gM(AV ωψX ,Y )−gM(AV ωX ,ψY ),

for any X ,Y ∈ Γ(kerF∗) and V ∈ Γ(kerF∗)⊥, where V and V ′ are F−related vector fields and

∇N is the Riemannian connection on N.

Proof. For any X ,Y ∈Γ(kerF∗) and V ∈Γ(kerF∗)⊥, using equations (2),(3),(4),(8), (11),(16),(17),

and (14), theorem (3.6), we get

sin2
θgM(TXY,V )

= −sin2
θgM([X ,V ],Y )+ sin2θV (θ)gM(X ,Y )+gM(AV ωψX ,Y )

−gN(∇
N
V ′F∗(ωX),F∗(ωY ))−gM(AV ωX ,ψY ).

By considering the fibers as totally geodesic, we derive the formula given the hypothesis. Con-

versely, it can be directly verified. �

Theorem 3.8. Let (M,φ ,ξ ,η ,gM) be a Sasakian manifold and (N,gN) be a Riemannain man-

ifold. Let F : (M,φ ,ξ ,η ,gM)→ (N,gN) be a pointwise slant submersion with non-zero slant

function θ . Then F is totally geodesic map if and only if

gN(∇
N
V ′F∗(ωX),F∗(ωY )) = −sin2

θgM([X ,V ],Y )+ sin2θV (θ)gM(X ,Y )

+gM(AV ωψX ,Y )−gM(AV ωX ,ψY ),

and

gM(AV ωX ,BW ) = gN(∇
F
V F∗(ωψX),F∗(W ))−gN(∇

F
V F∗(ωX),F∗(CW )),

for any X ,Y ∈ Γ(kerF∗) and V,W ∈ Γ(kerF∗)⊥, where V and V ′ are F−related vector fields and

∇F is the pullback connection along F .

Proof. By definition, it follows that F is totally geodesic if and only if (∇F∗)(X ,Y ) = 0, for any

X ,Y ∈ Γ(T M).
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From theorem 3.3, we obtain the first equation. On the other hand, for any X ,Y ∈ Γ(kerF∗)

and V,W ∈ Γ(kerF∗)⊥, using equations (2),(3),(4),(10),(11),(16),(17) and (14), theorem

(3.6), we obtain

sin2
θgN((∇F∗)(V,X),F∗(W )) = gN(∇

F
V F∗ωX ,F∗W )−gN(∇

F
V F∗ωX ,F∗CW )

−gM(AV ωX ,BW ).

Conversely it is easily proved. �
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