RAINBOW NUMBER OF MATCHINGS IN HALIN GRAPHS

LINGYUN SANG ${ }^{1}$, HUAPING WANG ${ }^{2}$, KUN $\mathrm{YE}^{1, *}$
${ }^{1}$ Department of Mathematics, Zhejiang Normal University, Jinhua, 321004, P.R. China
${ }^{2}$ Department of Mathematics, Jiangxi Normal University, Nanchang, 330022, P.R. China

Copyright © 2019 the authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The rainbow number $r b(G, H)$ for the graph H in G is defined to be the minimum integer k such that any k-edge-coloring of G contains a rainbow H. As one of the most important structures in graphs, the rainbow number of matchings has drawn much attention and has been extensively studied. In this paper, we determine the rainbow number of some small matchings in Halin graphs.

Keywords: rainbow number; rainbow matching; Halin graph.
2010 AMS Subject Classification: 05C55, 05C70, 05D10.

1. Introduction

An edge-colored graph is called a rainbow graph if the colors on its edges are distinct. The anti-Ramsey number $A R(G, H)$ is defined to be the maximum number of colors in an edge coloring of G without any rainbow H. The anti-Ramsey number was introduced by Erdős et al. [2] in 1973 and and always, the anti-Ramsey number plus is called the rainbow number of a

[^0]graph. The anti-Ramsey numbers of many graphs have been determined, see two comprehensive surveys [3, 11].

The anit-Ramsey number for matchings in complete graphs was determined in [1, 4, 14] independently. During the last ten years, the researchers began to consider the anti-Ramsey problem in more host graphs other than complete graphs, see $[12,6,7,13,5,9,8,10]$.

In this paper, we consider the rainbow number of matchings in Halin graphs. A Halin graph is a type of planar graph, constructed by connecting the leaves of a tree into a cycle. The tree must have at least four vertices, none of which has exactly two neighbors. It should be drawn in the plane so none of its edges cross (this is called planar embedding), and the cycle connects the leaves in their clockwise ordering in this embedding. Thus, the cycle forms the outer face of the Halin graph, with the tree inside it.

In 1971, Halin introduced the Halin graphs as a class of minimally 3-vertex-connected graphs: for every edge in the graph, the removal of that edge reduces the connectivity of the graph. These graphs gained in significance with the discovery that many algorithmic problems that were computationally infeasible for arbitrary planar graphs could be solved efficiently on them.

Let c be an edge-coloring of the graph G. Denote by $c(G)$ the set colors appearing on the edges of G. For an edge $e \in E(G)$, denote by $c(e)$ the color assigned to the edge e.

2. Main results

Denote by $\mathscr{H} \mathscr{L}_{n}$ the family of Halin graphs of order n. In this section, we give lower and upper bounds on $r b\left(\mathscr{H} \mathscr{L}_{n}, k K_{2}\right)$ for all $k \geq 3$ and $n \geq 2 k$. Clearly, if $H L_{n}$ is a Halin graph of order $n \geq 4$, then $\delta\left(H L_{n}\right) \geq 3$. First we give two definitions.

Definition 2.1. A star is a tree with exactly one internal vertex. Applying the Halin graph construction to a star produces a wheel graph. Definition W_{p} is a wheel graph with p leaves in its tree.

Definition 2.2. A maximal outerplanar graph is a planar graph that is not a spanning subgraph of another outerplanar graph. Definition M_{n} is a maximal outerplanar graph of order n.

Lemma 2.3. (Degree-Sum Formula) For a graph $G=(V, E)$,

$$
\sum_{v \in V(G)} d(v)=2|E(G)| .
$$

Lemma 2.4. Let $H L_{n}$ be a Halin graph, $\left\lceil\frac{3 n}{2}\right\rceil \leq\left|E\left(H L_{n}\right)\right| \leq 2 n-2$.
Proof. First we prove the upper bound of the edge of $H L_{n} . H L_{n}$ is formed by embedding a tree T having no degree- 2 vertices in the plane and connecting its leaves by a cycle C that crosses none of its edges. Since $H L_{n}$ has n vertices, we get $|E(T)| \leq n-1$. Since there are at most only $n-1$ leaves in T, we get $|E(C)| \leq n-1$. So $\left|E\left(H L_{n}\right)\right| \leq 2 n-2$.

Next we will prove the lower bound of the edge of $H L_{n}$. Since $\delta\left(H L_{n}\right) \geq 3$, we get $\sum_{v \in V\left(H L_{n}\right)} d(v) \geq$ $3 n$ for all $v \in H L_{n}$. According to the lemma, we can get $\left|E\left(H L_{n}\right)\right| \geq\left\lceil\frac{3 n}{2}\right\rceil$.

Hence $\left\lceil\frac{3 n}{2}\right\rceil \leq\left|E\left(H L_{n}\right)\right| \leq 2 n-2$. The proof is complete.

Lemma 2.5. $r b\left(\mathscr{H} \mathscr{L}_{n}, 2 K_{2}\right)=\left\{\begin{array}{ll}4, & n=4 ; \\ 2, & n \geq 5 .\end{array}\right.$.
Proof. Let $H L_{n}$ be a Halin graph of order n. First we consider the case $n=4$. The edges of $H L_{4}$ can be partitioned into E_{1}, E_{2}, E_{3}, where both E_{1}, E_{2} and E_{3} are matching of size 2 . We color the edges in E_{i} by the color i for $i=1,2,3$. Clearly, there is not any rainbow matching of size 2 . On the other hand, if we color the edges of $H L_{4}$ by 4 colors, then at least one of E_{1}, E_{2} and E_{3} is rainbow. This proves that $r b\left(\mathscr{M}_{n}, 2 K_{2}\right)=4$.

When $n \geq 5$, let $H L_{n}$ be a Halin graph of order n. We color the edges of $H L_{n}$ by color 1 and color 2. Let $w \in V\left(H L_{n}\right)$ and the edges connected with w contains two colors. Let the neighbors of w is a set $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ and $d \geq 2$. Without loss of generality, we let $c\left(w v_{1}\right) \neq c\left(w v_{2}\right)$. Since $n \geq 5$, there must be two disjoint edges e_{1}, e_{2} that do not belong to $E=\left\{w v_{i} \mid 1 \leq i \leq d\right\}$, and e_{1}, e_{2} are connected with v_{1}, v_{2}, respectively. Suppose that $H L_{n}$ does not contain any rainbow $2 K_{2}$, then $c\left(e_{1}\right)=c\left(w v_{2}\right)$ and $c\left(e_{2}\right)=c\left(w v_{1}\right)$. Since $c\left(w v_{1}\right) \neq c\left(w v_{2}\right)$, we get $c\left(e_{1}\right) \neq c\left(e_{2}\right)$. Since e_{1}, e_{2} are disjointed, we get $\left\{e_{1}, e_{2}\right\}$ is a rainbow $2 K_{2}$, a contradiction.

The proof is complete.

Now we will show the exact values of $r b\left(\mathscr{H} \mathscr{L}_{n}, 3 K_{2}\right)$ for all $n \geq 6$. First we give two lemmas.

Lemma 2.6. Let G be an edge colored graph of order $n \geq 6$ which contains a rainbow 4-cycle, say $v_{1} v_{2} v_{3} v_{4} v_{1}$. If there is an edge in $G-\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, then G contains a rainbow $3 K_{2}$.

A graph G is called factor-critical if $G-v$ contains a perfect matching for every vertex $v \in$ $V(G)$.

Lemma 2.7. [15] Given a graph $G=(V, E)$ of order n, let d be the size of a maximum matching of G. Then there exists a subset $S \subset V$ such that $d=\frac{1}{2}(n-(o(G-S)-|S|))$, where $o(G-S)$ is the number of odd components in $G-S$. Moreover, each odd component of $G-S$ is factor-critical.

Theorem 2.8. For all $n \geq 6, r b\left(\mathscr{M}_{n}, 3 K_{2}\right)=n+1$.
Proof. We have proved the lower bound in the previous section and here we only consider the upper bound case. Let $H L_{n}$ be a Halin graph with n vertices. Let c be a $(n+1)$-edge-coloring of $H L_{n}$. Clearly, $H L_{n}$ contains a rainbow $2 K_{2}$. Suppose that $H L_{n}$ does not contain any rainbow $3 K_{2}$. Now let $G \subset H L_{n}$ be a rainbow spanning subgraph of size $n+1$ which contains a $2 K_{2}$.

Since the size of the maximum matching of G is 2, by Lemma, there exists a subset $S \subset V(G)$ such that $o(G-S)-|S|=n-4$. Let $|S|=s, o(G-S)=q$ and denote the odd components of $G-S$ be $A_{1}, A_{2}, \ldots, A_{q}$. Let $\left|V\left(A_{i}\right)\right|=a_{i}$ for $1 \leq i \leq q$ and $a_{1} \geq a_{2} \geq \ldots \geq a_{q} \geq 1$. Let $C(G)=V(G-S) \backslash\left\{\bigcup_{i=1}^{q} V\left(A_{i}\right)\right\}$.

Since $q=s+n-4$ and $s+q \leq n$, then $0 \leq s \leq 2$. We distinguish the following three cases to finish the proof of the theorem.

Case 1. $s=0$.
In this case, $q=n-4$. If $a_{1} \leq 3$, then $|E(G)| \leq 6<n+1$, a contradiction. Then $a_{1}=5$ and $a_{2}=a_{3}=\ldots=a_{q}=1$. When $n \geq 8,|E(G)| \leq 2 \times 5-2=8<n+1$, a contradiction.

When $n=7$, suppose that $|E(G)| \geq 8$, we get $G\left[V\left(A_{1}\right)\right] \cong W_{4}$. Then, there are one non-leaf vertex and four leaf vertices in $V\left(A_{1}\right)$. This four leaf vertices will form a cycle. For $n \geq 6$, the remaining vertices in the graph $H L_{n}$ can only be connected with the non-leaf vertices in A_{1}. This contradicts that $\delta\left(H L_{n}\right) \geq 3$. Then $|E(G)|<8=n+1$, a contradiction. So $n=6$.

When $n=6$, suppose that $|E(G)| \geq 8$, we get $G\left[V\left(A_{1}\right)\right] \cong W_{4}$. Contradictions can be seen form the above. Suppose that $|E(G)|=7$, then $G\left[V\left(A_{1}\right)\right] \cong M_{5}$. Hence $G\left[V\left(A_{1}\right)\right]$ contains a rainbow C_{4}. Since $H L_{n}$ is a connected plane graph, there must be an edge between $V\left(A_{1}\right) \backslash V\left(C_{4}\right)$ and $V\left(A_{2}\right)$ in graph $H L_{n}$. By lemma, we get $H L_{n}$ contains a rainbow $3 K_{2}$, a contradiction. Then $|E(G)|<7=n+1$, a contradiction.

Case 2. $s=1$.
In this case, $q=s+n-4=n-3$. If $|C(G)|=2$, then $a_{1}=1$. Then $|E(G)| \leq 1+n-1=$ $n<n+1$, a contradiction. So $|C(G)|=0$. Hence $a_{1}=3$ and $a_{2}=a_{3}=\ldots=a_{q}=1$.

Since A_{1} is factor-critical, $A_{1} \cong C_{3}$. Then, there is only one non-leaf vertex in $V\left(A_{1}\right)$. So $\left|E_{G}\left(V\left(A_{1}\right), S\right)\right| \leq 1$. We get $|E(G)| \leq 3+(n-4)+1=n<n+1$, a contradiction.

Case 3. $s=2$.
In this case, $q=s+n-4=n-2$, then $|C(G)|=0$ and $a_{1}=a_{2}=\ldots=a_{q}=1$. Let $S=$ $\left\{w_{1}, w_{2}\right\}, V\left(A_{i}\right)=\left\{v_{i}\right\}(i=1,2, \ldots, n-2)$ and $U=\left\{v_{1}, v_{2}, \ldots, v_{n-2}\right\}$.

Suppose that $w_{1} w_{2} \notin E(G)$. Since $|E(G)|=n+1$, there are $(n+1)-(n-2)=3$ vertices in U which have 2 degrees in graph G. Without loss of generality, we let $d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)=$ $d_{G}\left(v_{3}\right)=2$ and $U_{1}=\left\{v_{4}, v_{5}, \ldots, v_{n-2}\right\}, U_{2}=\left\{v_{1}, v_{2}, v_{3}\right\}$.

Suppose that w_{1}, w_{2} are non-leaf vertices. Suppose that there is a leaf vertex in U_{2}, then one leaf vertex connects two non-leaf vertices. This contradicts that $H L_{n}$ is a Halin graph. So all vertices of U_{2} are non-leaf vertices. Then tow vertices of U_{2} and w_{1}, w_{2} will form a 4-cycle, that is to say, non-leaf vertices form a 4-cycle. This contradicts that the tree T of $H L_{n}$ has no cycle. Hence, there is only one non-leaf vertices in S.

Without loss of generality, we assume that w_{1} is a non-leaf vertices. There is one vertex of U_{2} lie in the inner area of a 4-cycle. Without loss of generality, we let v_{3} lie in the inner area of cycle $v_{1} w_{1} v_{2} w_{2} v_{1}$. Since w_{2} is a leaf vertex, there is only one non-leaf vertex in U_{2}. Suppose that v_{3} is a non-leaf vertex, then v_{1}, v_{2} are leaf vertices and v_{1}, v_{2} are not connected with v_{3}. We can get $d_{H L_{n}}\left(v_{3}\right)=2$, This contradicts that $\delta\left(H L_{n}\right)=3$. Then v_{3} is a leaf vertex. Since there is one non-leaf vertex in U_{2}, without loss of generality, we let v_{1} is a non-leaf vertex. Since one leaf vertex only connects one non-leaf vertex and $w_{1} v_{3} \in E\left(H L_{n}\right)$, we get $v_{1} v_{3} \notin E\left(H L_{n}\right)$. Since
w_{2}, v_{2} are two leaf vertices, $v_{2} v_{3} \notin E\left(H L_{n}\right)$, otherwise leaf vertex w_{2}, v_{2}, v_{3} will form a C_{3}. We can get $d_{H L_{n}}\left(v_{3}\right)=2$, this contradicts that $\delta\left(H L_{n}\right)=3$. Then $w_{1} w_{2} \in E(G)$.

Since $|E(G)|=n+1$, we choose two vertices v_{1}, v_{2} from U such that $d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)=2$ and $d_{G}\left(v_{i}\right)=1(3 \leq i \leq n-2)$. Let $U_{3}=\left\{v_{3}, v_{4}, \ldots, v_{n-2}\right\}$ and $U_{4}=\left\{v_{1}, v_{2}\right\}$, we get $\left|E_{H L_{n}}\left(S, U_{4}\right)\right|=4$ and $\left|E_{H L_{n}}\left(S, U_{3}\right)\right|=n-4$. Let $c\left(w_{1} v_{1}\right)=1, c\left(w_{1} v_{2}\right)=2, c\left(w_{2} v_{1}\right)=3, c\left(w_{2} v_{2}\right)=4, c\left(w_{1} w_{2}\right)=$ 5. Without loss of generality, we assume that $w_{2} v_{3} \in E(G)$. Let $c\left(w_{2} v_{3}\right)=6$, then w_{2} is a non-leaf vertex. Since $G\left[S \cup U_{4}\right]$ contains a rainbow 4-cycle, we get $E\left(H L_{n}\left[U_{3}\right]\right)=\emptyset$, otherwise $H L_{n}$ contains a rainbow $3 K_{2}$.

Suppose that $E\left(H L_{n}\left[U_{4}\right]\right) \neq \emptyset$, then $v_{1} v_{2} \in E\left(H L_{n}\right)$. Suppose that v_{1}, v_{2} are non-leaf vertices, then non-leaf vertices v_{1}, v_{2}, w_{2} will form a cycle. This contradicts that the tree T of $H L_{n}$ has no cycle. Suppose that there is only one leaf vertex in $\left\{v_{1}, v_{2}\right\}$. Without loss of generality, we assume that v_{1} is a non-leaf vertex, then v_{2} is a leaf vertex. Since leaf vertex v_{2} connects two non-leaf vertices v_{1}, w_{2}, this contradicts that $H L_{n}$ is a Halin graph. Suppose that v_{1}, v_{2} are leaf vertices, we get w_{1} is a leaf vertex, otherwise leaf vertices v_{1}, v_{2} connects two non-leaf vertices w_{1}, w_{2}. Then leaf vertices v_{1}, v_{2}, w_{1} will form a cycle. Since $n \geq 6$, this contradicts that $H L_{n}$ is a Halin graph. Then $E\left(H L_{n}\left[U_{4}\right]\right)=\emptyset$.

We get $\left|E_{H L_{n}}\left(U_{3}, U_{4}\right)\right| \geq\left\lceil\frac{3 n}{2}\right\rceil-1-4-(n-4)=\left\lceil\frac{3 n}{2}\right\rceil-n-1$. So, when $n \geq 6$, we have $\mid E_{H L_{n}}\left(\left(U_{3}, U_{4}\right) \mid \geq 1\right.$. Let $\left|E_{H L_{n}}\left(\left\{v_{3}\right\}, U_{4}\right)\right| \geq\left|E_{H L_{n}}\left(\left\{v_{4}\right\}, U_{4}\right)\right| \geq \ldots \geq\left|E_{H L_{n}}\left(\left\{v_{n-2}\right\}, U_{4}\right)\right|$, then $\left|E_{H L_{n}}\left(\left\{v_{3}\right\}, U_{4}\right)\right| \geq 1$. Without loss of generality, we assume that $v_{1} v_{3} \in E\left(H L_{n}\right)$.

Without loss of generality, we assume that $w_{2} v_{4} \in E(G)$ and let $c\left(w_{2} v_{4}\right)=7$, then $c\left(v_{1} v_{3}\right) \in$ $\{2,7\}$. Now we suppose that there is a vertex u in $\left\{v_{4}, v_{5}, \ldots, v_{n-2}\right\}$ such that $v_{2} u \in E\left(M_{n}\right)$, then $c\left(v_{2} u\right) \in\{1,6\}$. We get $\left\{w_{1} w_{2}, v_{1} v_{3}, v_{2} u\right\}$ is a rainbow $3 K_{2}$ in $H L_{n}$, a contradiction. So $v_{2} v_{i} \notin E\left(H L_{n}\right)(i=4, \ldots, n-2)$, then $v_{1} v_{i} \in E\left(H L_{n}\right)(i=3,4, \ldots, n-2)$. Hence, v_{1} is a non-leaf vertex. Suppose that v_{3} is a leaf vertex, then leaf vertex v_{3} connects two non-leaf vertices v_{1}, w_{2}, this contradicts that $H L_{n}$ is a Halin graph. Then v_{3} is a non-leaf vertex. We get non-leaf vertices $\left\{v_{1}, v_{3}, w_{2}\right\}$ form a cycle. This contradicts that the tree T of $H L_{n}$ has no cycle.

The proof is complete.

Now, we will show that the exact value of $r b\left(\mathscr{M}_{n}, 4 K_{2}\right)$ for all $n \geq 8$. First we give a lemma.

Lemma 2.9. Let G be an edge-colored graph of order $n \geq 8$ which contains a rainbow 6cycle, say $v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$. If there is an edge in $G-\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$, then G contains a rainbow $4 K_{2}$.

Theorem 2.10. For all $n \geq 8, r b\left(\mathscr{H} \mathscr{L}_{n}, 4 K_{2}\right)=n+3$.
Proof. We have proved the lower bound in the previous section and here we only consider the upper bound case. Let $H L_{n}$ be a Halin graph with n vertices. Let c be a $(n+3)$-edge-coloring of $H L_{n}$. Clearly, $H L_{n}$ contains a rainbow $3 K_{2}$. Suppose that $H L_{n}$ does not contain any rainbow $4 K_{2}$. Now let $G \subset H L_{n}$ be a rainbow spanning subgraph of size $n+3$ which contains a $3 K_{2}$.

Since the size of the maximum matching of G is 3, by Lemma, there exists a subset $S \subset V(G)$ such that $o(G-S)-|S|=n-6$. Let $|S|=s, o(G-S)=q$ and denote the odd components of $G-S$ be $A_{1}, A_{2}, \ldots, A_{q}$. Let $\left|V\left(A_{i}\right)\right|=a_{i}$ for $1 \leq i \leq q$ and $a_{1} \geq a_{2} \geq \ldots \geq a_{q} \geq 1$. Let $C(G)=V(G-S) \backslash\left\{\bigcup_{i=1}^{q} V\left(A_{i}\right)\right\}$.

Since $q=s+n-6$ and $s+q \leq n$, then $0 \leq s \leq 3$. We distinguish the following four cases to finish the proof of the theorem.

Case 1. $s=0$.
In this case, $q=n-6$. If $a_{1} \leq 3$, then $|E(G)| \leq 10<n+3(n \geq 8)$, a contradiction. So $a_{1}=5$, $a_{2}=3$ and $a_{3}=a_{4}=\ldots=a_{q}=1$. When $n \geq 9$, then $|E(G)| \leq 2 \cdot 5-2+3=11<n+3$, a contradiction. When $n=8$, suppose that $|E(G)| \geq 11$, then $G\left[V\left(A_{1}\right)\right] \cong W_{4}$ and $G\left[V\left(A_{2}\right)\right] \cong C_{3}$. So there are four leaf vertices in $V\left(A_{1}\right)$ and the four leaf vertices form a cycle. Since $n \geq 8$, this contradicts that $H L_{n}$ is a Halin graph. Then, $|E(G)|<11=n+3$ for all $n \geq 8$, a contradiction. Hence, $a_{1}=7$ and $a_{2}=a_{3}=\ldots=a_{q}=1$.

When $n \geq 10$, we get $|E(G)| \leq 2 \cdot 7-2=12<n+3$, a contradiction. Then $n \leq 9$. When $n=9$, suppose that $|E(G)| \geq 12$, then $G\left[V\left(A_{1}\right)\right] \cong W_{6}$. So there are six leaf vertices in $V\left(A_{1}\right)$ and the six leaf vertices will form a cycle. since $n=9$, the remaining vertices in the graph $H L_{9}$ can only be connected to the non-leaf vertices in the A_{1}, which contradicts $\delta\left(H L_{n}\right)=3$. Then, $|E(G)|<12=n+3$, a contradiction. Hence, $n=8$. Suppose that $|E(G)| \geq 11$, then $G\left[V\left(A_{1}\right)\right] \cong M_{7}$. We get $G\left[V\left(A_{1}\right)\right]$ contains a rainbow C_{6}. Since $H L_{n}$ is a connected plane graph, there must be an edge between $V\left(A_{1}\right) \backslash V\left(C_{6}\right)$ and $V\left(A_{2}\right)$ in $H L_{n}$. By Lemma, $H L_{n}$ contains a rainbow $4 K_{2}$, a contradiction. Then $|E(G)|<11=n+3$, a contradiction.

Case 2. $s=1$.
In this case, $q=s+n-6=n-5$. If $|C(G)|=4$, then $a_{1}=a_{2}=a_{3}=\ldots=a_{q}=1$. Suppose that $G[C(G)] \cong W_{3}$, there are three leaf vertices in $C(G)$ and this three leaf vertices form a cycle, this contradicts that $H L_{n}$ is a Halin graph. Then, $G[C(G)] \cong M_{4}$. There is only one non-leaf vertices in $C(G)$, we get $\left|E_{G}(C(G), S)\right| \leq 1$. Then $|E(G)| \leq 2 \cdot 4-3+1+n-5=n+1<n+3$, a contradiction. Hence $|C(G)|=2$, and $a_{1}=3, a_{2}=a_{3}=\ldots=a_{q}=1$. Since A_{1} is factor-critical, $A_{1} \cong C_{3}$. There is only one non-leaf vertex in $V\left(A_{1}\right)$, we get $\left|E_{G}\left(V\left(A_{1}\right), S\right)\right| \leq 1$. Hence, $|E(G)| \leq 1+3+(n-6)+2+1=n+1<n+3$, a contradiction. So $|C(G)|=0$.

If $a_{1}=5$, then $a_{2}=a_{3}=\ldots=a_{q}=1$. Suppose that $G\left[V\left(A_{1}\right)\right] \cong W_{4}$, then there are four leaf vertices in $V\left(A_{1}\right)$ and the four leaf vertices form a cycle. Since $n \geq 8$, this contradicts that $H L_{n}$ is a Halin graph. Then $G\left[V\left(A_{1}\right)\right] \cong M_{5}$. There is only one non-leaf vertex in $V\left(A_{1}\right)$, we get $\left|E_{G}\left(V\left(A_{1}\right), S\right)\right| \leq 1$. Hence, $|E(G)| \leq(2 \cdot 5-3)+1+(n-6)=n+2<n+3$, a contradiction.

Case 3. $s=2$.
In this case, $q=s+n-6=n-4$. Let $S=\left\{w_{1}, w_{2}\right\}$. If $|C(G)|=2$, then $a_{1}=a_{2}=\ldots=a_{q}=1$.
Suppose that $w_{1} w_{2} \notin E(G)$. Since $|E(G)|=n+3$, there are $n+3-1-(n-4)-2=4$ vertices in $V(G) \backslash S$ which are adjacent to both w_{1} and w_{2}. Let this four vertices be $v_{1}, v_{2}, v_{3}, v_{4}$ and $U_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. We get $d_{H L_{n}}\left(w_{1}\right) \geq 4, d_{H L_{n}}\left(w_{2}\right) \geq 4$, then w_{1}, w_{2} are non-leaf vertices. Suppose there is a vertex in U_{1} that is a leaf vertex, then there is a leaf vertex in U_{1} which is connected to two non-leaf vertices. This contradicts that $H L_{n}$ is a Halin graph. So all of the vertices in U_{1} are non-leaf vertices. And any two points in U_{1} and non-leaf vertex w_{1}, w_{2} form a C_{4}, this contradicts that the tree T of $H L_{n}$ has no cycle. Hence $w_{1} w_{2} \in E(G)$.

Since $|E(G)|=n+3$, there are $n+3-1-1-(n-2)=3$ vertices in $V(G) \backslash S$ which are adjacent to both w_{1} and w_{2}. We get $d_{H L_{n}}\left(w_{1}\right) \geq 4, d_{H L_{n}}\left(w_{2}\right) \geq 4$. Then we get the contradiction form above. Hence $|C(G)|=0$. So $a_{1}=3$ and $a_{2}=a_{3}=\ldots=a_{q}=1$. Since A_{1} is factor-critical, $A_{1} \cong C_{3}$. Then, there is only one leaf vertex in $V\left(A_{1}\right)$.

Suppose that there is only one leaf vertex in S and let w_{1} be the leaf point in S, then $\left|E_{G}\left(V\left(A_{1}\right), w_{1}\right)\right| \leq 2$ and $\left|E_{G}\left(V\left(A_{1}\right), w_{2}\right)\right| \leq 1$. Hence $\left|E_{G}\left(V\left(A_{1}\right), S\right)\right| \leq 3$. Since $\mid E_{G}(V(G) \backslash$ $\left.V\left(A_{1}\right), w_{1}\right) \mid \leq 1$, we get $|E(G)| \leq 3+3+1+(n-5)=n+2<n+3$, a contradiction. Then w_{1}, w_{2} are non-leaf vertices and we get $\left|E_{G}\left(V\left(A_{1}\right), S\right)\right| \leq 1$.

Suppose that $w_{1} w_{2} \notin E(G)$, then there are $n+3-3-1-(n-5)=4$ vertices in $V(G) \backslash S$ which are adjacent to both w_{1} and w_{2}. We get $d_{H L_{n}}\left(w_{1}\right) \geq 4$ and $d_{H L_{n}}\left(w_{2}\right) \geq 4$, we can get contradictions from above. Hence, $w_{1} w_{2} \in E(G)$. Then there are $(n+3)-3-1-1-(n-$ $5)=3$ vertices in $V(G) \backslash S$ which are adjacent to both w_{1} and w_{2}. We get $d_{H L_{n}}\left(w_{1}\right) \geq 4$ and $d_{H L_{n}}\left(w_{2}\right) \geq 4$, we can get contradictions from above.

Case 4. $s=3$.
In this case, $q=s+n-6=n-3$, then $|C(G)|=\emptyset$ and $a_{i}=1$ for all $1 \leq i \leq n-3$. Let $S=\left\{w_{1}, w_{2}, w_{3}\right\}, V\left(A_{i}\right)=\left\{v_{i}\right\}$ for all $1 \leq i \leq n-3$ and $U=\left\{v_{1}, v_{2}, \ldots, v_{n-3}\right\}$. Suppose that $G[S] \cong C_{3}$, then there is only one non-leaf vertex in S. So $\left|E_{G}(U, S)\right| \leq 2+2+(n-5)=n-1$. Then $|E(G)| \leq(n-1)+3=n+2<n+3$, a contradiction. Hence $G[S] \cong P_{3}$ and let $P_{3}=$ $w_{1} w_{2} w_{3}$.

Suppose that there are 3 vertices of U in graph G have the degree of 2 . We choose two vertices v_{1}, v_{2} form U and such that $d_{G}\left(v_{i}\right)=3(i=1,2)$ and $d_{G}\left(v_{i}\right)=1(i=3, \ldots, n-3)$, then w_{2} is a non-leaf vertex. Since $d_{G}\left(v_{i}\right)=1(i=3, \ldots, n-3)$, we get that there is one non-leaf vertex in $\left\{w_{1}, w_{3}\right\}$. Without loss of generality, we assume that w_{1} is a non-leaf vertex. Since $G\left[S \cup\left\{v_{1}, v_{2}\right\}\right] \cong W_{4}$, we get v_{1}, v_{2} are two non-leaf vertices. Then, v_{1}, v_{2} and non-leaf vertex w_{1}, w_{2} form a cycle. This contradicts that the tree T of $H L_{n}$ has no cycle.

Suppose that there are 3 vertices of U in graph G have the degree of 1 . Since $H L_{n}$ is a Halin graph and $|E(G)|=n+3$, then the degree of 2 vertices in the U is 2 in graph G. Without loss of generality, we assume that $w_{1} v_{1}, w_{1} v_{2}, w_{2} v_{1}, w_{2} v_{2}, w_{2} v_{3}, w_{3} v_{3}, w_{3} v_{2} \in E(G)$, then w_{2} is a non-leaf vertex. Let $U_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $U_{2}=\left\{v_{4}, v_{5}, \ldots, v_{n-3}\right\}$.

Suppose that there is not only one non-leaf vertex w_{2} in S. Without loss of generality, we assume that w_{1} is a non-leaf vertex in S. Suppose that v_{1} is a leaf vertex, then one leaf vertex v_{1} connects two non-leaf vertices w_{1}, w_{2}. This contradicts that $H L_{n}$ is a Halin graph. Then v_{1} is a non-leaf vertex. We get v_{1} and two non-leaf vertices w_{1}, w_{2} will form a cycle. This contradicts that the tree T of $H L_{n}$ has no cycle. So there is only one non-leaf vertex w_{2} in S. Then $\left|E_{H L_{n}}\left(S, U_{2}\right)\right| \leq n-6$.

Suppose that there is a non-leaf vertex in U_{1}, then leaf vertex w_{1} or w_{3} connects two non-leaf vertices w_{1}, w_{2}. This contradicts that $H L_{n}$ is a Halin graph. Then all of vertices in U_{1} are leaf vertices. Hence $\left|E_{H L_{n}}\left(S, U_{1}\right)\right| \leq 7$.

Suppose that $E\left(H L_{n}\left[U_{2}\right]\right) \neq \emptyset$. Since $G\left[S \cup U_{1}\right]$ contains a rainbow 6-cycle, by Lemma, we get $H L_{n}$ contains a rainbow $4 K_{2}$, a contradiction. Then $E\left(H L_{n}\left[U_{2}\right]\right)=\emptyset$.

Suppose that $\left|E\left(H L_{n}\left[U_{1}\right]\right)\right| \geq 1$. Suppose that $v_{1} v_{2} \in E\left(H L_{n}\right)$ or $v_{3} v_{2} \in E\left(H L_{n}\right)$. Since all of vertices in U_{1} are leaf vertices, we get leaf vertices v_{1}, v_{2}, w_{1} or leaf vertices v_{2}, v_{3}, w_{3} form a C_{3}. Since $n \geq 8$, this contradicts that $H L_{n}$ is a Halin graph. So $v_{1} v_{2} \notin E\left(H L_{n}\right)$ and $v_{3} v_{2} \notin E\left(H L_{n}\right)$, that is to say, $v_{1} v_{3} \in E\left(H L_{n}\right)$. Hence $G\left[S \cup U_{1}\right] \cong W_{5}$, then all of vertices in U_{1} and leaf vertices w_{1}, w_{3} form a cycle. Since $n \geq 8$, the remaining vertices in the graph $H L_{n}$ can only be connected to the non-leaf vertex w_{2}. This contradicts that $\delta\left(H L_{n}\right)=3$. So $\left|E\left(H L_{n}\left[U_{1}\right]\right)\right|=0$.

Since $\left|E_{H L_{n}}\left(U_{1}, U_{2}\right)\right| \geq\left\lceil\frac{3 n}{2}\right\rceil-7-2-(n-6)=\left\lceil\frac{3 n}{2}\right\rceil-n-3$, when $n \geq 8$, we have $\left|E_{H L_{n}}\left(U_{1}, U_{2}\right)\right| \geq 1$. Let $\left|E_{H L_{n}}\left(\left\{v_{4}\right\}, U_{1}\right)\right| \geq\left|E_{H L_{n}}\left(\left\{v_{5}\right\}, U_{1}\right)\right| \geq \ldots \geq\left|E_{H L_{n}}\left(\left\{v_{n-3}\right\}, U_{1}\right)\right|$, then $\left|E_{H L_{n}}\left(\left\{v_{4}\right\}, U_{1}\right)\right| \geq 1$. Without loss of generality, we let $v_{1} v_{4} \in E\left(H L_{n}\right)$. Since $\delta\left(H L_{n}\right)=3$ and $\left|E\left(H L_{n}\left[U_{2}\right]\right)\right|=0, v_{4} v_{3} \in E\left(H L_{n}\right)$, otherwise $d_{H L_{n}}\left(v_{4}\right)=2$. So, $G\left[S \cup U_{1} \cup v_{4}\right] \cong W_{6}$, then all of vertices in U_{1} and w_{1}, w_{3}, v_{4} form a cycle. Since $n \geq 8$, the remaining vertices in the graph $H L_{n}$ can only be connected to the non-leaf vertex w_{2}. This contradicts that $\delta\left(H L_{n}\right)=3$. So there are no vertex of U in graph G has degree of 3 .

Since $H L_{n}$ is a Halin graph and $|E(G)|=n+3$, there are four vertex of U which have 2degree in graph G. Without loss of generality, we assume that $w_{1} v_{1}, w_{1} v_{2}, w_{2} v_{1}, w_{2} v_{2}, w_{2} v_{3}$, $w_{2} v_{4}, w_{3} v_{3}, w_{3} v_{4} \in E(G)$. Then w_{2} is a non-leaf vertex. Let $U_{1}^{\prime}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and such that $d_{G}\left(v_{i}\right)=2(i=1,2,3,4)$. Let $U_{2}^{\prime}=\left\{v_{5}, v_{6}, \ldots, v_{n-3}\right\}$ and $d_{G}\left(v_{i}\right)=1(i=5, \ldots, n-3)$.

Suppose that there is not only one non-leaf vertex w_{2} in S. Without loss of generality, we assume that w_{1} is a non-leaf vertex in S. Suppose that v_{1} is a leaf vertex, then v_{1} connects non-leaf vertex w_{1}, w_{2}. This contradicts that $H L_{n}$ is a Halin graph, then v_{1} is a non-leaf vertex. We get v_{1} and two non-leaf vertices w_{1}, w_{2} will form a cycle. This contradicts that the tree T of $H L_{n}$ has no cycle. Then there is only one non-leaf vertex w_{2} in S.

Suppose that there is a non-leaf vertex in U_{1}^{\prime}, then leaf vertex w_{1} or w_{3} connects two non-leaf vertices. This contradicts that $H L_{n}$ is a Halin graph. Then all of vertices in U_{1}^{\prime} are leaf vertices. Hence $\left|E_{H L_{n}}\left(S, U_{1}^{\prime}\right)\right| \leq 8$ and $\left|E_{H L_{n}}\left(S, U_{2}^{\prime}\right)\right| \leq n-7$.

Now suppose that $E\left(H L_{n}\left[U_{2}^{\prime}\right]\right) \neq \emptyset$, then we choose $e \in E\left(H L_{n}\left[U_{2}^{\prime}\right]\right)$. Since $\left\{w_{1} v_{2}, w_{3} v_{3}, w_{2} v_{4}\right\}$ is a rainbow $3 K_{2}$ in $H L_{n}$, we can get $c(e) \in\left\{c\left(w_{1} v_{1}\right), c\left(w_{3} v_{3}\right), c\left(w_{2} v_{4}\right)\right\}$, otherwise $H L_{n}$ contains a rainbow $4 K_{2}$. So $\left\{e, w_{1} v_{2}, w_{2} v_{3}, w_{3} v_{4}\right\}$ is a rainbow $4 K_{2}$ in $H L_{n}$, a contradiction. Hence $E\left(H L_{n}\left[U_{2}^{\prime}\right]\right)=\emptyset$.

Suppose that $\left|E\left(H L_{n}\left[U_{1}^{\prime}\right]\right)\right| \geq 2$. Suppose that $v_{1} v_{2} \in E\left(H L_{n}\right)$, then leaf vertices v_{1}, v_{2}, w_{1} will form a C_{3}. since $n \geq 8$, this contradicts that $H L_{n}$ is a Halin graph, we get $v_{1} v_{2} \notin E\left(H L_{n}\right)$. The same reason can be obtained $v_{3} v_{4} \notin E\left(H L_{n}\right)$. Since $\left|E\left(H L_{n}\left[U_{1}^{\prime}\right]\right)\right| \geq 2$, we let $v_{1} v_{3} \in E\left(H L_{n}\right)$ and $v_{2} v_{4} \in E\left(H L_{n}\right)$. Then all of vertices of U_{1}^{\prime} and w_{1}, w_{3} form a cycle. Since $n \geq 8$, the remaining vertices in the graph $H L_{n}$ can only be connected to the non-leaf vertex w_{2}. This contradicts that $\delta\left(H L_{n}\right)=3$. So $\left|E\left(H L_{n}\left[U_{1}^{\prime}\right]\right)\right| \leq 1$.

Since $\left|E_{H L_{n}}\left(U_{1}^{\prime}, U_{2}^{\prime}\right)\right| \geq\left\lceil\frac{3 n}{2}\right\rceil-8-2-(n-7)-1=\left\lceil\frac{3 n}{2}\right\rceil-n-4$. Then, when $n \geq 9$, we get $\left|E_{H L_{n}}\left(U_{1}^{\prime}, U_{2}^{\prime}\right)\right| \geq 1$. Let $\left|E_{H L_{n}}\left(\left\{v_{5}\right\}, U_{1}^{\prime}\right)\right| \geq\left|E_{H L_{n}}\left(\left\{v_{6}\right\}, U_{1}^{\prime}\right)\right| \geq \ldots \geq\left|E_{H L_{n}}\left(\left\{v_{n-2}\right\}, U_{1}^{\prime}\right)\right|$, we get $\left|E_{H L_{n}}\left(\left\{v_{5}\right\}, U_{1}^{\prime}\right)\right| \geq 1$. Without loss of generality, we let $v_{1} v_{5} \in E\left(H L_{n}\right)$ and we have $w_{2} v_{5} \in$ $E(G)$. Since $\left\{w_{1} v_{2}, w_{3} v_{3}, w_{2} v_{4}\right\}$ and $\left\{w_{1} v_{2}, w_{2} v_{3}, w_{3} v_{4}\right\}$ are two rainbow $3 K_{2}$ in $H L_{n}$, we get $c\left(v_{1} v_{5}\right)=c\left(w_{1} v_{2}\right)$, otherwise $H L_{n}$ contains a rainbow $4 K_{2}$.

Suppose that $\left|E\left(H L_{n}\left[U_{1}^{\prime}\right]\right)\right|=1$. Without loss of generality, we let $v_{2} v_{4} \in E\left(H L_{n}\right)$. Since $\left\{w_{1} w_{2}, v_{1} v_{5}, w_{3} v_{3}\right\}$ and $\left\{w_{1} v_{1}, w_{2} v_{5}, w_{3} v_{3}\right\}$ are two rainbow $3 K_{2}$ in $H L_{n}$, we get $c\left(v_{2} v_{4}\right)=c\left(w_{3} v_{3}\right)$, otherwise $H L_{n}$ contains a rainbow $4 K_{2}$.

Suppose that there is a vertex x in U_{2}^{\prime} such that $v_{3} x \in E\left(H L_{n}\right)$. Since $\left\{v_{1} v_{5}, w_{1} w_{2}, w_{3} v_{4}\right\}$ is a rainbow $3 K_{2}$ in $H L_{n}$, we can get that $c\left(v_{3} x\right) \in\left\{c\left(v_{1} v_{5}\right), c\left(w_{1} w_{2}\right), c\left(w_{3} v_{4}\right)\right\}$, otherwise $H L_{n}$ contains a rainbow $4 K_{2}$. Then $\left\{v_{3} x, v_{1} w_{1}, v_{2} v_{4}, w_{2} w_{3}\right\}$ is a rainbow $4 K_{2}$ in $H L_{n}$, a contradiction. Hence $v_{3} v_{i} \notin E\left(H L_{n}\right)(i=6, \ldots, n-2)$, then $v_{1} v_{i} \in E\left(H L_{n}\right)(i=5,6, \ldots, n-2)$. So v_{1} is a nonleaf vertex. Suppose that v_{5} is a leaf vertex, then one leaf vertex connects two non-leaf vertices v_{1}, w_{2}. This contradicts that $H L_{n}$ is a Halin graph. Then v_{5} is a non-leaf vertex. The non-leaf vertex v_{1}, v_{5}, w_{2} will form a cycle, this contradicts that the tree T of $H L_{n}$ has no cycle. Hence $\left|E\left(H L_{n}\left[U_{1}^{\prime}\right]\right)\right|=0$. So we get $v_{2} v_{4} \notin E\left(H L_{n}\right)$.

Since v_{2} is a leaf vertex, then $d_{H L_{n}}\left(v_{2}\right)=3$. Since $\left|E\left(H L_{n}\left[U_{1}^{\prime}\right]\right)\right|=0$, there exists a vertex y in U_{2}^{\prime} such that $v_{2} y \in E\left(H L_{n}\right)$. Since $\left\{v_{1} v_{5}, w_{1} w_{2}, w_{3} v_{4}\right\}$ is a rainbow $3 K_{2}$ in $H L_{n}$, we get $c\left(v_{2} y\right) \in\left\{c\left(v_{1} v_{5}\right), c\left(w_{1} w_{2}\right), c\left(w_{3} v_{4}\right)\right\}$, otherwise $H L_{n}$ contains a rainbow $4 K_{2}$. Hence, $\left\{v_{2} y, v_{1} w_{1}, w_{2} v_{4}, v_{3} w_{3}\right\}$ is a rainbow $4 K_{2}$ in $H L_{n}$, a contradiction. Then $n=8$.

When $n=8$, then $|E(G)|=11$ and $w_{2} v_{5} \in E(G)$. since all of vertices in U_{1}^{\prime} are leaf vertices and are connected to the non-leaf vertex w_{2}, we get v_{5} is leaf vertex, otherwise one leaf vertex connects two non-leaf vertices w_{2}, v_{5}. Then $H L_{8} \cong W_{7}$, so $\left|E\left(H L_{8}\right)\right|=14$. Without loss of generality, we let $v_{1} v_{5}, v_{3} v_{5}, v_{2} v_{4} \in E\left(H L_{8}\right)$.

Since $\left\{w_{1} v_{2}, w_{3} v_{3}, w_{2} v_{4}\right\}$ and $\left\{w_{1} v_{2}, w_{2} v_{3}, w_{3} v_{4}\right\}$ are two rainbow $3 K_{2}$ in $H L_{n}$, we get $c\left(v_{1} v_{5}\right)=$ $c\left(w_{1} v_{2}\right)$, otherwise $H L_{n}$ contains a rainbow $4 K_{2}$. Since $\left\{w_{1} w_{2}, v_{1} v_{5}, w_{3} v_{3}\right\}$ and $\left\{w_{1} v_{1}, w_{2} v_{5}, w_{3} v_{3}\right\}$ are two rainbow $3 K_{2}$ in $H L_{n}$, we get $c\left(v_{2} v_{4}\right)=c\left(w_{3} v_{3}\right)$, otherwise $H L_{n}$ contains a rainbow $4 K_{2}$. Since $\left\{w_{1} v_{1}, v_{2} v_{4}, w_{2} w_{3}\right\}$ is a rainbow $3 K_{2}$ in $H L_{n}$, we get $c\left(v_{3} v_{5}\right) \in\left\{c\left(w_{1} v_{1}\right), c\left(v_{2} v_{4}\right), c\left(w_{2} w_{3}\right)\right\}$. Hence, $\left\{v_{3} v_{5}, v_{1} w_{2}, w_{1} v_{2}, v_{4} w_{3}\right\}$ is a rainbow $4 K_{2}$ in $H L_{n}$, a contradiction.

The proof is complete.

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

[1] H. Chen, X.L. Li, J.H. Tu, Complete solution for the rainbow numbers of matchings, Discrete Math. 309(2009), 3370-3380.
[2] P. Erdős, M. Simonovits, V.T. Sós, Anti-Ramsey theorems, Colloq. Math. Soc. Janos Bolyai. Vol.10, Infinite and Finite Sets, Keszthely (Hungary), 1973, pp. 657-665.
[3] S. Fujita, C. Magnant, K. Ozeki, Rainbow Generalizations of Ramsey Theory: A Survey, Graphs Combin. 26(2010), 1-30.
[4] R. Haas, M. Young, The anti-Ramsey number of perfect matching, Discrete Math. 312(5)(2012), 933-937.
[5] S. Jendrol, I. Schiermeyer, J.H. Tu, Rainbow numbers for matchings in plane triangulations, Discrete Math. 331(28)(2014), 158-164.
[6] Z.M. Jin, Anti-Ramsey numbers for matchings in 3-regular bipartite graphs, Appl. Math. Comput. 292(2017), 114-119.
[7] Z.M. Jin, Oothan Nweit, K.J. Wang, Y.L. Wang, Anti-Ramsey numbers for matchings in regular bipartite graphs, Discrete Math. Algorithms Appl. 9(2)(2017), Article ID 1750019.
[8] Z.M. Jin, Y.F. Sun, S.H.F. Yan, Y.P. Zang, Extremal coloring for the anti-Ramsey problem of matchings in complete graphs, J. Comb. Optim. 34(2017), 1012-1028.
[9] Z.M. Jin, K.C. Ye, Y.F. Sun, H. Chen, Rainbow matchings in edge-colored complete split graphs. Eur. J. Comb. 70(2018), 297-316.
[10] Z.M. Jin, Y.P. Zang, Anti-Ramsey coloring for matchings in complete bipartite graphs, J. Comb. Optim. 33(2017), 1-12.
[11] M. Kano, X.L. Li, Monochromatic and heterochromatic subgraphs in edge-colored graphs - a survey, Graphs Combin. 24(2008), 237-263.
[12] X.L. Li, J.H. Tu, Z.M. Jin, Bipartite rainbow numbers of matchings, Discrete Math. 309(2009), 2575-2578.
[13] X.L. Li, Z.X. Xu, The rainbow number of matchings in regular bipartite graphs, Appl. Math. Lett. 22(2009), 1525-1528.
[14] I. Schiermeyer, Rainbow numbers for matchings and complete graphs, Discrete Math. 286(2004), 157-162.
[15] L. Lovász, M.D. Plummer, Matching Theory, North-Holland, Amsterdam, New York, Oxford, Tokyo, 1986.

[^0]: *Corresponding author
 E-mail address: 178558868600@163.com
 Received March 29, 2018

